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T H E BASIS N U M B E R O F T H E C O M P O S I T I O N O F GRAPHS* ,** 
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Summary : The basis number of a graph G is defined to be the least 
integer k such that G has a /c-fold basis for its cycle space. We investigate the 
basis number of the composition of two paths, two cycles, a path and a cycle, 
a path and a wheel, a cycle and a wheel, a star and a wheel, a star and a 
path, a star and a cycle, a wheel and a path, a wheel and a cycle, a star and 
a wheel, and a star and a star. 

G R A F L A R I N BİLEŞKESİNİN B A Z S A Y I S I 

Özet : Bu çalışmada İki yol, iki devre, bir yol ve bir devre, bir yol ve 
bir tekerlek, bir devre ve bir tekerlek, bir yıldız ve bir tekerlek, bir yıldız ve 
bir yol, bir yıldız ve bir devre, bir tekerlek ve bir yol, bir tekerlek ve bir devre, 
bir yıldız ve bir tekerlek, son olarak ta bir yıldız ile diğer bir yıldızın bileşke­
sinin baz sayısı araştırılmaktadır. 

1. I N T R O D U C T I O N 

I n [4] S. Hulsurkar studied the graph structure on Weyl groups. He showed 
that with some exceptions the graph T (W) is non-planar where T (W) is the graph 
defined for Weyl groups which is compatible with the partial order introduced 
earlier for the proof of Verma's conjecture on Weyl's dimension polynomial [5]. 
The importance of Hulsurkar study lies in the fact that it wi l l ultimately shed 
some light on the modular representations of semi-simple Lie algebras and 
Chevalley groups [8]. 

I n 1937 S. Maclane [6] proved that a graph G is planar i f and only i f b (G) < 2 
where b (G) is the basis number of G (defined below). Thus the basis number of 
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certain classes of non-planar graphs wil l play an important role in studying the 
graphs T(W). I n 1981 E. Schemeichel [7] investigated the basis number of certain 
classes of non-planar graphs, namely, complete graphs and complete bipartite 
graphs. Then, J. Banks and E. Schemeichel [2] proved that for « > 7 , b (Qn) = 4, 
where Qn is the «-cube. Also A. A. AH in [I] investigated the basis number of the 
strong product of two paths, two cycles, a path and a cycle, and a star and a cycle. 
The purpose of this paper is to investigate the basis number of the composition, 
of two paths, two cycles, a star and a path', a path and a cycle, a path and a wheel, 
a cycle and a wheel, a star and a wheel, a star and a path, a star and a cycle, a 
wheel and a path, a wheel and a cycle, a star and a wheel and a star and a star. 
I t happens that the strong product of two graphs Gx and G 2 is a subgraph of 
the composition of G1 and G2, 

2. NOTATIONS AND P R E L I M I N A R I E S 

Throughout this paper, we consider only finite connected graphs without 
loops and multiple edges. Our terminology and notation wi l l be standard except 
as indicated. For undefined terms, see [3]. 

Let G be a connected graph, and let ev e2,...,eq be an ordering of the edges 
in G. Then any subset of edges F corresponds to a (0,l)-vector (alt a2,..., a ) in 
the usual way, with at = 1 (resp., at = 0) i f and only i f et e'F (resp., a $ F). These 
vectors form a ^-dimensional vector space over the field Z 2 . The vectors corres­
ponding to the cycles in G generate a subspace of (Z 2 ) q called the cycle space of 
G, and denoted by t, (G) (For brevity in the sequal, we wi l l say that the cycles 
themselves, rather than the vectors corresponding to the cycles, generate t, (6)) . 
I t is known that dim (G)) = y (G) = q - p + 1 (Cor. 4.5 (a) of [3]) where p, q 
denote, respectively, the number of vertices and edges in G. Each vector i n £ (G) 
represents either a cycle or an edge-disjoint union of cycles. 

2.1 Definition. The composition of two graphs GX={VVEX) and G2=(V2,E2), 
denoted by Gj [G 2 ] , is a graph with a vertex-set Vx X V2 and an edge-set 

[GJ) = {(«u (M 2, v2) I either ux u2e E1 or [ux = u2 and vl v2<= E2]}. 

- 2.2 Definition. The strong product of two graphs G , = ( K P £ , ) and G 2 = 
= (V2, E2), denoted by G1 0 G2, is a graph with a vertex-set Vl X V2 and an 
edge-set -^(Gj o G 2 ) = { ( « „ v f) (u2> v2) \ either [ « t = « 2 and v t v2 e^J , or [«j w 2 e£' 1 

and vi = v j , - or [u-y u2 eEx and v, v2eE2]}. Note that G 3 o G 2 is isomorphic to 
G2 o G, and | E (Gx o G 2) j = px q2 +p2qx+ 2qx q2 where pi =\Vt \ and /«; = | ^ | 
for z" = 1,2. But Gj [GJ is not isomorphic to G 2 [GJ since | E(GX [GJ) | = pl q2+ 
+ p\qx while | £ ( G 2 [ G J ) j =p2qx +p\qz. 
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2.3 Definition. A basis of t, (G) is a k-folti basis i f each edge of G occurs i n 
at most k of the cycles in the basis. The basis number of G (denoted by b (G)) 
is the smallest k such that £, (G) has a fc-fold basis. 

In this paper we use the notations Pn, Cn> Sn and Wn to denote the vertex-set 
of these graphs, the addition group Z n of positive integers residue module n and 
the edge-set as follows: 

E(P,) = {i(i+l)\0<i<n-2}, £ ( C n ) ^ { / ( / + l ) | 0 < / < « - l } , 

E(Sn)={0 i | 1 < / < » - ! } and E(lVn)^E(Sn)\j{i(i+\)\\^i<n-\}. 

We denote Pn by 012 ... {n-\) and C„ by 012 ... ( « - 1 ) 0 . 

3. M A I N R E S U L T S 

I n this section we compute the basis number of Cm[P2]> C„,[CJ, P m [ C 3 ] , 
Cm [P3] and Pm [P3] and we show that it is equal to 3. We also show that the 
basis number of Cm [CJ, Pm [PJ, Cm[Pn], Pni [CJ, Pm[SJ, Pm[Wn], Sm[Pn], 
C»[SJ, Cm[WJ, Sm[CJ, Sm[WJ and Wm[Pn] is either 3 or 4 for some 
restrictions on m and n. 

One may easily see that Pm [P2] and Pm [C2] are planar graphs, and there­
fore, b (Pin [P2]) = b (Pm [CJ) = 2. ' " 

Proposition 3.1. For every integer m > 3 , the graphs Cm[P2] and C w [CJ 
are nonplanar. 

Proof. I t is easy to see that C 3 [P2]=K6, so i t is nonplanar. Now we con­
sider the graph Cm [P2] such that m > 4. Contract the edges {(/, 1) (i + 1, 1) j 
2 < i ' < m — 2} to a new vertex v. Also, contract the edges {(/, 0) (t + 1, 0) | 
1<i-<m — 2} to a new vertex w\ Then the resulting graph contains K6 as a 
subgraph. That is Cm[P2] is contractible to a nonplanar graph, so that it is 
nonplanar. Since Cm [P2] is a subgraph of Cm [CJ then C m [CJ is nonplanar. 

Theorem 3.2. For every integer m^3, we have b(Cm [P2])~b (C,„[C2])=3. 

Proof. Since the graphs Cm [P2] and Cm[C2] are nonplanar for m > 3 , i t 
follows, by the Theorem of Maclane mentioned in the introduction, that 
b{Cm{P2]) >?> and 6 ( C „ , [ C J ) > 3 for all m > 3. Consider C m [ P J . To 
prove that b(Cm[P2]) < 3, we exhibit a 3-fold basis for ^(Cm[P2]). Let 
Q - (0, 0) (1, 0) (2, 0) ... (m - 1, 0) (0, 0) ; A = {(/, 0) (t + 1, 0) (/, 1) (/, 0), 
( i , 1) ( i + 1, 1) (/ + 1,0) (/, I ) , 0', 0) ( i + 1,0) l ) (/ + 1, l ) (/, 0) j i e Z J . Let 
HC„[PJ)= ^ U { g } . Since the graph G = C m [ P J - { ( i , 0) l ) | i ' e Z j is a 
planar graph and the 3-cycles of A represent the boundaries of the interior, 
faces, so that A is a basis for t,(G). Since each 4-cycle in A contains an 
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edge, namely, of the form (i, 0) 0 '+l, 1) that does not occur in any other cycle 
of A, A is an independent set of cycles i n t,(Cm[P2]). But i t is clear that Q 
cannot be generated from A. Thus B(Cm[P2]) is an independent set of cycles 
in I, (C„, [P2]). Since | B ( C m [P2]) \ = 3m. + 1 = dim £ (Cm [P2]), i t follows that 
B(Cm[P2]) is a basis of t, (Cm [P2]). I t is easy to see that B(Cm[P2]) is a 
3-fold basis for t,(Cm[P2}). Hence, b (C„, [Pz]) = 3 for all m £ 3. Next, we 
consider C^fCJ . The graph Cm[C2] can be obtained from the graph Cm [P2] 
by joining any two vertices (/, 0), (z, 1) by another edge, for all ieZm. Let 
5 (C ,„ [C 2 ] )=5 (C m E A ] )U { 0 ' ) O) , (z, \){i,0)\ieZli,}. Then B(Cm[C2]) is an 
independent set of cycles in (Cm [C2]) since each of the new cycles has an 
edge not occuring i n any other cycle of B(Cm[C2]). Since | B(Cm [C2]) | = 
= d im£(C m [C 2 ] ) , then B(Cm[C7]) is a basis for ^(Cm[C2]). I t is easy to verify 
that B(Cm[C2]) is a 3-fold basis for £,(.Cm[C2]). Hence b (C„, [C2]) = 3. This 
completes the proof of Theorem 3.2, 

Theorem 3.3. For each m > 2 , we have b (Pni [C3])=/>(C„, [P 3 ] )=3 . 
Proof. I t is easy to see that Pm [C3] contains m — 1 copies of the complete 

bipartite graph K 3 R 3 , each of which is denoted by KQJ), 0+1,3), i G Z m _ t . I n addi­
tion to that it contains the set of edges S = {(z, 0) (z, 1), (z, 1) (z, 2), (/, 2) (z, 0) | 
ieZm}. Since 7sT3i3 is a nonplanar subgraph of Pm[C3] then i 3 ^ [C 3] is a 
nonplanar graph, so that, by Maclane Theorem, /3(i>m [ C 3 ] ) > 3 . To prove that 
b{Pm [ C 3 ] ) < 3 , it is enough to exhibit a 3-fold basis for (Pm[C3]). For each 

At = {{i, 0) (z+1, 0) (z, 1) ( i + 1 , 1) (/, 0), (z, 0) ( i + 1 , 1) (z, 1) ( ¿+1 ,2 ) (z, 0), 
(/, 0) ( i + 1 , 0) (f, 2) (z+1, 1) (z, 0), (z, 1) (/+1, 1) (i, 2) (i + l , 2) (i, 1)}, 

^/ = {(z + 1, 0) 0", 1) (z, 2) (z+1, 0), ( i + 1 , 2) (z, 0) (z,l) (z + 1, 2), 
(1,2) ( i + 1 , 1) (z+1 , 2)(/, 2), ( z , 2 ) ( / + l , 0 ) ( i ' + l , l ) ( z + l , 2 ) ( z , 2 ) } , 
B^AtUA,' 

Let F = { / , = ( i , 0) (z - 1, 0) (z, 2) ( i , 0) | 1 < * < m - 1} U {(0, 0) (0, 1) (0, 2) (0, 0)} 
m—2 

and B(Pm [ C 3 ] ) = F U (jj I t is already proved in Theorem 2.3 of Schemeic-
. ¿ = 0 

hel [7] that each At is a basis for the subspace ^ (-ST(/,3), o-n,3)) for all i e Z m _ r 

Then each A} is an independent set of cycles i n (Pm [C 3 ]) . Also for each 
i 6 Z m _ p every cycle in A{ contains an edge from the set H ~ {(i, 0) (i, 1), 
0", 1) (z, 2), (i + 1,0) ( i + 1 , 1), 0+1,1) (z + 1, 2)} that does not appear in any other 
cycle of A\ U Af. Thus each Bi is an independent set of cycles in t, (Pm [C 3]). 
Moreover, since the edge-sets of K ^ ^ Q + I ^ are pairwise-disjoint sets where 
i e Z m _ , , then the cycles of Bj are independent from the cycles of Bk for al l 

m-l 

j , k e Zm_t, / + /c. Thus |J Bi is an independent set of cycles in £ (Pm [C 3 ] ) . 
i=0 
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Since each ft e F contains the edge (i, 2) (i, 0); i e-Xm , that does not occur in any 
other cycle of B(Pm[C3]\ therefore, B(Pm[C3]) is an independent set of cycles 
in £ (P„, [ C j ) . But | B (pm [C 3 ]) | = 9m - 8 = dim X> {Pm EC3]), hence B(Pm [CJ) 
is a basis for £(P„,[C 3 ]) , I t is a simple matter to verify that B(Pm[C3]) is a 
3-fold basis for ^(P^[C3]). Hence b {Pm [C 3 ]) = . 3 , Next, we consider Cm [J°J. 
I t contains /« copies of i T 3 j 3 ; denote each one by ^o*,3) +1,3) where, i e Z f f l l 

noting that the last copy is J^(m_i,3), (o,3>- Also C/n [P 3] contains the set 
H'={(i, 0) (/, 1), (/, 1) (/, 2) | ieZm}. Since C,tl [P 3] contains some copies of K3ii 

then /3(C m [P 3 ] )>3, for all m > 3 . To f ind a 3-fold basis for Z,(Cm[P3]) let ,4, 
and ^/ be the same sets above and let Q = (0, 0) (1, 0) (2, 0 ) . . . ( m - l , 0) (0, 0). 

MI—1 

Let Bj^Ai U A{. Then jj Bt is an independent set of cycies as seen above 

and it is clear that Q is independent from all the cycles of jj Br Thus the set m-l-

£ ( C m [P 3]) = { g } U ([J P;) is an independent set of cycles in t , ( C m [P 3]). Since 

1^(^,(^)1 = 8™ + 1 = d i m Z>(Cm[P,]) then the set B(Cm[P3]) is a basis 
for ^(Cm[P3]). One can easily verify that B(Cm[P3]) is a 3-fold basis for 
^(C„,[P 3]). Hence /> (C„, [P 3]) = 3 for all m > 3 . 

Corollary 3.4. For every m > 2 , we have £ (Aw. [^3]) = 3. 

Proof. Note that Pm [P 3] is a nonplanar subgraph of Pm [C3] consisting of 
m—1 copies of -ST3j3 and the set {(i, 0) (/', 1), (/', 1) (/, 2) | i e Z j . Then the set 
B(Pm [PJ) = [CJ) - P is a 3-fold basis for $ (P M [P 3 ]) . : 

Lemma 3.5. Let G be a graph w i t h ^ vertices and q edges. I f | C| denotes 
the length of the cycles C, and p = { C 1 : | Cj | > /} be a /c-fold basis of 

£(G), then rd<^ \ C,\<kq, where <* = dim £(<?). 
1=1 

Proof. Since 1 C ; | > r for all 1 < z < d , we h a v e ^ l ^ r~rd. Also, 
i=l /=i 

rf 
since P is a /c-fold basis, we have ^ I 1— Therefore, the lemma holds. 

i=l 
Lemma 3.6. Let ;??, n be two positive integers such that 

3n2 m-\-2>mn~ 3 3mn 
4 

or equal to x. Then « < 1 4 . 

> m/i2 + l , where [x] is the greatest integer less than 
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Proof. Since 3mn-\-
3n2 m-\-3mn—3 < 3nm + 3n2 m-\-3nm~ 3 

4 
we have 

4 

i 2 + l < 3 m n + 
3n2 m-\-3mn-—3 

. This implies that 4 m « 2 + 4 < 12mn+3ra2m + 
4 

+3/««—3, so that mn2 + 7 : < 15/?»?. This implies that mn1 < 15/wi, so that 77< 14. 

Theorem 3.7. I f m > 2 , » > 3 then 3</3(C„, [ C J ) < 4 . Moreover, 
A ( C m [ C J ) = 4 for all ; H > 2 , 77> 15. 

Proof. One may easily see that Cm [CJ contains m copies of Kn n , each of 
which is of the form Kfr^, ( r + I , „ ) where reZm. In addition, Cm [CJ contains 
the set of edges <S={(r, 1) (r, ¿+1) | CG Z m , z'e Z,,}. I t is clear that ,Cm [CJ is a 
nonplanar graph for all m > 2 , /?>3. Thus b{Cm [ C J ) > 3 . To prove that 
/>(C„,[CJ)<4, we have to exhibit a 4-fold basis for £ ( C m [ C J ) . For each 
r e Z m , define the following sets: 

^={0,0 0 '+l ,7) ( r . i + 1 ) ( r + l , / + i ) ( M ' ) ! 0 < i , j < n - 2 } , 

= 0) ( r + 1 , 0 ( r + 1 , i + 1 ) (r, 0), ( r + 1 , n - 1 ) (r, i ) (r, i + 1 ) ( r + 1 , n - 1 ) | 
0^/'</7—2)}, Br=Ar\jA'F> 

D = { r f ,=( i , 0) (i, i ) (/, 2) ... ( i , n - 1 ) ( i , 0)| i e Z,„} and 

g =(0 , 0) (1, 0) (2, 0) ... ( m - 1 , 0) (0, 0). 

Let B(Cm [ C J ) = ( I I Br) U D U {<2}- For every r e Z m , ^ r is a 4-fold basis of 

the subspace £ (Klrttl) t ( r + 1 ,„ ) , as proved in Theorem 2.4 of Schemeichel [7]. Using 
the same argument as of Theorem 3.3 after replacing H by H'=(r, i) (r, i + 1), 

(r + 1, /) (r + 1, i + 1) [ zeZ / ( _J we then have I I Br is an independent set 

of cycles in t,(C/rt[Ct]). Clearly Q cannot be generated from I I Br. so it 

is independent from the cycles of j j Br. Moreover, each cycle d-, e D contains 

the edge (i , /?—1) (i, 0) which does not occur in any other cycle of B(Cm [CJ). 
Thus B (Cm [CJ) is an independent set of cycles in £ (C m [CJ). Since | B (Cm [CJ) | = 
= / / 2 m + l = d i m ^(C,„ [CJ) , it follows that B(Cm [CJ) is a basis for £(C„, [CJ). 
I t is easy to verify that B(Cm[C„]) is a 4-fold basis. Hence 6 (C m [ C J ) < 4 for 
all /w>2, « > 3 , so that 3</3(Cm [ C J ) < 4 for all m > 2 , z?>3. 

On the other hand, suppose that £ (C ( ( l [CJ) has a 3-fold basis p. Then we 
have three cases: 

i-=0 



T H E BASIS NUMBER OF T H E COMPOSITION O F GRAPHS 49 

Case 1 . Suppose that p consists only of 3-cycles. Then |p|<3m77, since 
every 3-cycle i n (3 must contain an edge from the set S={(r, i) (r, H-l) [reZm 

and I ' G Z J , \S\=mn and the fold of every edge of S is at most 3. But 
| p \<3mn<mn2 + 1 = dim tl(Cm [CJ) for m > 2 and /z > 3. Hence p is not a 
basis for t,(Cm[Cn]), a contradiction. 

Case 2. Suppose that P consists only of cycles of length greater than or 
equal to 4. Then Lemma 3.5 implies that 4 (mn 2 + 1) < 3 (mn2 + mn), since 
dim Z,(Cm [ C J ) = m « 2 + l , f £(C„, [CJ) | = ™ 2 + m « and | C,-1>4 for every Qep. 
But this inequality cannot hold for any positive integers m and n. Hence this 
case cannot, happen. 

Case 3. Suppose that p consists of s 3-cycles, and t cycles of length greater 
than or equal to 4. Then s<3mn since we have at most 3mn 3-cycles in p as we 
explained in Case 1. Since | E(Cm [CJ)\=mn 2 +mn, the fold of every edge of 
Cm [CJ is at most 3 in P and 3s edges are joined to make the s 3-cycles, we 

i *™ _ T h e n m?J2 + 1 = d i m £ ( C m E C ) [ ] ) = | p | ^ J + i < 3 m J i + have t < 

3n2 m-\-3mn—3s 
, so that mn2-\-l < 3mn-\-

3n2 m-\-3mn—3 
since J > 1 . 

This implies that «>;14, by Lemma 3.6, a contradiction to the assumption that 
« > 1 5 . From the above 3 cases we deduce that X,(Cm [CJ) has no 3-fold basis 
for all m > 2 and TZ>15. Hence b (Cm [ C J ) = 4 for all m > 2 and 77>15. 

Lemma 3.8. Let m, n be two positive integers (m > 2) such that 
4 (m - 1 ) (n 2 - 1) < 3 (m (n - 1) + n 2 (m - 1)). Then n < 5. 

Proof. Since 4(m—1) (ra2—1)<3 (77?(/z—l)+«2(m— 1)) then 4/i2(m—1) — 
—4m+4:<3mtt—3m+3« 2 (m—T), so that n2(m—l)+4 < 3m«+m=m (3TZ+1). 

7Z2 4 7?Z 7Z2 

That is 1 < < 2 , so that r < 2 . This implies 
3/i+l ( 3 n + l ) ( m - 1 ) m - 1 3n + l 

that 7i<6. But of 7z—6 the inequality in the statement of the Lemma does not 
hold, therefore, « < 5. 

Lemma 3.9. Let m, n be two positive integers (m > 2) such that 
" 3 / i 2 ( m - l ) + 3 7 n ( f l - l ) - 3 " 

(m— 1) (7Î2- 1) < 3m («— 1) + . Then TÎ<29. 

Suppose that(m— l ) ( n 2 — l ) < 3 m ( n — 1)+ 3 n 2 ( m - l ) + 3 m ( « - l ) — 3 

Since 
3 7 î 2 ( m - l ) + 3 m ( n - l ) - 3 < 3n2(m- 1) + 3m (n - 1) - 3 
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4(m— 1) (ft 2 —1)< \2mn~\2m+3n2(m— \)-\-3mn—3m—3, so that 4« 2 (m—1)— 
— 4 m + 4 £ l 5 m n — 15m+3n 2 (m— 1)—3. This implies that n2 (m—1)+7<\5mn— 

n2 ni 
— 11m, so that < < 2 . That is « 2 + 2 2 < 3 0 n , so that n < 2 9 . 

1 5 « - 1 1 m 1 
Following the same idea as in the previous two lemmas we have the following 

two lemmas without proof : 

Lemina 3.10. Let m, n be two positive integers (m > 2) such that 

3m« 2 + 3m (n — 1) — 3~ m (ft 2 — 1) + 1 < 3m (n — 1) + 

Then n < 14. 

Lemma 3.11. Let m, « be two positive integers (m > 2) such that 

3mra + 3n2 (m — 1) — 3" 
n (m — 1) + 1 < 3m« + 

4 
Then « < 29. 

Theorem 3.12. For every m > 2 , n > 4, we have 3 < /3 [PJ), b(Pm[C„]), 
b(Cm[Pj)<4. Moreover, b(Pm[PJ)=4 for m > 2 , ft>30; b(Cm[Pj)=4 for 
m > 2 , « > 1 5 and b (Pm [ C J ) = 4 for m > 2 , n> 30. 

Proof. I t is easy to see that Pm[Pn], Cm[Pn], and Pm [CJ are nonplanar 
subgraphs of C„, [CJ. And fi(Cm [P J )= f i (C„ , [ C J ) - A [ C J ) = ^ ( C M [ C J ) -
-(^„-iU{e}) and B(Pm[Pn])=B(PmlCn]f\B(Cin[PJ) are 4-fold subbasis of 
B (C„, [CJ) for the subspaces t, (Cm [PJ), ^ (Pm [CJ) and Z, (Pm [Pn]) respectively, 
where B(Cm [CJ) is the basis of Z,(Cm [CJ) which is obtained in Theorem 3.7. 

On the other hand, suppose that t, (Pm [PJ) has a 3-fold basis p. Then we 
have three cases: 

. Suppose that p consists only of 3-cycles. Then | P | < 3m (n — 1) 
since every 3-cycle in p must contain an edge from the set J i={(r, i) (r> z+1) | 
reZm and i ' e Z H ) , \ H\=m(n—1) and the fold of every edge of S is at most 
3. But i P ] < 3 m ( f t - l ) < ( m - l ) ( f t 2 - l ) = d i m i ; ( P , „ [ i i J ) f o r m > 2 , n > 3 0 . Hence 
p cannot be a basis of £ ( P m [ P J ) , a contradiction. 

Case 2. Suppose that p consists only of cycles of length greater than or 
equal to 4. Then Lemma 3.5 implies that 4(m—1) (n2—1)< 3 (m (n—l)-\-n2(m— 1)) 
since P m [ P J has m (ft— l ) + f t 2 (m— 1) edges, and j C j > 4 for every C e p . I t 
follows that n > 5 by Lemma 3.8, a contradiction to the assumption 

Case 3. Suppose that p consists of s 3-cycles and t cycles of length greater 
than or equal to 4. Then s<3m(n—1) since we have at most 3m (ft — 1) 3-cycles 

file:///2mn~
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i n p as we explained in Case 1. Since the fold of every edge of E(Pm [PJ) is 
at most 3, and 3s edges are joined to make the s 3-cycles, then 

f Li . Thus we have (m—1) (« 2 —l)=dim l>(Pm [Pn])-. 

3 {(in — 1) H 2 + m (n - l))-3s~ 
4 

J p j = s + t < 3m (n - 1) + 

3 ( « 2 ( m - l ) + m ( « - l ) ) - 3 

3m (n — 1) + 
4 

. This implies that n<29 by Lemma 3.9, a con-
4 

tradiction to the assumption. I t follows that £ ( P m [P„]) has no 3-fold basis for 
m > 2, /7>30. Therefore, 6 (P m [ i , „])=4 for m > 2 , « > 3 0 . For <;(C m [PJ) and 
t, (Pm [CJ) we can assume that each of them has a 3-fold basis. Then we can 
argue following the same line as in the case of ^ (Pm [P„]), and using Lemmas 
3.5, 3.10 and 3.11 to get a contradiction. Then the proof of Theorem 3.12 is 
complete. 

Theorem 3.13. For every m > 2 , « > 4 , we have 3</3 (Pm [£„])< 4. Moreover, 
b(Pm[Sn])=4 for m > 2 , « > 3 0 . 

Proof. For each m > 2, n > 4, [Sn] contains m—1 copies of the nonplanar 
graph Knill, each one is denoted by K(r,n) t ( p + ) ( J t ) ; r e Z n _ , . Also ^ [SJ con­
tains the set of edges H={(r, 0) (r, /'): 1 < / < « — 1 , reZm}, I t is clear that 
b(Pm[Sn])>:3 by Maclane Theorem. To prove that b(Pm[Sn])<4, i t is enough 
to f ind a 4-fold basis for t, (Pm [SJ). For each /• e Z m _ j , define the following sets: 

Av = { ( r , 0 ( r + W ) (r, ( r + W + l ) (r, i) \ iJeZ^}, 

Dr ={{r+\, 0) (/•, i ) (r, 0) (r, 0) | 1 ^ / < n~2] U 
{ ( r + l , 0 ) ( r , l ) ( r , 0 ) ( r + l , 0 ) } , 

D'r = {(r, n-\) ( r + 1 , i ) ( H - l , 0) ( r + 1 , i + 1 ) (r, n - 1 ) j l < / < « - 2 } U 
{ ( r , « - l ) ( r + l , 0 ) ( r + 1 , 1) ( / , « - ! ) } , 

. 4 ; = -D rU-Dr and Br=Ar\}A'T. 

We claim that |J Br is a basis for t,(Pm [St]). To show that, note that for every 

f G Z f l H , Ar is a basis for K^,,,). (r+u„) as proved in Theorem 2.4 of Schemeichel 
[7]. Thus Ar is an independent set of cycles in %>{Pm [S,]). Also A'r is an inde­
pendent set of cycles because any linear combination of cycles from A'r modulo 
2 is either a cycle or an edge-disjoint union of cycles, moreover, each cycle in 
A'r contains one or two edges from the set H and these edges occur in no cycle 
of Ar. Then the cycles of A'r are independent with the cycles of Ar, Thus 
Br=ArU A'r is an independent set of cycles in t,(Pm[Sn]). Since the edge-sets 
of K(r,„y ((.+!,„) are pairwise disjoint and any cycle that can be generated from 
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Br cannot be generated from Bk for all Ic,reZm_x, k^r, thus B(Pm[Sn])= 

= \^Br is an independent set of cycles i n l(Pm\Sn]). But \B(Pm[Sn])\^ 

( m - 1 ) ( » 2 - l ) = d i m $(Pm [Sn]). Hence B(Pm [S„]) is a basis for ^(Pm [S„]). One 
may easily see that B(Pm[Sn]) is a 4-fold basis. Hence 3<b{Pm [SJ)<4 for 
all 777 > 2, « > 4. 

On the other hand, using the same arguments as of Theorem 3.12, consid­
ering the set H as it is defined in this theorem, we can prove that ^ (Pm [Sn]) 
cannot have any 3-fold basis for all m > 2 , TI>30. Hence b (Pin [5"J)=4 for al l 
m > 2, « > 3 0 . 

Theorem 3.14. For every m>;3, TJ>4, we have 3</3(Cm [5 'J)<4. Moreo­
ver, b(Cm [Sn])=4 for all 7 « > 3 , « > 1 5 . 

Proof. The graph C m [Sn] contains Pm [5*,,] with a new copy of Knm which 
is Kim_l:li) t ( 0 ( i l ) . For every c e Z m , let Br be as in the proof of Theorem 3.7. 

m—l 

Using the same arguments of Theorem 3.13, we can show that |J Br is an 

independent set of cycles in t,(Cm[Sn]). Note that the cycle 

6 = ( 0 , 0) ( l , 0 ) ( 2 , 0 ) . . . ( m - l , 0 ) ( 0 , 0 ) 
m—1 m — l 

is independent from the cycles of [J Br. Thus BiC^S^)^ (|J A - ) U { 2 } is an 
r=0 r=0 

independent set of cycles in . £ (C m [S,,]). But | £(C,„ [SJ) | - ( 7 i 2 - 1) m + 1 = 
= d i m £ (C m [£,,]). Hence, B (C,„ t-SJ) is a basis for \ (Cm [SJ). I t is easy to verify 
that B(Cm[SJ) is a 4-fold basis. Hence 3</3(Cm [Sn])<4 for all m > 3 , n>4. 

On the other hand, using the same arguments as of Theorem 3.12, replacing, 
the set S of Theorem 3.7 by the set H of Theorem 3.13, we deduce that ^(CJS,]} 
cannot have any 3-fold basis for all m > 2 , 15. Hence b(Cm [Sn])~4 for all 
m > 2 and n > 15. 

The following two Lemmas are needed in the proof of Theorem 3.17. W e 
mention them without proof since their proof is on the same line as of the: 
previous Lemmas. 

Lemma 3.IS. Let m,n be two positive integers such that (m—1) (n2—1)<, 
<5m(i i—1). Then /?< 11. 



T H E BASIS NUMBER OF T H E COMPOSITION O F GRAPHS 53 

Lemma 3.16. Let m, n be two positive integers {m > 2), such that 
" 6 m ( « - l ) + 3 n 2 ( m - l ) - 3 " 

{ » ! - ! ) ( « 2 - l ) + m (n~\)< 6m ( « - ! ) + . Then « < 51. 

Theorem 3.17. For every m > 2 , n>4, we have 3<b(Pm [Wn])<4, More­
over, 6 (P m [PF„])^4 for all m > 2 and w>52. 

Proof. The graph Pm [PFJ consists of the nonplanar graph Pm [Pn] with 
m-l 

the set S= (J ^ ; Sr = {(/, 0) (/•, /) | 2 < / < n - 1} U {(r, 1) (r, « - 1)}. Thus 
r=0 

6 ( P m [ i * r
l l ] ) > 3. To show that b(Pm[Wn]) < 4, we exhibit a 4-fold basis for 

^( i *^ , [Wn]). For each r e Z ) H , define the following sets of cycles in t,{Pm [fVn]): 
Af={(r, n-l) (r + h 0 0) ( r + 1 , ¿+1) (,-, n - 1 ) | \<i<n~2) U 

{(/•, l ) ( / - , 2 ) . . . ( r , « - l ) ( / - , 1)} and 

Am_t = { ( 1 , 0) (0, 0 (0, 0) (0, i + 1 ) (1, 0) | 1 < / < n - 2 } U 
{(0, 1)(0, 2 ) . . . ( 0 , « - l ) ( 0 , 1)}. 

m — I 

Let ^ = (J Ar and B(Pm [Wn])=B(Pln [PJ) U ^ where 5 (P , JP J ) is the 4-fold 
basis of Z,(Pm[P„]) that was obtained in Theorem 3.12. Then B(Pm[PJ) is an 
independent set of cycles in ^(P„,[H^J). For each r e Z m , ^ r is an independent 
set of cycles in t)(Pm[WlJ) since any linear combination of cycles from AT 

modulo 2 is either a cycle or an edge-disjoint union of cycles. Moreover, each 
cycle from Ar contains one or two edges from the set Sr and these edges do 
not occur in any other cycle of the set B(Pm [Wn]) — AT. Thus B(Pm[Wn]) is 
-an independent set of cycles in X){Pm [1VJ). But | B{Pm [lVn]) | = ( m - l ) ( « 2 - I ) + 
+ m ( n - l ) = d i m t,{PmWn]\ therefore, B(Pm[Wn\) is a basis for $(Pm[WJ). 
I t is easy to verify that B(Pm[iVn]) is a 4-fold basis for t,(Pm[Wn]). Hence 
3</)(P„, [I^„])<4 for all m>2, n>4. 

On the other hand, suppose that £(P„, [H7,,]) has a 3-fold basis p. Then we 
have three cases: 

Case 1. Suppose that p consists only of 3-cycles. Then j P | < 6m(n — 1), since 
every 3-cycle in p must contain at least one edge from the set S={(i>j) \ 
i e Zm,/eZ)H} U {(/, 0) (/,./) j ie Z„ , 2 < j < * - 1 } U {0; 1) 0', « - 1) | ie Zj, 
\ S \ ~ 2m (n — 1) and the fold of every edge of S is at most 3. But | p ] < 
< 6 m ( « - l ) < ( m - l ) ( « 2 - l ) + m ( / i - l ) = d i m ^(Prn[WJ) for all m>2, « > 5 2 by 
Lemma 3.15. Hence P cannot be a basis of XJ(Pm[Wtl]), a contradiction. 
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Case 2. Suppose that p consists only of cycles of length greater than or 
equal to 4. Then Lemma 3.5 implies that 4 ((m — 1) (« 2 — 1) + m (n — 1)) < 
< 3(2m(«—l)+« 2 (m—1)) . That is nz ( m - 1 ) < 4 ( m — l ) + 2 m (n—1), so that 
n2(m — l ) + 4 < 2 / W 2 . But this inequality cannot hold for all m>2 and « > 5 2 , 
a contradiction. 

Case 3. Suppose that p consists of s 3-cycles and / cycles of length greater 
than or equal to 4. Then s<6m(n — 1) since we have at most 6m(n~l ) 3-cycles 
in P as we explained in Case 1. Since the fold of every edge of Pm[rVn] is at most 
3 and 3̂  edges are joined to make the s 3-cycles, then 

3 (2m (n -1) + » 2 ( m - 1 ) ) - 3 J 

4 
6m (n—1) - f 3n 2 (m - 1 ) - 3 

being i > 1. 

Then we have (m - 1) (« 2 - 1) + m(n - 1) - dim X>{Pm [WJ) = \ ß j - i + t < 
6 m ( « - l ) + 3 « 2 ( m - l ) - 3 ~ 

< 6m (« — !) + which contradicts Lemma 3.16. 

This finishes the proof of Theorem 3.17. 
We need the following Lemma without proof : 

Lemma 3.11 

m ( « 2 - l ) + m ( « - ! ) + ! < 6 m ( n — l ) - j -

Let m, n be two positive integers (m > 3), such that 
3m« 2 +3m (A—1)—3 

Then w<22. 

Theorem 3.19. For every m > 3 , « > 4 , we have 3</>(Cm [W/„])<4. More­
over, /3(Cm [W„])=4 for all m > 3 and n > 2 3 . 

Proof. I t is clear that E(Cm [W^)=E(Cm [P„]) U S, where 
5 = { ( r , 0) (/•, i ) (r, I) (r, « + 1) | r e ZM, 2 < / < n - I } . 

Let 4 . = {(/•, n - 1) (/• + 1, i ) (#- + 1, 0) (r + 1, / + 1) (/-, n - 1) | 1 < i < n - 2} U 
m—l 

U {(/", l ) ( r , 2) . . . i / , » - l ) ( r , l ) } , for r e Z m , ^ ( = U , and 5 (CW J [WJ) = 
f=0 

—-B(Cm [PJ) U ^ where B(Cm[Pn}) is the basis of t, (Cm [Pn]\ which is obtained 
i n Theorem 3.12. Using the same arguments as i n Theorem 3.17 we can show 
that B(Cm[PJ)UA is an independent set of cycles in ^(C^WJ). Thus 
B(Cm[WJ) is an independent set of cycles i n UCm[WJ). But \B(Cm[Wn])\ = 
= m ( « 2 + r c - 2 ) + l = d i n i K(Cm[Wn]) then B(Cm[W„]) is a basis for Z,(Cm[iVJ). 
I t is easy to see that B(Cm[wj) is a 4-fold basis for Xi(Cm [Wn]). Hence 
3 < & ( C , „ [ 0 g ) < 4 for ail m > 3 , n > 4 . 

On the other hand, suppose tl(Cm [V/J) has a 3-fold basis p. Then we have 
three cases: 

Case 1 . Suppose that p consists only of 3-cycles. Then | p |<6m(/i—1) since 
every 3-cycle i n p must contain an edge from the set S and the fold of every 
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edge of S is at most 3. But j p | < 6m (n — l ) < m (n2 — 1) + m (n — 1) - f 1 ~ 
- dim <^(Cm [W„]) for all m > 3 and n > 23. Hence p cannot be a basis of 
£ ( C m [ W J ) , a contradiction. 

Case 2. Suppose that p consists only of cycles of length greater than or 
equal to 4. Then Lemma 3.5 implies that 4 (m(« 2 — 1) m(n — 1) -\- 1) < 
< 3(nzm-{-2m(n—1)). That is n 2 / w + 4 < 4 m + 2 m « — 2 m , so that n 2 m - j - 4 < 
< 2 m ( « — 1). But this inequality cannot hold for all m > 3 and /i>23. 

Case 3. Suppose that p consists of s 3-cycles, and / cycles of length greater 
than or equal to 4. Then s < 6m(n — 1) since we have at most 6m(ra—1) 3-cycles 
in P as we explained in Case 1. Since the fold of every edge of Cm [Wn] is at 
most 3 and 3s edges are joined to make the s 3-cycles, we have 

3/; 2m+3m (n — 1)— 3s 
< 

3w2 m + 3 m (n — 1)—3 

being s>l. Therefore, m ( « 2 - l ) H - m ( « - l ) + l - d i m ^(Cm [WJ)= \ p j =^s+t ^ 
, , , x T 3n2m-\-3m(n — 1)—3 

< 6 m ( ; i —1) + This contradicts Lemma 3.18 for all 

m > 3 and M;>23. Therefore, i^(Cm[P-i/J) cannot have any 3-fold basis for all 
m > 3 and n > 2 3 . Hence b(Cm[Wn])=4 for all m > 3 and « > 2 3 . 

Theorem 3.20. For every m>4, « > 3 , we have 3<b(Sni [ i * J ) < 4 . More­
over, /3(5„, [P„])=4 for all m > 4 and « > 2 0 . 

Proof. The graph Srn [P„] contains m~ 1 copies of ^T N I „. We denote these 
copies by Ki0itl)t ( r,„); l < r < m — 1 . Note that each of these copies are joined 
to the vertices (0,0 where ( 'GZ„. Also Sm [P„] contains the set of edges 
S={(iJ)(i,j + l)\ieZmJeZn}. i t is clear that b (Sm [Pn]) > 3. We now 
exhibit a 4-fold basis for ^(Sm[P„]). For each 1 < r < m — 1, let 

0 <>> >) (0,7+1) ( f , y + l ) (0, i ) | / . y e Z j , 

4 =W = (0 , 0) (r, i) (r, i + 1 ) (0,0) ] i e Z ^ J . 
Also define the following sets: 

A"r={(r,0) (0,0 ( r - 1 , 0 ) (0, / + 1) ( r , 0 ) | / e Z , H } i f r is even and 
2 < r < m — 1, 

and 

{(/•, M - 3 ) (0, n—/—1) ( r - 1 , n—1) (0, n-i-2) (r, n—1) | / e Z M } i f r is 
odd and 3 <>•</« — ! . 

HI—1 

Let , 4= [J Ar, ^ = ( [J Ar) U { (1 , « - l ) (0, i) (0, ¿+1) (1, « - l ) | Î G Z J , 
i-=0 
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A" U {A"r I r is even and 2 < r <m—1} , 

A"= U {A"r' I r is odd and 3 < / - < m - l } . 

Define the set 5(5,, ,[P„])=A U ^ ' U v4ff U A". For each l < r < m - l , Ar is the 
4-fold basis constructed in Theorem 2.4 of Schemeichel [7] for the subspace 
£ (K( 0 , n ) , (r,„>)- Since the edge-sets of the graphs ^(0,„>,(r,„) are pairwise-disjoint 
then 4̂ is an independent set of cycles in t, (Sin [P„]). From the definition of 
A"\JAm, any linear combination of cycles in A*\JA"' (mod 2) is either a cycle 
or an edge-disjoint union of cycles. Thus A' U A'" is an independent set of 
cycles in X, (Sm [P„])- Moreover, every 4-cycle Cr e A' U A'" cannot be generated 
from the cycles of A because it consists of two edges from A" i0 l j ) t ( r n ) and the 
others from K(0in) t < r.H i„) where \<r<m—2. Therefore A\JA"\JA"' is an 
independent set of cycles i n t>(Sm[Pn]). I t follows that B(Sm [-£*„]) is an inde­
pendent set of cycles in t,(Sin[Pn]) since every cycle a\ € A' contains the edge 
(r, 0 (r, /+! ) which does not occur in any other cycle of B(Sm[Pn]). Therefore 
B(Sm{Ptt]) is a basis for t,(Sm[P„]). One may easily see that B(Sm[P„]) is a 
4-fold basis of ^(Sm[Pn]). Hence 3 <b (Sm [PJ) < 4 for all m > 4 , « > 3 . 

On the other hand, using the same arguments as of Theorem 3.12, we can 
prove that Z1(SIII[PI!]) cannot have a 3-fold basis for all m>:4 and n > 2 0 . 

Theorem 3.21. For every m > 4 , « > 3 , we have 3 < b (Sm [Cn]) < 4. More­
over, 6 (S ' m [C„] )=4 for all m > 4 and «>:20. 

Proof. I t is clear that E(Sm[C„]) = E(SIII[PJ) U H where 
//={(/, /? - I ) (0, /; - 1) | Z m } . Let 

D = {d{ = (i, 0) (/, 1) (J, 2 ) . . . (i, n - 1) (/, 0) | i e Z , J 

and ^ ( ^ [ C J i ^ f i C ^ ^ D U / ) where B(Sm[Pn}) is the basis of Z.(Sm[PJ) 
exhibited in Theorem 3.20. Since B(Sm[PJ) is an independent set of cycles in 
Z,(Sm[CJ) and each dieD contains the edge (i, n—1) (/, 0) which does not 
occur in any other cycle of B(Sm[Cn]), then B(Sni[Cn]) is an independent set 
of cycles in ^ [ C J ) . But | B(Sm [CJ) [ = « 2 ( m - l ) + l = dim L ^ J C J ) , hence 
5 ( 5 r a f G J ) is a basis for £(S„ ,[C„]). One may easily verify that B(Sm[CB)) is 
a 4-fold basis for Z,(Sm[CH]). Therefore, 3 < 6 (Sm [ C J ) < 4 for all m > 4 , « > 3 . 

On the other hand, using the same arguments as of Theorem 3.12 in the 
case Pm[CJ we can prove that tt(Sm[Cn]) has no 3-fold basis for all m>4 
and n>20 . 

Lemma 3.22. Let m,« be two positive integers (m > 4) such that 

(m — 1) (2n 2 — 1) < 6mn — 3m - j -
6« 2 ( m — l ) + 3 m (n -1) - 3 

. Then « < 1 7 . 



T H E BASIS NUMBER O F T H E COMPOSITION OF GRAPHS 57 

Proof. Using the same idea as in the proofs of the previous Lemmas we 
2n2(m-\) ^ c 21m 21 ( 4 \ 

have v <n. Therefore, n< , so that n< —- =18- That 
27m 2 ( m - l ) 2 \ 3 j 

is « < 1 7 . 
Theorem 3.23. For every m>4, « > 3, we have 3 </> (Wm [ P J ) < 4. More­

over, b(1Vm[PJ)^4 for all m>4 and 77 2:18. 

Proof. We consider Wm [Pn] as the graph constructed from joining the 
nonplanar graphs Sm[PJ and C*_ ! [Pn] at the set of edges H={(iJ)(i,j+l)\ 
l < z < m — 1 , jeZn_j}, where C * _ i denotes the cycle 123...(m—1)1. I t is clear 
that ( ^ [ P J is a nonplanar graph and by Maclane Theorem, b (Wm [ P J ) > 3 . 
To prove that b(Wm{Pn])<4, we exhibit a 4-fold basis for ^(Wm[PJ) as follows: 

Let D = {di = (0, n - 1) (/, « - 1) (i + 1, « - 1) (0, n - 1) : 1 < i < m - 2}, 
5 ( [PJ) = J ( 5 M [? J ) U 5 ( C - i [PJ) U A where B(Sm[PJ) and P i C ^ J P J ) 
are the bases of the subspaces I, (Sm [PJ) and £, (C,*_i [PJ) that are obtained 
i n Theorem 2.20 and Theorem 3.12 respectively. Clearly .5 (5^ [PJ) and 
B (C*_ j [PJ) are two independent sets of cycles in £, (Wm [PJ). Since 
E{Sm [PJ) n -£(C*_, [PJ)=P/, then it is clear that non of the cycles of B(Sm[P„]) 
can be generated from # ( C * _ i [ P J ) and vice-versa. That is B(Sm [PJ) U ^ ( C ^ t P J ) 
is an independent set of cycles in ^ ( f ^ m [ P J ) . But die D contains the edge 
(/, n~-1) (1 + 1, n—1) that does not occur in any other cycle of D U B(Sm [PJ). 
Thus D U - f i ( 5 m [ P J ) is an independent set of cycles in ^(Wm[Pn]). Also every 
di contains an edge of the form (0, n—1) (i, n—1) that does not appear in any 
other cycle of P ( C * _ , [PJ). Thus D U f i ( C * ^ , [PJ) is an independent set of 
cycles in t,(Wm[PJ). Therefore, B(Wm[Pn]) is an independent set of cycles in 

and \B(Wm[Pn])\=(m-l) ( 2 « 2 - l ) = d i m W J P J ) . I t follows 
that B(Wm[Pn]) is a basis for ^(Wm[Pn]). I t is easy to show that B(Wm[P„}) 
is a 4-fold basis for £ ( ^ J P J ) . Hence 3<b(Wm[Pn))<4 for all m > 4 , « > 3 . 

On the other hand, suppose ^(Wm[P„]) has a 3-fold basis p. Then we have 
three cases: 

Case 1 . Suppose that p consists' only of 3-cycles. Then \ P | < 6mn — 3m, 
since every 3-cycle i n p must contain an edge from the set M={(i,j) (z,7+l)| 
i e Zm, jeZ^} U {(0, i) (j, 0 I i e Zn, 1 < j < m - 1} U { (1 , i ) (m - 1, 0 | i e Z„}, 
| M\— 2mn— m and the fold of every edge of 5* is at most 3. But |p|<6m/z— 
—3m<(m~- l ) (2« 2 —l)=dim ^ ( f ^ [PJ) for all m , « > 4 , a contradiction to the 
fact that p is a basis for Z>(Wm[P„]). 

Case 2. Suppose that p consists only of cycles of length greater than or 
equal to 4. Then Lemma 3.5 implies that 4 (m — 1) (2n2 — 1)< 3 (2/J2 (m — 1 )+ 
+ m ( « - l ) ) , so that 3n\m — 1) - 4 m + 4 < 6n 2 (m — 1) + 3m(« — 1). That is 
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2« 2 (m — 1) -f- 4 < 3mn + m. But this inequality cannot hold for all m„ n > 4. 
Therefore, this case cannot happen. 

Case 3. Suppose that p consists of s 3-cycles, and t cycles of length greater 
than or equal to 4. Then s<6mn~3m since we have at most 6mn—3m 3-cycles 
in P as explained i n Case 1. Since the fold of every edge of Wm[PJ is at most 
3 and 3s edges are joined to make the s 3-cycles then 

6n2 (m—l)+3ra( /7—1)—3s 6 n 2 ( m - l ) + 3 m ( n - l ) - 3 

- 3 m + , so that ; i < 17 by Lemma 3.22, a contra-

where s>l. Therefore, (m—1) ( 2 n 2 — l ) = d i m t)(Wm [Pn]) =• |p[ = s-\-t<6mn 
6 « 2 ( m - l ) + 3 m ( « - l ) - 3 

4 
diction to the fact that «>;18. 

I t follows that ^(Wm\Pn\) has no 3-fold basis for all m > 4 and « > 18. 
That is b(W,„[PJ)=4 for m > 4 and » > 1 8 . 

Finaly, we study the basis number of the composition of a wheel and a cycle, 
and a star and a wheel in the following two theorems. But first we need the 
following Lemma: 

Lemma 3.24. Let m, n be two positive integers (m > 4), such that 

( m - 1 ) (2n2-l)+m<6mn + ^ ^ " ^ t ^ z i , Then « < 1 7 . 
4 

Theorem 3.25. For every m > 4 , « > 3 , we have 3</3 [ C J ) < 4. More­
over, b(Wm[Cn])=4 for all m > 4 and « > 18. 

Proof. I t is easy to see that E (Wm [Cn]) = E (Wm [P„]) U S where 
S={(i,n-1) (i, 0) | i e Z J . Let F={f,=(i, 0) <7, 1) (/, 2)...(i, n-l) (/, 0) | i e Z„,}, 
^ ( ^ [ ^ ^ ( ^ [ P j j u F where 5 ( ^ m [ P „ ] ) is the basis of the subspace 
^(Wm[Pn\). Then £(W f f l [PJ) is an independent set of cycles, in X>(Wm[Cn\). 
Since fi&F contains the edge (/, n — 1) ( i , 0) which does not occur in any 
other cycle of B(Wm[CJ) then B(Wm[Cn]) is an independent set of cycles in 
? {Wm [CJ). But 15(W m [C„]) | = (m - 1) (2« 2 - 1) + m = dim l(Wm [C,,]). Then 
5 ( W m [ C J ) i s a basis for Z,(Wm[Cn}). I t is easy to see that B(Wm[C„]) is a 
4-fold basis of t,(Wltl[Cn]). Hence 3 < / ) ( ^ „ [ C J ) < 4 for all m>4, « > 3 . 

On the other hand, suppose that ^ ( i ^ , , [CJ) has a 3-fold basis p. Then we 
have three cases: 

Case 1 . Suppose that p consists only of 3-cycles. Then j P | < 6mn since 
every 3-cycle in p must contain at least one edge from the set 

N=M{i {(i,n- 1) ( i , 0 ) | i e Z m } , 

I N | = 2mn and the fold of every edge of S is at most 3, where M 
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is the set of edges which is defined in Case 1 of Theorem 3.23. But 
j p | < 6/77« < (m - 1) (2« 2 - 1) + m = dim £ (Wm [CJ) for all in, n>4. Hence p 
cannot be a basis of t,(Wm[CJ), a contradiction. 

Case 2. Suppose that p consists only of cycles of length greater than or equal 
to 4. Then Lemma 3.5 implies that 4((m— 1) ( 2 « 2 - l ) + m ) ^ 3 (2ra 2 (m-l )+mn) , 
so that 8ra2(m— 1)—3m-\-4<6n 2(m~l) +3JWZ. That is 2 n 2 ( m - l ) + 4 < 3 / i 7 ( « + l ) . 
But this inequality cannot hold for all m, « > 4 . Hence this case cannot happen. 

Case 3. Suppose that p consists of s 3-cycles and t cycles of length greater 
than or equal to 4. Then s<6mn since we have at most 6mn 3-cycles in p as 
explained in Case 1. Since the fold of every edge of Wm[Cn] is at most 3 and 
« • • -t + -t i * , , [6n2(m—l)-\-3mn—3s 3s edges are joined to make the s 3-cycles, then /;< 

6« 2 (m — 1) + 3mn — 3 
< 

4 

6« 2 (m — 1) + 3mn — 3 , , 
< — — , where s > 1. Therefore, 

< m - l ) ( 2 n 2 - l ) + m = d i m ^ ( l ^ f f l [C„])=\p 1 = j + r < 6mn+ 6 w ' ( m 1 ) + 3 w w 3 , 
4 

so that 17 by Lemma 3.24, a contradiction to the fact that « > 18. Therefore, 
t,(Wm[C„]) has no 3-fold basis for all m > 4 and « > 18. I t follows that 6(Jr m [P„])= 
—4 for m > 4 and n>;18. 

Theorem 3.26. For every m, it>4, we have 3<,b(Sm[Wll])<:4. Moreover, 
b(S„[W„])=4 for all m > 4 and « > 5 2 . 

Proof. The graph Sm [ WB] consists of m — 1 copies of KHtn in the form 
K<a, n) (r. n) where l < / - < m — 1 , with the sets of edges H ={(/•, 0) (r, z) | r e Z w , 
1 < W - 1 } and *={(/•, i ) (r, ¿+1) | rG Z m , 1 <i<n-2} U {(r, 1) (r, n-l) \ r e Z m } . 
I t is clear that b (Sm [!¥„])>3. To prove that b (Sm [ W,,])<4, we exhibit a 4-fold 
basis for t,(SmWn]). For each r = l , 2,..., m— 1, we define the following sets: 

X={(°> 0> 0 ('•> 0) *+0 (o. I l < ' < « - 2 ) } U 
{ ( 0 , « - l ) ( r , 0)(r, 1 ) ( 0 , » - ! ) } , 

¿ ¿ = { (1 , n - l ) (0, i ) (0, 0) (0, 7+1) (1, n - l ) | 1 <i<n-2] U 
{ ( 1 , « - 1 ) ( 0 , 0) (0, 1) ( l , n - l ) } 
m-t 

and /I - |J Ar. 

Let D = K - (r, 0) (r, i ) (r, /+1) (r, 0) 1 r e Z m , 1 </ < n - 2} U 
{dr0 = (r, 0) (r, 1) (r, n-1) (r, 0) | r e Z J , and 5 ( S „ [ H ^ ] ) = ^ U ,4' U ^ f f U 4 " U D, 
where ¿4', 4̂" and A'" are the same sets that are defined in Theorem 3.20. I t is 
clear that AUA'UA" is an independent set of cycles in 'C,(Sm[Wn]). Since any 
linear combination of cycles from A' is either a cycle or an edge-disjoint union 
of cycles then A' is an independent set of cycles in £ (Sm [WJ). Moreover, each 
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cycle of A' contains one of two edges from the set H and these edges occur 
i n no cycle of A U A" U A'". Thus non of the cycles of A' can be generated 
from A\JA"\JA"\ so that A U A' U A" U A" is an independent set of cycles i n 
X,(Sm[WJ). Also, since every cycle in D contains one edge from K and this 
edge does not occur in any other cycle of B(Sm{Wn]) then B(Sm[Wn]) is an 
independent set of cycles i n Z,(Sm[Wn]). But | B(Sm [W„]) \ = ( m - l ) ( n 2 - l ) + 
+ m ( » - l ) = d i m $(SmlW$. Hence B(Sm[WJ) is a basis for ^[WJ). One 
may easily see that B(Sm[Wn]) is a 4-fold basis for X)(Sm[Wn]), Hence 
3^/3 (Sm [ WJ) < 4, for all m, n>4. 

On the other hand, using the same arguments of Theorem 3.17, just replace 
the set S of Theorem 3.17 by the set N of this theorem, we can prove that 
X(Sm[Wn]) has no 3-fold basis for all m>4 and « > 5 2 . 

Corollary 3.27. For every m, n>4, we have 3<,b(Sm[Sn])<!4. Moreover, 
b(Sm[Sn])=4 for all m > 4 and /?>52. 

Proof. I t is enough to note that [ ( f f J t ] )=£(5 n l [W„])-K and S m [SJ 
is a nonplanar graph where AT is the set of edges defined in Theorem 3̂ 26. 
Thus B(Sm[Sn])=B(Sm[WJ)~D is a 4-fold subbasis of B (Sm [ WJ) for the 
subspace t,(Sm[SJ). 

On the other hand, using the same arguments of Theorem 3.12, considering 
the set H as it is defined i n Theorem 3.26, we can prove that £, (Sm [Sn]) has no 
3-fold basis for all m > 4 and n > 52. 
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