ON SOME (f, g)-LINEAR CONNECTIONS

N. SOARE

Universitatea Bucureşti, Facultatea de Matematica, Str. Academiei 14, 70109 Bucureşti-ROMANIA

Summary : In this note we study the (f, g)-structures determined by a tensor field of type $(1,1)$ so that $f^{2 v+3}+f=0$, and g is a Riemannian structure satisfying a supplementary condition.

BAZI (f, g) - LİNEER BAĞLANTILAR HAKKINDA

Özet : Bu çalışmada, (1,1) tipinde bir tensör alanı tarafindan belirlenen (f, g)-yapıları incelenmektedir. Burada $f^{2 v+3}+f=0$ olup, g ek bir koşul gercekleyen bir Riemann yapısidır.

INTRODUCTION

Let M be a Riemannian manifold with Riemannian metric $g, \mathscr{C}(M)$ the affin modul of the linear connections on $M, \mathscr{F}_{s}^{r}(M)$-the modul of the tensors of type (r, s) : for $\mathscr{F}_{0}^{1}(M)$ and $\mathscr{F}_{1}^{0}(M)$ are used the notations $\mathfrak{X}(M)$ and \mathfrak{X} * (M) respectively. All the objects are of class C^{∞}.

Definition 1.1. We call $f(2 v+3,1)$ - structure on M, a non-null field of tensors $f \in \mathscr{\mathscr { C }}_{1}^{1}(M)$, of rank r, where r is constant everywhere, so that

$$
f^{2 v+3}+f=0
$$

If M is a $f(2 v+3,1)$ - manifold, that is, if M is an n-dimensional Riemannian manifold, equiped with a $f(2 v+3,1)$-structure, then for

$$
\begin{equation*}
l=-f^{2 p+2}, \quad m=f^{2 v+2}+I \tag{1.1}
\end{equation*}
$$

(I denoting the identity operator) we have

$$
\begin{equation*}
f l=l f=l, \quad f m=m f=0, \quad f^{2 v+2} l=-l, \quad f^{2 v+2} m=0 \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
l+m=l, \quad l m=m l=0, \quad l^{2}=l, \quad m^{2}=m \tag{1.3}
\end{equation*}
$$

Thus the operators l and m are complementary projection operators on M.

The Riemannian structure g on M can be considered a $\mathfrak{X}^{*}(M)$-valued differential 1-form and we'll have $g: \mathfrak{X}(M) \rightarrow \mathfrak{X}^{*}(M), g(X)=g_{X}$, where $g_{X}(Y)=g(X, Y)$ for every $X, Y \in \mathfrak{X}(M)$. If $f \in \mathfrak{G}_{1}^{1}(M)$, then ${ }^{f} f$ is the transpose of f : $f: \mathfrak{X}^{*}(M) \rightarrow \mathfrak{X}^{*}(M), f^{\prime}(\theta)=\theta \circ f, \forall \theta \in \mathfrak{X}^{*}(M)$.

Definition 1.2. We call (f, g)-structure on M, a couple made up a $f(2 v+3,1)$ - structure and a Riemannian structure g so that

$$
\begin{equation*}
f^{v+1} \circ g \circ f^{v+1}=g \circ l . \tag{1.4}
\end{equation*}
$$

Theorem 1.1. Let M be a paracompact differential manifold with a $f(2 v+3,1)$ - structure. Then, there is a (f, g)-structure.

Proof. In truth, if γ is a Riemannian metric, fixed on M, then

$$
\begin{equation*}
g=\frac{1}{2}\left(\gamma+f^{v+1} \circ \gamma_{\circ} f^{v+1}-\gamma_{\circ} m-t^{t} \circ \gamma+3^{t} m_{\circ} \gamma_{\circ} m\right) \tag{1.5}
\end{equation*}
$$

verifies the condition (1.4).
Proposition 1.1. For a ($f g$)-structure on M and l, m defined by the equations (1.1) we have

$$
\begin{array}{ll}
g \circ f^{v+1}=-f^{v+1} \circ g, & g^{-1} \circ f^{v+1}=-f^{v+1} \circ g^{-1} \tag{1.6}\\
g \circ m=t_{\circ} \circ g \quad, \quad g^{-1} \circ t^{\prime}=m_{\circ} g^{-1} .
\end{array}
$$

Proposition 1.2. $\omega=g \circ f^{v+1}$ is a differential 2-form on M.
Definition 1.3. We call Obata operators associated to $f(2 v+3,1)$ - structure, the applications $A^{(2 v+3,1)}, A^{(2 v+3,1)^{*}}: \mathscr{F}_{1}^{1}(M) \rightarrow \mathscr{C}_{1}^{1}(M)$ defined by

$$
\begin{align*}
& A^{(2 v+3,1)}(w)=\frac{1}{2}\left(w-m w-w m+3 m w m-f^{v+1} w f^{v+1}\right) \tag{1.7}\\
& A^{(2 v+3,1)^{*}}(w)=w-A^{(2 v+3,1)}(w) .
\end{align*}
$$

We also consider the Obata operators [6] associated to g :

$$
\begin{align*}
& B(u)=\frac{1}{2}\left(u-g^{-1} \circ t \cdot g\right) \\
& B^{*}(u)=\frac{1}{2}\left(u+g^{-1} \circ \frac{t}{}, g\right) \tag{1.8}
\end{align*}
$$

We can demonstrate

Proposition 1.3. For a (f, g)-structure on M and for $A^{(2 v+3,)^{*}}, A^{(2 v+3,1)}$ and B, B^{*} defined by (1.7) and (1.8) we have:

1) $A^{(2 v+3,1)}$ and $A^{(2 v+3,1)^{*}}$ are complementary projections on $\mathscr{G}_{1}^{1}(M)$.
2) B and B^{*} commute pairwise with $A^{(2 v+3,1)}$ and $A^{(2 v+3,1)^{*}}$.
3) $A^{(2 \nu+3,1)} \circ B$ and $A^{(2 \nu+3,1)^{*}} \circ B^{*}$ are projections on $\mathscr{G}_{1}^{1}(M)$.
4) Ker $A^{(2 v+3.1)^{*}} \cap \operatorname{Ker} B^{*}=\operatorname{Im}\left(A^{(2 v+3,1)} \circ B\right)$.

In truth, by simple calculation, we obtain the result 1).
The affirmation 2) is true, because, taking into account the relations (1.6), we have:

$$
\begin{aligned}
& \quad\left(A^{(2 v+3,1)} \circ B-B \circ A^{(2 v+3,1)}\right)(u)= \\
& =\frac{1}{4}\left(m \circ g^{-1} \circ t u \circ g-g^{-1} \circ \rho^{t} \circ^{t} u \circ g\right)+\left(g^{-1} \circ t u \circ g \circ m-g^{-1} \circ \circ^{t} u \circ t m \circ g\right)- \\
& -3\left(m \circ g^{-1} \circ^{t} u \circ g \circ m-g^{-1} \circ t^{t} \rho^{t} u \circ t m \circ g\right)+ \\
& +\left(f^{v+1} \circ g^{-1} \circ \circ^{t} u \circ g \circ f^{v+1}-f^{v+1} \circ \circ^{t} u \circ f^{r+1} \circ g\right)=0,
\end{aligned}
$$

for every $u \in \mathscr{C}_{1}^{1}(M)$, or

$$
A^{(2 v+3,1)} \circ B=B_{0} A^{(2 v+3 ; 1)} .
$$

Thus we have the relations

$$
\begin{aligned}
& A^{(2 v+3,1)} \circ B^{*}=B^{*} \circ A^{(2 v+3,1)}, \\
& A^{(2 v+3,1)^{*}} \circ B=B_{\circ} A^{(2 v+3,1)^{*}} .
\end{aligned}
$$

The above mentioned relations give us the possibility to formulate [10]:

Proposition 1.4. The system of tensorial equations

$$
\begin{equation*}
A^{(2 v+3,1)^{*}}(u)=a, \quad B^{*}(u)=b \tag{1.9}
\end{equation*}
$$

has a solution $u \in \mathscr{F}_{1}^{1}(M)$, if and only if

$$
\begin{align*}
& A^{(2 v+3,1)}(a)=0, \quad B(b)=0, \\
& A^{(2 v+3,1)^{*}}(b)=B^{*}(a) . \tag{1.10}
\end{align*}
$$

If the conditions (1.10) are fulfilled, then the general solution of the system (1.9) is

$$
u=a+A^{(2 v+3,0}(b)+\left(A^{(2 v+3,1)} \circ B\right)(w)
$$

for every $w \in \mathscr{V}_{1}^{1}(M)$.

2. (f, g)-LINEAR CONNECTIONS

In the following paragraphs, ${ }^{\nabla} \in \mathscr{C}(M)$ will be a linear connection fixed on M. Every tensor field $u \in \mathbb{F}_{1}^{1}(M)$ may be considered as a field of $\mathfrak{X}(M)$-valued differential l-forms. So, if ∇ is a linear connection on M, then we'll note with D and \tilde{D} the associated connections, acting on the $\mathfrak{X}(M)$-valued differential l-forms and respectively on the differential l-forms $g: \mathfrak{X}(M) \rightarrow \mathfrak{X}^{*}(M)$:

$$
\begin{gather*}
D_{X} u=\nabla_{X} u-u \nabla_{X}, \quad \forall X \in \mathfrak{X}(M) \tag{2.1}\\
D_{X} g=\nabla_{X} \circ g-g \circ \nabla_{X}, \quad \forall X \in \mathfrak{X}(M) \tag{2.2}
\end{gather*}
$$

where

$$
\left(\nabla_{X} g\right)(Y, Z)=X g(Y, Z)-g\left(\nabla_{X} Y, Z\right), \forall X, Y, Z \in \mathfrak{X}(M) .
$$

Definition 2.1. A linear connection ∇ on M is called (f, g)-linear connection if

$$
\begin{equation*}
D_{X} f=0, \quad \tilde{D}_{X} g \doteq 0, \quad \forall X \in \mathfrak{X}(M) \tag{2.3}
\end{equation*}
$$

Of course, for every (f, g)-linear connection, we have

$$
\begin{align*}
& D_{X} l=\nabla_{X} l-l \nabla_{X}=0, \quad D_{X} m=\nabla_{X} m-m \nabla_{X}=0 \\
& D_{X} f^{k}=\nabla_{X} f^{k}-f^{k} \nabla_{X}=0, \quad k \text { natural number, } \tag{2.4}
\end{align*}
$$

for every $X \in \mathfrak{X}(M)$. We see that D and \tilde{D} commute with the operators $A^{(2 \nu+3,1),}$ $A^{(2 \nu+3,1)^{*}}, B$ and B^{*}.

We take

$$
\nabla_{X}=\stackrel{\circ}{\nabla}_{X}+V_{X},
$$

$X \in \mathfrak{X}(M), V \in \mathscr{C}_{2}^{1}(M), V_{X} Y=V(X, Y)$ and find the tensor field V so that ∇ satisfies the conditions (2.3).
∇ will be a (f, g)-linear connection if and only if the field V verifies the system :

$$
V_{X} \circ f-f_{\circ} V_{X}=-\stackrel{\circ}{D}_{X} f \quad V_{X} \circ g+g \circ V_{X}=\stackrel{\stackrel{\rightharpoonup}{D}}{X} g
$$

This system is equivalent with the system

$$
\begin{align*}
& A^{(2 \nu+3,1)^{*}}\left(V_{X}\right)=-\frac{1}{2}\left(f_{0} \stackrel{\circ}{D}_{X} f+\stackrel{\circ}{D}_{X} f-3 m \circ \stackrel{\circ}{D}_{X} m\right) \\
& B^{*}\left(V_{X}\right)=\frac{1}{2} g^{-1} \circ \stackrel{\stackrel{\rightharpoonup}{D}}{X} g \tag{2.5}
\end{align*}
$$

Applying the proposition 1.4, it becomes evident that the system (2.5) has solutions and the general solution is

$$
\begin{gathered}
V_{X}=-\frac{1}{2}\left(f \circ \stackrel{\circ}{D}_{X} f+\stackrel{\circ}{D}_{X} m-3 m \circ \stackrel{\circ}{D}_{X} m\right)+ \\
+\frac{1}{4}\left(\stackrel{\tilde{D}}{X} g-f^{v+1} \circ \tilde{\stackrel{D}{D}}_{X} g \circ f^{v+1}-\tilde{\stackrel{ }{D}}_{X} g \circ m-t_{\circ} \circ \stackrel{\rightharpoonup}{D}_{X} g+3 m^{t} \circ \stackrel{\stackrel{D}{D}}{X} g \circ m\right)+ \\
+\left(A^{(2 v+3,1)} \circ B\right)\left(W_{X}\right), W \in \mathscr{C}_{2}^{1}(M)
\end{gathered}
$$

Thus we have
Theorem 2.1. There are (f, g)-linear connections; one of them is

$$
\nabla_{X}=\stackrel{\circ}{\nabla}_{X}+V_{X},
$$

where $\stackrel{\circ}{\nabla}$ is an arbitrary linear connection, fixed on M, and V_{X} is given by (2.6), W being an arbitrary tensor field.

If $\stackrel{\circ}{\nabla}$ is the Levi-Civita connection of g, then we have $\stackrel{\stackrel{\rightharpoonup}{D}}{X} g=0$ and the theorem 2.1 becomes

Theorem 2.2. For every (f, g)-structure, the following linear connection

$$
\begin{equation*}
\stackrel{c}{\nabla}_{X}=\stackrel{\circ}{\nabla}_{X}-\frac{1}{2}\left(f \circ \stackrel{\circ}{D}_{X} f+\stackrel{\circ}{D}_{X} m-3 m \circ \stackrel{\circ}{D}_{X} m\right), \forall X \tag{2.8}
\end{equation*}
$$

where $\stackrel{\circ}{\nabla}$ is the Levi-Civita connection of g, has the following characteristics:

1) $\stackrel{c}{\nabla}$ is dependent uniquely on f, and g;
2) $\stackrel{c}{\nabla}$ is a (f, g)-linear connection.

The linear connection $\stackrel{c}{\nabla}$ will be called the (f, g)-canonic connection.
Theorem 2.3. The set of all the (f, g)-linear connections is given by

$$
\begin{equation*}
\bar{\nabla}_{X}=\nabla_{X}+\left(A^{\left(\vartheta^{v}+3,1\right)} \circ B\right)\left(W_{X}\right), W \in \mathscr{C}_{2}^{1}(M) \tag{2.9}
\end{equation*}
$$

where ∇ is a (f, g)-linear connection, in particular $\nabla=\stackrel{c}{\nabla}$.
Observing that (2.9) can be considered as a transformation of (f, g)-linear connections, we have:

Theorem 2.4. The set of the transformations of (f, g)-linear connections and the multiplication of the applications is an abelian group, noted with $G(f, g)$,
isomorph with the additive group of the tensors $W \in \mathscr{C}_{2}^{1}(M)$, which have the characteristic

$$
W_{X} \in \operatorname{Im}\left(A^{(2 v+3,1)} \circ B\right)=\operatorname{Ker} A^{(2 v+3,1)^{*}} \cap B^{*},
$$

for every $X \in \mathfrak{X}(M)$.

3. THE INTEGRABILITY OF THE (f, g)-STRUCTURES

The f-structure is called integrable if in every point of M there is an admissible map where f has constant coefficients in natural frames,

It is known [1], that a $f(2 v+3,1)$-structure is integrable if and only if the tensor $N \in \mathscr{C}_{2}^{1}(M)$ given by

$$
\begin{equation*}
N(X, Y)=[f X, f Y]-f[f X, Y]-f[X, f Y]+f^{2}[X, Y] \tag{3.1}
\end{equation*}
$$

is zero.
We find out with no difficulty that we have:
Proposition 3.1. The tensor of integrability of the $f(2 v+3,1)$-structure can be expressed thus

$$
\begin{equation*}
N(X, Y)=-f^{2} T(X, Y)-T(f X, f Y)+f T(f X, Y)+f T(X, f Y) \tag{3.2}
\end{equation*}
$$

To a (f, g)-structure, besides the tensor N given by (3.2) we associate a second tensor of integrability K, given by

$$
\begin{align*}
& \quad K(X, Y, Z)=d \omega(X, Y, Z)= \\
& =\omega(T(X, Y), Z)+\omega(T(Y, Z), X)+\omega(T(Z, X), Y) \tag{3.3}
\end{align*}
$$

where ω is the 2 -form from the proposition 1.2:

$$
\begin{equation*}
(X, Y)=g\left(f^{v+1} X, Y\right)=-g\left(X, f^{v+1} Y\right) \tag{3.4}
\end{equation*}
$$

From (3.1) and (3.3) we have
Theorem 3.1. The tensors of integrability N and K of a (f, g)-structure are invariant in comparison with the transformations of the group $G(f, g)$.

It takes place the following theorem:
Theorem 3.2. If there is a (f, g)-semi-symmetric connection (in particular (f, g)-symmetric connection), then $N=0$ and $K=\dot{0}$.

Proof. In truth, $T(X, Y)=\sigma(X) Y-\sigma(Y) X, \sigma \in \mathfrak{X}^{*}(M)$ imply

$$
\begin{aligned}
-f^{2} T(X, Y) & =-\sigma(X) f^{2}(Y)+\sigma(X) f^{2}(X), \\
-T(f X, f Y) & =-\sigma(f X) f(Y)+\sigma(f Y) f(X) \\
f T(f X, Y) & =\sigma(f X) f(Y)-\sigma(Y) f^{2}(Y) \\
f T(X, f Y) & =\sigma(X) f^{2}(Y)-\sigma(f Y) f(X)
\end{aligned}
$$

Substituting these relations in (3.2) and (3.3) we have respectively $N(X, Y)=0$ and $K(X, Y, Z)=0$, for every $X, Y, Z \in \mathfrak{Z}(M)$.

REFERENCES

[1] DEMETROPOULOUPSOMOPOULOU, D.
[2] DEMETROPOULOU. PSOMOPOULOU, D.
: On integrability conditions of a structure satisfying $\boldsymbol{F}^{2 v+3}+\boldsymbol{F}=\mathbf{0}$, Tensor, N.S., 42 (1985), 252-257.
: Linear connections on manifolds admitting an $f(2 v+3,1)$-structure or an $f(2 v+3,-1)$-structure, Tensor, N.S., 47 (1988), 235-238.
[3] GOLDBERG, S. and YANO, K. : Globally framed f-manifolds, Illinois Journal of Math., 15 (1971), No. 3, 456-474.
[4] ISHIHARA, S. and YANO, K. : On integrability conditions of a structure satisfying $f^{3}+f=0$, Quart. J. Math., 15 (1964), 217-222.
[5] MIRON, R. et ATANASIU, GH. : Sur les (f, g)-connexions lineaires et l'integrabilité des (f, g)-structures, Bull. Math. Soc. Sci. Math. R.S. Roumanie, (78) 30 (1986), 245-256.
[6] OBATA, M. : Affine connections on manifolds with almost complex, quaternionic or Hermitian structure, Jap. Journ. Math., 26 (1956), 43-77.
[7] PETRAKIS, A. : Structure f qui satisfait la relation $f^{2 v+3}-f=0$, Tensor, N.S., 41 (1984), 103-107.
[8] SOARE, N. : Sur quelgues f.connexions linéaire, Riv. Mat. Univ. Parma, (4) 14 (1988), 143-150.
[9] TAMIA-DIMOPOULOU, P. : On direction dependent f structure satisfying $f^{s}+f^{t}=0$, Riv. Mat. Univ. Parma, (4) 17 (1991), 279-293.
[10] WILDE, A.C.
: Commutative Projection Operators, Atti Sem. Mat. Fis. Univ. Modena, XXXV (1987), 167-172.

