İstanbul Üniv. Fen Fak. Mat. Der., 53 (1994), 5-11

ON SOME (f, g)-LINEAR CONNECTIONS

N. SOARE

Universitatea București, Facultatea de Matematica, Str. Academiei 14, 70109 București-ROMANIA

Summary: In this note we study the (f, g)-structures determined by a tensor field of type (1,1) so that $f^{2\nu+3} + f = 0$, and g is a Riemannian structure satisfying a supplementary condition.

BAZI (f, g)- LİNEER BAĞLANTILAR HAKKINDA

Özet : Bu çalışmada, (1,1) tipinde bir tensör alanı tarafından belirlenen (f, g)-yapıları incelenmektedir. Burada $f^{2\nu+3} + f = 0$ olup, g ek bir koşul gerçekleyen bir Riemann yapısıdır,

INTRODUCTION

Let *M* be a Riemannian manifold with Riemannian metric $g, \mathscr{C}(M)$ the affin modul of the linear connections on *M*, $\mathscr{C}_s^r(M)$ -the modul of the tensors of type (r, s): for $\mathscr{C}_0^1(M)$ and $\mathscr{C}_1^0(M)$ are used the notations $\mathfrak{X}(M)$ and $\mathfrak{X}^*(M)$ respectively. All the objects are of class C^{∞} .

Definition 1.1. We call $f(2\nu+3,1)$ -structure on M, a non-null field of tensors $f \in \mathcal{C}_1^1(M)$, of rank r, where r is constant everywhere, so that

$$f^{2r+3} + f = 0.$$

If M is a $f(2\nu+3,1)$ - manifold, that is, if M is an n-dimensional Riemannian manifold, equiped with a $f(2\nu+3,1)$ - structure, then for

$$l = -f^{2\nu+2}, \quad m = f^{2\nu+2} + I \tag{1.1}$$

(I denoting the identity operator) we have

$$fl = l f = l, fm = m f = 0, f^{2\nu+2} l = -l, f^{2\nu+2} m = 0$$
 (1.2)

and

$$l + m = I$$
, $l m = m l = 0$, $l^2 = l$, $m^2 = m$. (1.3)

Thus the operators l and m are complementary projection operators on M.

N. SOARE

The Riemannian structure g on M can be considered a $\mathfrak{X}^*(M)$ -valued differential 1-form and we'll have $g: \mathfrak{X}(M) \to \mathfrak{X}^*(M), g(X) = g_X$, where $g_X(Y) = g(X, Y)$ for every $X, Y \in \mathfrak{X}(M)$. If $f \in \mathcal{F}_1^1(M)$, then 'f is the transpose of f 'f: $\mathfrak{X}^*(M) \to \mathfrak{X}^*(M),$ 'f(θ) = $\theta \circ f, \forall \theta \in \mathfrak{X}^*(M)$.

Definition 1.2. We call (f, g)-structure on M, a couple made up a $f(2\nu+3,1)$ -structure and a Riemannian structure g so that

$$f^{\nu+1} \circ g \circ f^{\nu+1} = g \circ l. \tag{1.4}$$

Theorem 1.1. Let M be a paracompact differential manifold with a $f(2\nu+3,1)$ -structure. Then, there is a (f, g)-structure.

Proof. In truth, if γ is a Riemannian metric, fixed on *M*, then

$$g = \frac{1}{2} \left(\gamma + {}^{t} f^{\nu+1} \circ \gamma \circ f^{\nu+1} - \gamma \circ m - {}^{t} m \circ \gamma + 3 {}^{t} m \circ \gamma \circ m \right)$$
(1.5)

verifies the condition (1.4).

Proposition 1.1. For a (f g)-structure on M and l, m defined by the equations (1.1) we have

$$g \circ f^{\nu+1} = -if^{\nu+1} \circ g , \quad g^{-1} \circ if^{\nu+1} = -f^{\nu+1} \circ g^{-1}$$

$$g \circ m = {}^{t}m \circ g , \quad g^{-1} \circ {}^{t}m = m \circ g^{-1}.$$
(1.6)

Proposition 1.2. $\omega = g \circ f^{\nu+1}$ is a differential 2-form on *M*.

Definition 1.3. We call Obata operators associated to $f(2\nu+3,1)$ - structure, the applications $A^{(2\nu+3,1)}$, $A^{(2\nu+3,1)^*}$: \mathcal{T}_1^1 $(M) \to \mathcal{T}_1^1(M)$ defined by

$$A^{(2\nu+3,1)}(w) = \frac{1}{2}(w - mw - wm + 3mwm - f^{\nu+1}wf^{\nu+1})$$

$$A^{(2\nu+3,1)^{*}}(w) = w - A^{(2\nu+3,1)}(w).$$
(1.7)

We also consider the Obata operators [6] associated to g:

$$B(u) = \frac{1}{2} (u - g^{-1} \circ u \circ g)$$

$$B^{*}(u) = \frac{1}{2} (u + g^{-1} \circ u \circ g).$$
(1.8)

We can demonstrate

ON SOME (f, g)-LINEAR CONNECTIONS

Proposition 1.3. For a (f, g)-structure on M and for $A^{(2\nu+3,1)^*}$, $A^{(2\nu+3,1)}$ and B, B^* defined by (1.7) and (1.8) we have:

- 1) $A^{(2\nu+3,1)}$ and $A^{(2\nu+3,1)^*}$ are complementary projections on $\mathcal{C}_1^1(M)$.
- 2) B and B* commute pairwise with $A^{(2\nu+3,1)}$ and $A^{(2\nu+3,1)*}$.
- 3) $A^{(2\nu+3,1)} \circ B$ and $A^{(2\nu+3,1)^*} \circ B^*$ are projections on $\mathcal{C}_1^1(M)$.
- 4) Ker $A^{(2\nu+3,1)^*} \cap \text{Ker } B^* = Im(A^{(2\nu+3,1)} \circ B).$

In truth, by simple calculation, we obtain the result 1).

The affirmation 2) is true, because, taking into account the relations (1.6), we have:

$$(A^{(2\nu+3,1)} \circ B - B \circ A^{(2\nu+3,1)}) (u) =$$

$$= \frac{1}{4} (m \circ g^{-1} \circ {}^{t}u \circ g - g^{-1} \circ {}^{t}m \circ {}^{t}u \circ g) + (g^{-1} \circ {}^{t}u \circ g \circ m - g^{-1} \circ {}^{t}u \circ {}^{t}m \circ g) - - 3 (m \circ g^{-1} \circ {}^{t}u \circ g \circ m - g^{-1} \circ {}^{t}m \circ {}^{t}u \circ {}^{t}m \circ g) + + (f^{\nu+1} \circ g^{-1} \circ {}^{t}u \circ g \circ f^{\nu+1} - {}^{t}f^{\nu+1} \circ {}^{t}u \circ {}^{t}f^{r+1} \circ g) = 0,$$

for every $u \in \mathcal{C}_{1}^{1}(M)$, or

$$A^{(2\nu+3,1)} \circ B = B \circ A^{(2\nu+3,1)}$$

Thus we have the relations

$$A^{(2\nu+3,1)} \circ B^* = B^* \circ A^{(2\nu+3,1)},$$

$$A^{(2\nu+3,1)^*} \circ B = B \circ A^{(2\nu+3,1)^*}.$$

The above mentioned relations give us the possibility to formulate [10]:

Proposition 1.4. The system of tensorial equations

$$4^{(2\nu+3,1)^*}(u) = a, \quad B^*(u) = b \tag{1.9}$$

has a solution $u \in \mathcal{C}_1^1(M)$, if and only if

$$A^{(2\nu+3,1)}(a) = 0, \quad B(b) = 0,$$

$$A^{(2\nu+3,1)^*}(b) = B^*(a)$$
(1.10)

If the conditions (1.10) are fulfilled, then the general solution of the system (1.9) is

$$u = a + A^{(2r+3,1)}(b) + (A^{(2r+3,1)} \circ B) (w)$$

for every $w \in \mathcal{C}_1^1(M)$.

7

N. SOARE

2. (f, g)-LINEAR CONNECTIONS

In the following paragraphs, $\stackrel{\circ}{\nabla} \in \mathscr{C}(M)$ will be a linear connection fixed on M. Every tensor field $u \in \mathfrak{F}_1^1(M)$ may be considered as a field of $\mathfrak{X}(M)$ -valued differential *l*-forms. So, if ∇ is a linear connection on M, then we'll note with D and \tilde{D} the associated connections, acting on the $\mathfrak{X}(M)$ -valued differential *l*-forms and respectively on the differential *l*-forms $g: \mathfrak{X}(M) \to \mathfrak{X}^*(M)$:

$$D_X u = \nabla_X u - u \nabla_X, \quad \forall X \in \mathfrak{X}(M)$$
(2.1)

$$D_X g = \nabla_X \circ g - g \circ \nabla_X, \quad \forall X \in \mathfrak{X}(M)$$
(2.2)

where

$$(\nabla_X g) (Y, Z) = X g(Y, Z) - g(\nabla_X Y, Z), \forall X, Y, Z \in \mathfrak{X}(M).$$

Definition 2.1. A linear connection ∇ on M is called (f, g) - linear connection if

$$D_X f = 0, \quad D_X g = 0, \quad \forall X \in \mathfrak{X}(M).$$
 (2.3)

Of course, for every (f g)-linear connection, we have

$$D_X l = \nabla_X l - l \nabla_X = 0, \quad D_X m = \nabla_X m - m \nabla_X = 0$$

$$D_X f^k = \nabla_X f^k - f^k \nabla_X = 0, \quad k \text{ natural number,}$$
(2.4)

for every $X \in \mathfrak{X}(M)$. We see that D and \tilde{D} commute with the operators $A^{(2\nu+3,1)}$, $A^{(2\nu+3,1)^*}$, B and B^* .

We take

$$oldsymbol{
abla}_{oldsymbol{X}}=oldsymbol{ec{
abla}}_{oldsymbol{X}}+V_{oldsymbol{X}}$$
 ,

 $X \in \mathfrak{X}(M)$, $V \in \mathfrak{Z}_2^1(M)$, $V_X Y = V(X, Y)$ and find the tensor field V so that ∇ satisfies the conditions (2.3).

 ∇ will be a (f, g)-linear connection if and only if the field V verifies the system :

$$V_X \circ f - f \circ V_X = - \overset{\circ}{D}_X f \quad V_X \circ g + g \circ V_X = \overset{\circ}{D}_X g.$$

This system is equivalent with the system

$$A^{(2\nu+3,1)^*}(V_X) = -\frac{1}{2}(f \circ \mathring{D}_X f + \mathring{D}_X f - 3 m \circ \mathring{D}_X m)$$

$$B^*(V_X) = \frac{1}{2}g^{-1} \circ \tilde{\mathring{D}}_X g.$$
(2.5)

ON SOME (f,g)-LINEAR CONNECTIONS

Applying the proposition 1.4, it becomes evident that the system (2.5) has solutions and the general solution is

$$V_{\chi} = -\frac{1}{2} (f \circ \mathring{D}_{\chi} f + \mathring{D}_{\chi} m - 3 m \circ \mathring{D}_{\chi} m) + \\ + \frac{1}{4} (\mathring{D}_{\chi} g - 'f'^{+1} \circ \mathring{D}_{\chi} g \circ f'^{+1} - \mathring{D}_{\chi} g \circ m - 'm \circ \mathring{D}_{\chi} g + 3 'm \circ \mathring{D}_{\chi} g \circ m) + \\ + (A^{(2\nu+3,1)} \circ B) (W_{\chi}), \ W \in \mathcal{C}_{2}^{1}(M).$$

Thus we have

Theorem 2.1. There are (f, g)-linear connections; one of them is

$$\nabla_{\boldsymbol{X}} \coloneqq \mathring{\nabla}_{\boldsymbol{X}} + V_{\boldsymbol{X}},$$

where $\overset{\circ}{\nabla}$ is an arbitrary linear connection, fixed on *M*, and V_X is given by (2.6), *W* being an arbitrary tensor field.

If $\overset{\circ}{\nabla}$ is the Levi-Civita connection of g, then we have $\tilde{\overset{\circ}{D}}_{\chi}g=0$ and the theorem 2.1 becomes

Theorem 2.2. For every (f,g)-structure, the following linear connection

$$\overset{\circ}{\nabla}_{X} = \overset{\circ}{\nabla}_{X} - \frac{1}{2} (f \circ \overset{\circ}{D}_{X} f + \overset{\circ}{D}_{X} m - 3 m \circ \overset{\circ}{D}_{X} m), \forall X$$
(2.8)

where $\mathring{\nabla}$ is the Levi - Civita connection of g, has the following characteristics:

1) $\stackrel{c}{\nabla}$ is dependent uniquely on f, and g;

2) $\stackrel{c}{\nabla}$ is a (f, g)-linear connection.

The linear connection $\overset{c}{\nabla}$ will be called the (f,g)-canonic connection.

Theorem 2.3. The set of all the (f, g)-linear connections is given by

$$\overline{\nabla}_{X} = \nabla_{X} + (A^{(\mathcal{O}_{V}+3,1)} \circ B) \ (W_{X}), \ W \in \mathcal{C}_{2}^{1}(M)$$
(2.9)

where ∇ is a (f, g)-linear connection, in particular $\nabla = \overset{\circ}{\nabla}$.

Observing that (2.9) can be considered as a transformation of (f, g)-linear connections, we have:

Theorem 2.4. The set of the transformations of (f, g)-linear connections and the multiplication of the applications is an abelian group, noted with G(f, g),

. 9

N. SORAE

isomorph with the additive group of the tensors $W \in \mathcal{C}_2^1(M)$, which have the characteristic

$$W_X \in Im(A^{(2\nu+3,1)} \circ B) = Ker A^{(2\nu+3,1)^*} \cap B^*,$$

for every $X \in \mathfrak{X}(M)$.

3. THE INTEGRABILITY OF THE (f g)-STRUCTURES

The f-structure is called integrable if in every point of M there is an admissible map where f has constant coefficients in natural frames.

It is known [1], that a $f(2\nu+3,1)$ -structure is integrable if and only if the tensor $N \in \mathcal{C}_{2}^{1}(M)$ given by

$$N(X, Y) = [fX, fY] - f[fX, Y] - f[X, fY] + f^{2}[X, Y]$$
(3.1)

is zero.

We find out with no difficulty that we have :

Proposition 3.1. The tensor of integrability of the $f(2\nu+3,1)$ -structure can be expressed thus

$$N(X, Y) = -f^{2} T(X, Y) - T(fX, fY) + fT(fX, Y) + fT(X, fY).$$
(3.2)

To a (f g)-structure, besides the tensor N given by (3.2) we associate a second tensor of integrability K, given by

$$K(X, Y, Z) = d \omega(X, Y, Z) =$$
(3.3)

$$= \omega(T(X, Y), Z) + \omega(T(Y, Z), X) + \omega(T(Z, X), Y)$$

where ω is the 2-form from the proposition 1.2:

$$(X, Y) = g(f^{\nu+1} X, Y) = -g(X, f^{\nu+1} Y).$$
(3.4)

From (3.1) and (3.3) we have

Theorem 3.1. The tensors of integrability N and K of a (f, g)-structure are invariant in comparison with the transformations of the group G(f, g).

It takes place the following theorem:

Theorem 3.2. If there is a (f, g)-semi-symmetric connection (in particular (f, g)-symmetric connection), then N = 0 and K = 0.

Proof. In truth, $T(X, Y) = \sigma(X) Y - \sigma(Y) X$, $\sigma \in \mathfrak{X}^*(M)$ imply $-f^2T(X, Y) = -\sigma(X)f^2(Y) + \sigma(X)f^2(X)$, $-T(fX, fY) = -\sigma(fX)f(Y) + \sigma(fY)f(X)$ $fT(fX, Y) = \sigma(fX)f(Y) - \sigma(Y)f^2(Y)$ $fT(X, fY) = \sigma(X)f^2(Y) - \sigma(fY)f(X)$.

10

ON SOME (f, g) - LINEAR CONNECTIONS

Substituting these relations in (3.2) and (3.3) we have respectively N(X, Y)=0 and K(X, Y, Z) = 0, for every $X, Y, Z \in \mathfrak{X}(M)$.

REFERENCES

[1]	DEMETROPOULOU- PSOMOPOULOU, D.	:	On integrability conditions of a structure satisfying $F^{2\nu+3} + F = 0$, Tensor, N.S., 42 (1985), 252-257.
[2]	DEMETROPOULOU- PSOMOPOULOU, D.	:	Linear connections on manifolds admitting an $f(2v + 3,1)$ -structure or an $f(2v + 3, -1)$ -structure, Tensor, N.S., 47 (1988), 235-238.
[3]	GOLDBERG, S. and YANO, K.	:	Globally framed f-manifolds, Illinois Journal of Math., 15 (1971), No. 3, 456-474.
[4]	ISHIHARA, S. and YANO, K.	:	On integrability conditions of a structure satisfying $f^3 + f = 0$, Quart. J. Math., 15 (1964), 217-222.
[5]	MIRON, R. et ATANASIU, GH.	:	Sur les (f, g) - connexions lineaires et l'integrabilité des (f, g) - structures, Bull. Math. Soc. Sci. Math. R.S. Roumanie, (78) 30 (1986), 245-256.
[6]	OBATA, M.	•	Affine connections on manifolds with almost complex, quaternionic or Hermitian structure, Jap. Journ. Math., 26 (1956), 43-77.
[7]	PETRAKIS, A.	:	Structure f qui satisfait la relation $f^{2\nu+3}-f=0$, Tensor, N.S., 41 (1984), 103-107.
[8]	SOARE, N.	:	Sur quelgues f-connexions linéaire, Riv. Mat. Univ. Parma, (4) 14 (1988), 143-150.
[9]	TAMIA-DIMOPOULOU, P.	:	On direction dependent f structure satisfying $f^s+f^t=0$, Riv. Mat. Univ. Parma, (4) 17 (1991), 279-293.
[10]	WILDE, A.C.	:	Commutative Projection Operators, Atti Sem. Mat. Fis. Univ. Modena, XXXV (1987), 167-172.

11

ADDDRESS STREET, STREE