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Summary : In this note we study the (/.^-structures determined 
by a tensor field of type (1,1) so that / 2 " + 3 + f=0, and g is a Riemannian 
structure satisfying a supplementary condition. 

BAZI ( / , g) - LİNEER BAĞLANTILAR HAKKINDA 

özet : Bu çalışmada, (1,1) tipinde bir tensor alanı tarafından belir
lenen (/,£•)-yapılan incelenmektedir. Burada / 2 v + 3 + / = 0 olup, g ek bir 
koşul gerçekleyen bir Riemann yapısıdır, 

INTRODUCTION 

Let M be a Riemannian manifold with Riemannian metric g, C€{M) the 
affin modul of the linear connections on Mt grj (M) - the modul of the tensors 
of type (r , s): for (M) and (M) are used the notations X (M) and X* (M) 
respectively. Al l the objects are of class C°°. 

Definition 1.1. We call / (2v+3 , l ) - structure on M, a non-nuli field of 
tensors fe grj (M), of rank r, where r is constant everywhere, so that 

I f M is a / (2v+3, l ) - manifold, that is, i f M is an «-dimensional Riemannian 
manifold, equiped with a/(2v + 3,1) - structure, then for 

/ = = _ / 2 v + 2 ) m = f 2 v + 2 ± J (1,1) 

{/ denoting the identity operator) we have 

// = / / = / , f m = mf=% f2»+2i==-it / 2 v + 2 m = 0 (1.2) 

and 

l + m = I , l m = m / - 0, I 2 = I, m2 = m. (1.3) 

Thus the operators / and m are complementary projection operators on M. 
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The Riemannian structure g on M can be considered a X* {M) - valued 
differential 1-form and we'll have g : X (M) —> X* (M), g(X) = gx, where 
gx(7) = g(X, y ) for every X, YeX(M). I f / e g r ' ( M ) , then ' / i s the transpose 
of / , ' / : X* (M) X* (M), '/(Q) = Qof,\/QeX* (M). 

Definition 1.2. We call ( / , g) - structure on M, a couple made up a 
/(2v-f-3,l)- structure and a Riemannian structure g so that 

'fv+logof*+l=got. (1.4) 

Theorem 1.1. Let M be a paracompact differential manifold with a 
/ (2v+3 , l ) - structure. Then, there is a ( / g) - structure. 

Proof. In truth, i f y is a Riemannian metric, fixed on M, then 

g = J - ( y -\-'p+t 0 y o / ' + l - y 0 m - ' m o y - f 3 ' m 0 y 0 m ) (1.5) 

verifies the condition (1.4). 

Proposition 1.1. For a ( / , g) - structure on M and /, m defined by the 
equations (1.1) we have 

g 0 / v + i = ~<fv+iog , g-i0'f»+i = „ / , + l 0 g - l 

gom = 'm0g , g~l o'm = m0 g~K 

Proposition 1.2. u = g 0 / , , + 1 is a differential 2-form on M. 

Definition 1.3. We call Obata operators associated to / (2v+3, l) - structure, 
the applications A^+3>1\ ^U'+V)* : grj (M)^>%\(M) defined by 

^(2v+3.i) (w) = _ m w — w m _|_ 3mwm — fr+iwfv+1) 

^(2,+3 , 1)* ( w ) = w - (W). 

We also consider the Obata operators [6] associated to g : 

*<«) = y ( « - « - ' o ' W o g ) 

5 * ( « ) ^ - l ( M + g ^ o ' « o g - ) . 

We can demonstrate 

(1.7) 

(1.8) 
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Proposition 1.3. For a (/ , g) - structure on M and for 4«v+3 ,o* ( 

and 5, 5* defined by (1.7) and (1.8) we have: 

1) ^Of+a.i) a t K j ^(2y+3 , i)* a r e complementary projections on g*J(M). 

2) 5 and 5* commute pairwise with A&+W a n d ^(2^+3,1)*, 

3) ^ ( 2 v + 3 , » 0 s and ^(2v+3,i>* 0 B* are projections on g-j (M). 

4) Ker n Ker 5* = Im (AV*+3>» 0 B), 

In truth, by simple calculation, we obtain the result 1). 

The affirmation 2) is true, because, taking into account the relations (1.6), 
we have: 

( ^ < 2 , + 3,l) 0 B - B 0 ^(2v+3 . 1 ) ) ( M ) = 

= — Qn o g—1 o'Uo g—g~X o'tHo'Uo g)-\-(g~l o'Uogo m—g~x o'Uo'mog) — 

4 

— 3 (m o g ~ l o'uog Q m ~ g~x o 'm o 'u 0 'm o g) + 

+ ( f r + l o g ~ l o 'U o g o / " + l - o *U o o g) = 0, 

for every w e gr} (Af), or 
Thus we have the relations 

A(2v+3.l}* 0 B = Bo ^ < 2 " + 3 . « * . 

The above mentioned relations give us the possibility to formulate [10] : 

Proposition 1.4. The system of tensorial equations 

^(2v+3 , i)* (M) = A 7 B* («) = b (1.9) 

has a solution «egr[(M), i f and only if 

. ^ ( 2 v + 3 , i ) (a) . = 0, B(b) = 0, 

(1.10) 
^(2 ,+3 ,o* (ft) = 5 * ( t f ). 

I f the conditions (1.10) are fulfilled, then the general solution of the system 
(1.9) is 

u = a - f A<2*+3M(b) - f ( ¿ 0 + 3 . 0 o B) (w) 

for every weg-JfM). 
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2. ( / , g)-LINEAR CONNECTIONS . 

In the following paragraphs, Ve^(M) will be a linear connection fixed on 
M. Every tensor field u e grj (M) may be considered as a field of X (M) - valued 
differential /-forms. So, i f V is a linear connection on M, then we'll note with 

D and D the associated connections, acting on the X (M) - valued differential 
/-forms and respectively on the differential /-forms g : X (M) -> X* (M) : 

Dxu^Vxu~uVx, \/XeX(M) (2.1) 

Dxg = 'Vxog~goVx, vXeX(M) (2.2) 

where 

(>Vxg) (Y,Z) = Xg(Y,Z)~g(VxYiZ), vX,Y,ZeX(M). 

Definition 2.1. A linear connection V on M is called (/, g) - linear connec
tion i f 

Dxf=0, 5xg = 0, y/XeX(M). (2.3) 

Of course, for every (f, g) - linear connection, we have 

Dx I = Vx I — / = 0, Dx m = V x m — mVx = 0 

Dxfk ^ yxfk -fks/x = 0, k natural number, 
(2.4) 

for every XeX(M). We see that D and D commute with the operators Ai2v+W>y 

A<2v+3^\ B and 5*. 

We take 

XeX{M), Ve&l(M), VXY=V{X,Y) and find the tensor field V so that V 
satisfies the conditions (2.3). 

V will be a ( / , g) - linear connection i f and only i f the field V verifies the 
system : 

vxof-foVx = -bxfi

 fvxog + goVx = bxg. 

This system is equivalent with the system 

AW+vr (yx) = - ± ( f 0 i>xf + 4 / - 3 m o i m ) 
(2.5) 

B*{Vx)-^rg-*°i>xg-
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Applying the proposition 1.4, it becomes evident that the system (2.5) has 
solutions and the general solution is 

Vx — — (fo Dxf+Vx m-3m0 Dxm) + 

+ ^ { D x g - p + i 0 b x g o p * l - b x g a m - * m 0 b x g + Z*mobxgom) + 

+ (A&+WoB)(Wx),We$\(M). 

Thus we have 

Theorem 2.1. There are (f,g)- linear connections; one of them is 

where V is an arbitrary linear connection, fixed on M, and Vx is given by (2.6), 
W being an arbitrary tensor field. 

I f V is the Levi - Civita connection of g, then we have Dx g = 0 and the 
theorem 2.1 becomes 

Theorem 2.2. For every (f,g)- structure, the following linear connection 

$x = V? - ~ (fo £>xf+bxm-3m0 Dx m), y X (2.8) 

O 
where V is the Levi - Civita connection of g, has the following characteristics: 

c 

1) V is dependent uniquely on / and g ; 
c 

2) V is a (/ , g)-linear connection. 
c 

The linear connection V will be called the (/, g) - canonic connection. 

Theorem 2.3. The set of all the ( / , g) - linear connections is given by 

V-r = Vy + (AV*+w o B) (Wx\ We&liM), (2.9) 
c 

where V is a (f,g)- linear connection, in particular V = V. 
Observing that (2.9) can be considered as a transformation of (/ , g)- linear 

connections, we have: 

Theorem 2.4. The set of the transformations of (/;g)-linear connections 
and the multiplication of the applications is an abelian group, noted with G (/ , g), 
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isomorph with the additive group of the tensors We^\ (M), which have the 
characteristic 

WX g Im ( ¿ 0 + 3 , 1 ) 0 B) = Ker n B*, 

for every XeX(M). 

3. THE INTEGRABILITY OF THE (/ , g) - STRUCTURES 

The / - structure is called integrable if in every point of M there is an 
admissible map where / has constant coefficients in natural frames. 

It is known [1], that a/(2v+3,l)-structure is integrable i f and only i f the 
tensor N e gr£ (M) given by 

N(X, Y) = [fX,fY] -f[/X, Y] -f[X,fY] +P[X, Y] (3.1) 
is zero. 

We find out with no difficulty that we have : 

Proposition 3.1. The tensor of integrability of the / (2v-f3, l ) - structure 
can be expressed thus 

N(X, Y) = -P T{X, Y) - T(fXJY) +fT{fX, Y)+fT(X,fY). (3.2) 
To a (f,g)- structure, besides the tensor N given by (3.2) we associate a 

second tensor of integrability K, given by 

K{X, Y, Z) = du(X, Y, Z) = 

= u (T(X, Y), Z) + o> (T(Y, Z), X) + to (T(Z, X), Y) ( 3 ' 3 ) 

where to is the 2-form from the proposition 1.2: 

(X, Y) = g(p+* X, Y) = -g(X,p+* Y). (3.4) 

From (3.1) and (3.3) we have 

Theorem 3.1. The tensors of integrability N and K of a (/, g) - structure are 
invariant in comparison with the transformations of the group G(f,g). 

It takes place the following theorem: 

Theorem 3.2. I f there is a (/ , g)-semi-symmetric connection (in particular 
(/, g) - symmetric connection), then N = 0 and K = 0. 

Proof. In truth, T(X, Y) — a (X) Y — a (Y) X, cre£*(M) imply 
-PT(X, Y) = - a(X)P(Y) + o(X)P(X), 
- T(fXJY) = - a(fX)f(Y) + c(fY)f{X) 

fT{fX, Y) = a(fX)f(Y) - <y(Y)P{Y) 
fT{XJY) = a (X)P{Y) - o- (fY)f(X). 
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Substituting these relations in (3.2) and (3.3) we have respectively N(X, Y)—§ 
and K(X, Y, Z) = 0, for every X, Y, ZeX(M). 
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