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Summary : The basis number of a graph G is defined to be the least
integer k such that & has a k-fold basis for its cycle space. We investigate the
basis number of the composition of two paths, two cycles, a path and a cycle,
a path and a wheel, a cycle and a wheel, a star and a wheel, a star and a
path, a star and a cycle, a wheel and a path, a wheel and a cycle, a star and
a wheel, and a star and a star.

GRAFLARIN BILESKESININ BAZ SAYISI

Ozet : Bu cahsmada iki yol, iki devre, bir yol ve bir devre, bir yol ve
bir tekerlek, bir devre ve bir tekerlek, bir yildiz ve bir tekerlek, bir yildiz ve
bir yol, bir yildiz ve bir devre, bir tekerlek ve bir yol, bir tekerlek ve bir devre,
bir yildiz ve bir tekeérlek, son olarak ta bir yildiz ile difer bir yilcdizin bilegke-
sinin baz sayis1 arastiiimaktadir. ' ‘

1. INTRODUCTION

In [4] S. Hulsurkar studied the graph structure on Weyl groups. He showed
that with some exceptions the graph I" (W) is non-planar where I (W) is the graph
defined for Weyl groups which is compatible with the partial order introduced
earlier for the proof of Verma’s conjecture on Weyl’s dimension polynomial [5].
The importance of Hulsurkar study lies in the fact that it will ultimately shed
some light on the modular representations of semi- snnple Lle algebras and
Chevalley groups [8].

In 1937 S. Maclane [6] proved that a graph G is planar if and only if 5 (G) <2
where b (G)_is the basis number of G (defined below). Thus the basis number of
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certain classes of non-planar graphs will play an important role in studying the
graphs F (7). In 1981 E. Schemeichel [7] investigated the basis number of certain
classes of non-planar graphs, namely, complete graphs and complete bipartite
graphs. Then, J, Banks and E. Schemeichel [2] proved that for n=7, b (Q,) =4,
where @, is the n-cube. Also A. A. Ali in [T] investigated the basis number of the
strong product of two paths, two cjcles, a path and a cycle, and a star and a cycle.
The purpose of this paper is to investigate the basis number of the composition
of two paths, two cycles, a star and a path, a path and a cycle, a path and a wheel,
a cycle and a wheel, a star and a wheel, a star and a path, a star and a cycle, a
wheel and a path, a wheel and a cycle, a star and a wheel and a star and a star.
It happens that the strong product of two graphs G, and G, is a subgraph of
the composmon of G; and G,.

2. NOTATIONS AND PRELIMINARIES

Throughout this paper, we consider only finite connected graphs without
loops and multiple edges. Our terminology and notation will be standard except
as indicated, For undefined terms, see.{3}.

Let G be a connected graph, and let ¢, ¢, ,..., ¢, be an ordering of the edges
in G. Then any subset of edges F corresponds to a (0,1)-vector (g, Ay seeey @) iN
the usual way, with a; = 1 (resp., @; = 0) if and only if ¢;& F (tesp., ¢; ¢ F). These
vectors form a g-dimensional vector space over the field Z,. The vectors corres-
ponding to the cycles in G generate a subspace of (Z,) ¢ called the cycle space of
G, and denoted by L (G) (For brevity in the sequal, we will say that the cycles
themselves, rather than the vectors corresponding to the cycles, generate Z(G)).
It is known that dim (£(G)) =v(G) =g — p 41 (Cor. 4.5(a) of [3]) where p, ¢
denote, respectively, the number of vertices and edges in G. Each vector in (G
represents either a cycle or an edge-disjoint union of cycles,

2.1 Definition. The composition of two graphs G;==(V,, E,) and G,=(V,, Ez);
denoted by G,[G,l, is a graph with a vertex-set ¥V, XV, and an edge-set
E(G, [G))) = {(u}, v,) (u,, v,) | either u u,€ E, or [u; =u, and v, v,& E}}.

.- 2.2 Definition. The strong product of two graphs G,=(V,, E,) and G,—
= (Vy, E,), denoted by G, 0 G, is a graph with a vertex-set V¥, X V, and an
edge-set E(G| o G)={(,, v) (uy, v,) | either [w,—u, and v, v, € E}], or [u, u, € E,
and v = )], or {uj 1, €E, and' v, v, € E]}. Note that G, o G, is isomorphic to
Gyo Gy and | E(G 0 G) | = p, 4, + 1,4, -+ 29, g, where p; = | V;] and m; = | E;|
for i=1,2. But G, [G,] is not isomorphic to G, [Gl] since | E(G, [G,])| = p, q,+
+ p% q, while IE(G [GD{=p,q +P2q,.
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2.3 Definition. A basis of £ (G) is a k-fold basis if each edge of G occurs in

at most k of the cycles in the basis. ' The basis number of G (denoted by . 5 (G))
is the smallest & such that £ (&) has a k-fold basis.

C,, S, and W, to denote the vertex-set

In this paper we use the notations £, C,,
of these graphs, the addition group Z,, of positive integers residue module » and
the edge set as follows: :

Py={i(i-++1)|0=i<n-2}, E(C)= {([+l)[0<[<n—l}
E(Sn):{():] I<isn-—1} and EOW)=E(S,) U {i(i+D)|1=izn—1}.
We denote P, by 012...(n—1) and C, by 012 ... (n—1) 0.

3. MAIN RESULTS

In this section we compute the basis number of C, [P)], C,[C)], P, [Ci],

C,[#;] and P, [P;] and we show that it is equal to 3. We also show that the
basis number of C_ [C,), P, [P]. C,[P]: P.I[Cl P,[S.] 'Pm[Wn], S, [P,
c,[81L C,. Wl S,ICl, §,[W.] and W, [P,] is either 3 or 4 for some
restrictions on m and .

One may easily see that P, [P,] and P, [C,] are planar graphs and there-
fore b (Pm [P2]) _ b (P [Cz]) - 2

Proposition 3.I. For every integer m=3, the graphs C,[P,] and C, [C)]
are nonplanar.

Proof. Tt is easy to see that C, [P,)=Kj, so it is nonplanar. Now we con-
sider the graph C_ [P,] such that m=4. Contract the edges {(;, 1) (i + 1,1)]
2=<i=<m— 2} to a new vertex v. Also, contract the edges {(;,0) (i + 1,0)|
2=<i<m— 2} to a new vertex w. Then the resulting graph contains K, as a
subgraph, That is C, [P,] is contractible to a nonplanar graph, so that it is
nonplanar. Since C,, [ ] is a subgraph of C, [c o] then C, [C.] is nonplanar.

Theorem 32. For every integer m =3, we have b(C,, [P,)=0b(C,[C,])=3.

Proof. Since the graphs C, [P,] and C,[C,] are nonplanar for m=3, it
follows, by the Theorem of Maclane mentioned in the introduction, that
b(C, IR = 3 and b(C,[C)) = 3 for all m = 3. Consider C,[P,). To
prove that b(C,[P)) = 3, we exhibit a 3-fold basis for {(C,[P,)). Let
2=0,0(01,0 2,00...m—1,0 0,00; A ={(7,0) ( + 1,0) (1) (0,
GHDEHLDE+HLOEDGOGEHLOGEDGE+1LD G0 ieZ, ). Let
B(C,,[P)= AU {Q}. Since the graph G=C,,[P,]—{G 0) (i-+1, 1) | ic Z,} is a

planar graph and the 3-cycles of A4 represent the boundaries of the interior

faces, so that 4 is a basis for C(G). Since each 4-cycle in 4 contains an
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edge, namely, of the form (j, 0) (i+1, 1) that does not.occur in any other cycle
of 4, A is an independent set of cycles in  (C, [P,]). Bat it is clear that Q
cannot be generated from 4. Thus B(C, [P,]) is an independent set of cycles
in £(C_,[P,]). Since | B(C,[P,])|=3m+1=dim {(C, [P,]), it follows that
B(C [P,]) is a basis of L(C,[F,]). It is easy to see that B(C,[P,]) is a
3-fold bae;ls for (C, [P,]). Hence, b(C,,[P,]) =3 for all m = 3. Next, we
consider C,[C,]. The graph €, [C,] can be obtained from the graph C, [P,]
by joining any two vertices (f, 0), (f, 1) by another-edge, for all ieZ,. Let
B(C, [C)) = B(C, [P,DU{(i,0), (;, 1) (;,0) | i€Z,}.. Then B(C,[C,]) is an
independent set of cycles in (C, [C,]) since each of the new cycles has an
edge not occuring in any other cycle of B(C, [C ]) Since | B(C,, [C)]) | =
=dim ¢ (C,, [C,]), then B(C, [C]]) is a basis for {(C,,[C,]). It is easy to verify
that B(C,, [Cy]) is a 3-fold basis for §(C,, [C,]). Hence 5(C,[C,])=3. This

completes the proof of Theorem 3.2,
Theorem 3.3. For each m=2, we have b (P, [C,])=b(C,, [P,])==3.

Proof. Tt is easy to see that P, [C,] contains m—1 copies of the complete
bipartite graph K, ,, cach of which is denoted by Ky, (41,3 § € Zim—y . In addi-
tion to that it contains the set of edges S = {(7, ) (i, 1), (i, 1) (7, 2), (;, 2) (i, 0 |
icZ,}. Since K,, is a nonplanar subgraph of P, [C]] then P, [C)] is a
nonplanar graph, so that, by Maclane Theorem, b(P,, [C,])=3. To prove that
b(P, [C])=3, it is enough to exhibit a 3-fold basis for (P, [C,]). For each
ieZ let '

4 = {(5L,0) G+1,0 G 1D G+, 1) ¢ 0), (0 G+1, 1) G 1) (41, 2) G, 0),
GO GE+HLO G2 G, D G0, GG+, DE2) (41, 2) G DY,
A = {G+1,0) (G, 1) (5,2) (i+1,0), (+1,2) (0 (7)) (+1, 2),
(,2) G+1, 1) (+1,2) (4, 2), (4, 2) G+1,00GE+1, 1) (i+1,2) (;, 2)},
B=4;04/
Let F={fi=(G00(— 1,02, 0)[1<1<m—1}U{(0 0) (0, D (0, 2)(0 0)}
m—2

and B(P, [C])=FU (U B,-). It is already proved in Theorem 2.3 of Schemeic-
A .

m

hel [7] that each A4, is a basis for the subspace § (Ky3, g41.9) for all ieZ .
Then each 4; is an independent set of cycles in ¢ (P, [C,]). Also for each
ieZ,_,, every cycle in A4 contains an edge from the set H = {(;,0) (i, 1),
G D, 2), (i+1,0) ((+1, 1), (i-+1,1) (741, 2)} that does not appear in any other
cycle of 4;U4,. Thus each B is an independent set of cycles in (P, [C,]).

Moreover, since the edge-sets of K3, g+1.3  are pairwise-disjoint sets where

ieZ, ., then the cycles of B; are independent from the cycles of B, for all
m—1
Js keZm_l, f = k. Thus U B is an independent set of cycles in ¢ (P, [C,]).
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Since each f;e F contains the edge (1,2) (7,0); i eZ,, , that does not occur in any
other cycle of B(Pm[Ca-]), therefore, B(Pm [C3]) 'is-a_r‘l independent set of cycles
in ¢ (P, [C). But | B(P,[C,])| = 9m — 8 = dim (P, [G,]), hence B (P,, [C,])
is a basis for §(P,[C)]). It is a simple matter to verify that B(P,[C)]) is a
3-fold basis for L (P, [C)]). Hence b(P, [C)]) = 3. Next, we consider C,, [P,].
It contains m copies of K3',3; denote each one by Kgi, 41,5 where, ieZ,,
noting that the last copy is K13, @y» Also C,[P] contains the set
H={G0OGD, (,1DE2] ieZ,}. Since C, [P;] contains some copies of K,
then b6(C,, [P])=3, for all m=3, To find a 3-fold basis for (C,,[P,]) let 4,
and 4, be the same sets dbove and let ¢ = (0, 0) (1, 0) (2, 0)...(m—1, 0) (0, 0).
' m—1

Let Bi=A;U 4;". Then U B; is an independent set of cycies as seen above

{=0
and it is clear that @ is independent from all the cycles of U B;. Thus the set

==
-1 '

B(C, [P = {0} U(U Bi) is an independent set of cycles in ¢ (C,, [P,]). Since
i=0D R :

| B(C, [P) | =8n + 1 =dim {(C, [P,]) then the set B(C, [P]) is a basis

for C(C, [P,]). One can easily verify that B(C, [P,]) is a 3-fold basis for

C(C, [Ps]). Hence &(C,, [P,]) = 3 for all m=3.. :

Corollary 3.4. For every m=2, we have b(P,'n: T )] — 3.

Proof. Note that P, [P;] is a no.nplanar subgraph of P, [C;] consisting of
m—1 copies of X,, and the set {(:,0)(/, 1), (i, 1) (;,2)|ieZ,}. Then the set
B(P,[P)) = B(P, [C,]) — P is a 3-fold basis for L (P, [P,]):

m

Lemma 3.5. Let G be'a graph with p vertices and ¢ edges. If | C| denotes
the length of the cycles C, and B = {C,,...,C,;:| Ci| = r} be a k-fold basis of

d
4(G), then rd=< ) | G| kg, where d — dim §(G).

i=1
d

d
Proof. Since | Ci|=r for all 1<i=<d, we haveZl C,--I‘:;;-Z r=rd. Also,

i=1 i=1
d ) .
since P is a k-fold basis, we haVeZ | Ci | =< kq. Therefore, the lemma holds.
i=l1 ' v

Temma 3.6. Let m, n be two positive integers such that
3imn + [ It m+3mn—3

] > mn*41, where [x] is the greatest integer less than

4
or equal to x. Then n=< 14,
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| 2 _ )
Proof. Since 3mn-|- [ 3n m+43mn_3] <3mn-+

32 m-3nm—3
————————— we have

3t m4-3mn—3

mnd 4 < 3mn+ . This implies that Amn? F4< 12mn+3u* m+

+3mn—3, so that mr? +7< 15mn. This implies that mn? < 15mun, so that n< 14.

Theorem 3._7.. If m=2, n=3 then 3=<5b(C, [C])=<4 Morcover,

b(C, [C1=4 for all m=2, n=15.

i

Proof. One may easily see that C, [C,] contains m copies of K;m, each of

which is of the form Ky, ., Where r€Z, . In addition, C,[C,] contains
m [Cﬂ'] iS a

the set of edges S={(+,?) (r,i+1)|reZ,, icZ,}. It is clear that.C
nonplanar graph for all mz=2, n=3. Thus b(C,[C,])=3. To prove that

2(C,IC1)<4, we have to exhibit a 4-fold basis for {(C, [C,]). For each
reZ , define the following sets: to

A, ={(n D GHL) G D) ), D) ¢, )} 0 ,J=n—2},

A ={(n0) ¢+1, D) (1,140 (¢, 0), ¢+Ln=D (D) ¢ i+D) (1, n—D |
O0<i<n—2)}, B=A,U4;,

D={d=00UNHED) ... (Lha-1)(E0)|ieZ,
O =0,0(,02,0..m—1,0/(,0).

m—l1

Let B(C,[C])= (U Br) UDU{Q}. For every relZ,, A, isa 4-fold basis of

} and

r=%0 . .
the subspace { (K,,..y, (119> s proved in Theorem 2.4 of Schemeichel [7]. Using
the same argument as of Theorem 3.3 after replacing H by H'=(r, 1) (r, i41),
' m—1

¢+ L0+ + D)) ieZ,;} we then have U B, is an independent set

r=0
ni—1
of cycles in L (C,,[C]). Clearly @ cannot be generated from U B, so'it
r=0
m—1
is independent from the cycles of U B, .- Moreover, each cycle d;e D contains
r=g

the edge (f, n—1) (4, 0) which does not occur in any other cycle of B(C, [C]).
Thus B(C,, [C,]) is an independent set-of cycles in £ (C,, [C,]). Since | B(C,, [C])|=
=it m+1=dim g {C, [C,]), it follows that B(C,,[C)]) is a basis for {(C, [C,]).
It is easy to verify that B(C, [C,]) is a 4-fold basis. Hence &(C,, [C, )< 4 for
all m=2, n=3, so that 3<b(C,,[C])=4 for all m=2, n=3.

On the other hand, suppose that £ (C,, [C]) has a 3-fold basis B. Then we
have three cases: -
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Case 1. Suppose that B consists only of 3-cycles. Then | B |< 3mn, since
every 3-cycle in B must contain an edge from the set S={(r, ) (r,i4-1)| reZ,
and ieZ,}, | §|{=mn and the fold of every edge of § is at most 3. But
|B |<3mn<mn + 1 =dim §(C,[C,]) for in = 2 and n = 3. Hence B is not a

basis for {(C,, [C,]), a contradiction.

Case 2. Suppose that B consists only of cycles of length greater than or
equal to 4. . Then Lemma 3.5 irnph'es that 4 (mn® + 1)< 3 (mn® 4 mn), since
dim §(C, [CD=mn*+1, | E(C, [C,]) |[=mn*+mn and | C;| =4 for every C;ef.
But this inequality cannot hold for any positive integers m and #. Hence this
case cannot. happen.

Case 3. Suppose that B consists of s 3-cycles, and ¢ cycles of iength greater
than or equal to 4. Then 5= 3mn since we have at most 3mn 3-cycles in B as we
explained in Case 1. Since | E(C,, [C,]) j=mn*4-mn, the fold of every edge of
C,[C] is at most 3 in B and 3s edges are joined to make the s 3-cvcles, we

m

2 - e
have 7 < [M%MJ Then mn? - 1=dim ¢ (C,, [C,])==| B |=s1 < 3mn+
2 211 1. — 2 — .
[311 m %jmn 33] " so that m--1 < 3mn-L [h_iﬂ—i—jmn 3 ] since s= 1.

This implies that »= 14, by Lemma 3.6, a contradiction to the assumption that
nz15. From the above 3 cases we deduce that ¢ (C, [C,]) has no 3-fold basis

for all m>2 and rz=15. Hence b( [C. D=4 for all m=2 and n= 15.

n

Lemma 3.8. Let m, n be two positive integers (m = 2) such that

dm— D@ —D=<3@mEr—1 JF”_z (m — 1)). Then n'< 5.

Proof. Since 4(m—1)(m2—1)<3 (n(n—1)4-n2(m—1) then 4n®(m—1) —
—4m+4=<3mn—3m+3n* (n—1), so that n?>(m—1)+4 < 3mnt+m=m(3n+1).

2 2

That is ik | 4 = " =<2, so that n
n+1 @rtl)y (n—-1) m—1 3n41

that n= 6. But of n=>56 the mequal[ty in the statement of the Lemma does not

hoid, therefore ‘n<S5.

<2 2. This implies

Lemma 39. Let m,n be two positive integers (m = 2) such that

(m—D (R2—1)=<3m (n— l)Jr [3112 Gn—1)+3m (n—-l)——B] . Then n=29.

4

. i . 2 —_ — 1y
I‘raai‘. Suppose that (m—l) (112——1)53m(n—1)+[3n (1) +3m(n—1) 3J.

4
Since [an(m'w D43m@p—1)—3 J < B —1D+3mEm—1—3

then

4

4
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4 (m—1) (*—1) < 12Zmn—12m+-30*(m—1)+-3mn—3m—3, so that 4n*(m—1)—
—Adm4-4< |5mn—15m-+-3n2(m—1)—3. This implies that #? (m—1)+7 < 15mn—
2 nt

—11m;, so that_ =2. That is #24-22< 30n, so that 11529..

Sn—11 m—I1
Following the same idea as in the previous two lemmas we have the following
two lemmas without proof :

Lemma 3.18. lLet m, n be two positive integers (m = 2) such that

3mn? + 3m(n — 1) — 3]
" .

m(nz—‘l)rJrl < 3m(n—1) +[
Then 1 < 14.

Lemma 3.11. Let m, n be two positive integers (m = 2) such that
3mn 4+ 32 (m— 1) ﬂ]
4 .

wm—N+1=< 3mn+[
Then n =29.

Theorem 3.12. For every m=2, n>4, we have 3<b(P, [P]), b( LG,
b(C, [P )=<4 Moreover, b(Pm [PDH= 4 for m=2, n = 30; b( )= 4 for
m=2, n=15 and b(P, [C])=4 for m=2, n=30.

mt

m

Proof. It is easy to see that P [P], C,,[P], and P, P, 1C,] are ndnpla'nai‘
subglaphs of C, [C]. And B(C,, [P,D=B(C,IC])—D, B(P, [C1)=B(C,I[C])
B, U{Q}) and B(P, [PH=B(P,[C]NB(C,[P,]) are 4fold subbasis of

B( w LGl for the . subspaces ¢ (C,, [P}, C (P, [C.)and (P [P, 1espect1vely,
where B(C, [C,]) is the basis of {(C,

[C,]) which is obtained in Theorem 3.7.
On the other hand, suppose that § (P,
have three cases:

[P 1) has a 3- fold basis B. Then we

m

Case 1. Suppose that b consists only of 3-cycles. Then |B| < 3m n—1
since every 3-cycle in p must contain an edge from the set H={(r, {) (r, i+1)|
reZ, and ieZ, _}, | Hi=m(n—1) and the fold of every edge of § is at most
3. But |B|<3m(r—D<(m—1) (*—D=dim § (P, [P,]) for m=2, n=30. Hence

m

B cannot be a basis of (P, [P,]), a contradiction.:

Case 2. - Suppose that B consists only of éycles of length greater than or
equal to 4. Then Lemma 3.5 implies that 4 (m—1) (#*—1) < 3 (m (n— 1) -+r2(m—1))
since P, [P,] has m (n—1)+#®(m—1) edges, and { C{=4 for every Cef. It

follows that n>35 by Lemma 3.8, a contradiction to the assumption

Case 3. Suppose that B consists of 5 3-cycles and 7 cycles of length greater
than or equal to 4. Then s<3m(n—1) since we have at most 3m (n—1) 3-cycles
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in: P as we explained in Case 1. Since the fold of every edge of E(P, [P,])-is
at most 3, and 3s edges are joined to make the s 3-cycles, then

t<[3((m“1)”2+4m(” )= 3"‘] Thus we have (n—1) (#—1)=dim 4(P,, [F,])=

3(n—De* Lm(n—1)—3s
4

:[B|'=s+t53m(n—1)+[

n 3@ (m—1)+m(n—1)H—3
[
tradiction to the assumption, It follows that ¢ (P, [P,]) has no 3-fold basis for
mz=2, n=30. Therefore, b(P, [P])= =4 for m>2, n>30. For ¢(C,[P,)) and
C(P,[C,]) we can assume that each of them has a 3-fold basis. Then we can
argue following the same line as in the case of L (P, [F,]), and using Lemmas
3.5, 3.10 and 3.11 to get a contradiction. Then the proof of Theorem 3.12 is
complete.

] <3mmn—11+

. This implies that »<29 by Lemma 3.9, a con-

Theorem 3.13. For every mz=2, n=4, wehave 3=5 (P,_[S,]) =<4 Moreover,
b(P,IS,])=4 for m=2, n=30. ‘

Proof. For each m=2, n=4, P, [S,] contains m—1 copies of the nonplanar
graph K, ,, each onc is denoted by K., 113 F€Z,_,. Also P,[S,] con-
tains the set of edges H={(r,0)(r,)): 1< j=<n—1, reZ,}. Tt is clear that
b(P,[S])=3 by Maclane Theorem. To prove that (P, [S,])=<4, it is enough
to find a 4-fold basis for £ (P, [S,]). For each reZ__,, define the following sets:

A, ={n) LD D LD @D fe Z, ),

D, ={(r+1,0)(r, D) (r, 0) (r, i+ 1) (r+1, 0} [ 1 <i=n—2} U
{(r+1,0) (r, 1) (r, 0) (r+1, 0)},

Dr={(r,n—0) (+1, ) ¢+L0 ¢+ i+tD)(rn-D{l<isn—2}U
{(r,n—1) (r+1, 0) (r+1, 1) (r, n—1)}, : '
A,=D,UD] and B,—A, UA,.
=2
We claim that U B, is a basis for £ (P, [S,]). To show that, note that for every
r=0 .
reZ, ;, A, is a basis for K, . ¢11.» a8 proved in Theorem 2.4 of Schemeichel
[7]. Thus A, is an independent set of cycles in (P, [S,]). Also A, is an inde-
pendent set of cycles because any linear combination of cycles from 4, modulo
2 is either a cycle or an edge-disjoint union of c¢ycles, moreover, cach cycle in
A, contains one or two edges from the set H and these edges occur in no cycle
of A,. Then the cycles of A, are independent with the cycles of 4,. Thus
B= A U A, is an independent set of cycles in { (P, [S,]). Since the edge-sets
of K(m) (r+1. are pairwise disjoint and any cycle that can be generated from
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B, cannot be generated from B, for all k,reZ k#r, thus B{P, [S])—=

m—1 >
m—2

:U B, is an independent set of cycles in T(P,[S,]). But |B(P, [Sn])_[:
r=4 . ;

(m—1) (n*—1)=dim { (P, [S,]). Hence B(P,[S,]) is a basis for { (P, [S,]). One

may easily see that B(P, [S,])} is a 4-fold basis, Hence 3<bh (P, [S,])<4 for

all m=>2, n=4.

On the other hand, using the same arguments as of Theorem 3.12, consid-
ering the set I as it is defined in this theorem, we can prove that £ (P, [S,])

cannot have any 3-fold basis for all m=>2, nz>30. Hence b (P, [S,]})=4 for all

m=2, n=30.

Theorem 3.14. For every mx=3, n=4, we have 3<b(C,, [S,])<4. Moreo-
ver, b{C, [S,Hh=4 for all n=3, nx=15.

Proof. The graph C,, [S,] contains P, [5,] with a new copy of K _ which

nn N
18 Kpi . oy FOT every reZ, . let B, be as in the proof of Theorem 3.7.

m—1
Using the same arguments of Theorem 3.13, we can show that U B is an
r=0
imdependent set of cycles in Z(C, [5,]). Note that the cycle
0=(0,0) (1, 0)(2, 0)...(m—1, 0) (0, 0)
m—I1 m—1
is independent from the cycles of U B, . Thus B(C, IS D= ( U B,,) U{Q} is an
r==0 r=0

independent set of cycles in (C, [S]). But [B(C, [S]D|=@ —~Dm+1=

=dim £(C,, [S,]). Hence, B(C,,[S,]) is a basis for {(C, [S,]). It is easy to verify

that B(C,, [S,]) is a 4-fold basis. Hence 3<b6(C,[S,])<4 for all m=3, n=4.

On the other hand, using the same arguments as of Theorem 3.12, replacing:

the set § of Theorem 3.7 by the set I of Theorem 3.13, we deduce that £(C,[S,]}

cannot have any 3-fold basis for all m>2, n=15. Hence b{C,, [S])=4 for all

m>2 and n>=15.

The following two Lemmas are needed in the proof of Theorem 3.17. We

mention them without proof since their proof is on the same line as of the:

previons Lemmas.

Lemma 3.15. Let m, n be two positive integers such that n—1) (2—1) =<
=<5m{n—1). Then n=<11.
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Lemma 3.16. Let m,n be two positive integers (m = 2), such that

(m—1) (2 —1)+m (1—1)< 6m(n—1)+[6m (”_l)+3”2'(mwl)*3]. Then n<51.

4

Theorem 3.17. For every m=2, nz=4, we have 3<b (P, [W,])=<4. More-
over, b(P,, [W,])=4 for all m=>2 and n>52.

Proof. The graph P, [W,] consists of the nonplanar graph 2, [P] with
m-—1

the set S:U S,: 8, ={0 ¢ N|2=i<n—1}U{(r 1) (nn—1)}. Thus
r=0

b(P,[W,]) = 3. To show that b(P,[W,]) < 4, we exhibit a 4-fold basis for

L(P,[W,)). For each reZ define the following sets of cycles in { (P, [W,]):

m—12

A={(r, n—1 -+, D {r+1, 0 (r+1, i+ (r,n—1) | 1<i<n—2} U
{t, D 2) ... (1, n—1) (r, 1)} and

Ay ={(1,00©0,) 0,000, i+1}(1,0) | 1gi=n—2}U
{0, (0,2} ... (0, n—1) (0, 1}}.

m—1
Let A:U A, and B(P, [W ]}=B(P, [P])U A, where B(P, [P,]) is the 4-fold

P
basis ‘of § (P, [P,]) that was obtained in Theorem 3.12. Then B(P_ [P ]) is an
independent set of cycles in L (P, [W,]). For each reZ,,, A, is an independent
set of cycles in (P, [W,]) since any linecar combination of cycles from A4,
modulo 2 is either a cycle or an edge-disjoint union of cycles, Moreover, each
cycle from A4, contains one or two edges from the set 5. and these edges do
not occur in any other cycle of the set B(P, [W,]) —A,. Thus B(P, [W,]) is
an independent set of cycles in (P [W]). But | B(P,, [W. ]} | =(n—1} (@ —1}+
+m{n—1)=dim (P, [W,]), therefore, B(P,[W,]) is a basis for {(P, [W,]).
It is easy to verify that B(P,[W,]} is a 4-fold basis for { (P, [W,]). Hence
3<h(P,[WD=4 for all m=2, n=4. '

On the other hand, suppose that ¢ (P, [W,]) has a 3-fold basis B. Then we
have three cases:

Case 1. Suppose that } consists only of 3-cycles. Then | B | < 6m(n—1), since
every 3-cycle in B must contain at least one edge from the set S={{% 7} {7, j+1)|
ieZ,,jeZ, YU{(GLOYG@N|ieZ, , 2<j=n—1}U{(L1D)Ern—1)icZ,},
| S|==2m(n—1) and the fold of every edge of S is at most 3. But |B|=<
=bm@m—1)<<(n—1} @ —1)+m@Ep-—1)=dim L{P, [W]) for all m=2, n=52 by
Lemma 3.15. Hence (§ cannot be a basis of (P, [W ]), a contradiction.
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Case 2. Suppose that B consists only of cycles of length greater than or
equal to 4. Then Lemma 3.5 implies that 4((m — 1@~ D+ mpr—1) <
< 3@2m@Ep—1)+n*(m—1)). That is r*(m—1) < 4(m—1)|2m@n—1), so that
nt(m—1)-}4=<2mn. But this inequality cannot hold for all m>2 and n>52,
a contradiction. ,

Case 3. Suppose that B consists of s 3-cycles and ¢ cycles of length greater
than or equal to 4. Then s=<6m(n—1) since we have at most 6m(n—1) 3-cycles
in f} as we explained in Case 1. Since the fold of every edge of P, [W,] is at most
3 and 3s edges are joined to make the s 3-cycles, then

‘< [ 3@mn—D+n (m—1))—3s } - [Gm n—D4+3 (m—1)—3
- 4 o 4
Then we have (m — 1) (* — D)+ m(n — ) =dim (P, [W ] =|B|=s+1t=
6m(n—1)4+3m (m—1)—3
—
This finishes the proof of Theorem 3.17.
We need the following Lemma without proof:

"

]being s=1.

<6m(n—1)+

], which contradicts Lemma 3.16.

Lemma 3.18. Let m,n be two positive mtegers (m > 3), such that

2 _ —
m( 1) tm(n—1)+1<6m(n— 1)+[3mn +3”;(’? 1)—3

Theorem 3.19. For every m=3, nx=4, we have 3=5(C
over, #(C, [W]) 4 for all m=3 and n=23.
Proof. [t is clear that E(C,, [W,]D=E(C, [P,])U S, where
S={(r0 DD (r,n +D)|reZ,,2<i<n—1}
Let 4, ={(,n—D0C+LHC+LOC+Li+D)(,n—)1<i=<n-—2}U

]. Then n<22.

[W,]) <4. More-

m

. . m—I1
U{t,)@2)...(r,n— 1) (r, D}, for reZ , 4= U A4, and B (C, [W)]) =
r=0
=B(C_[P])U A where B(C, [P]) is the basis of L(C, [P,]), which is obtained

in Thc;:)rem 3.12. Using the same arguments as in Theorem 3.17 we can show
that B( P DUA is an independent set of cycles in L(C, [W,]). Thus

B(C, ]) is an independent set of cycles in T(C,, [W)]). But IB( ,,,[W])z =
—m(n +n—2)+1=dim £ (C,, [# ]) then B(C, {W,}) is a basis for {(C,, [W,]).
It is easy to see that B(C,[W,]) is a 4fold basis for ¢ (C,[W,]). Hence

"l

3<b(C [W])<4 for all m=3, n=4.

On the other hand, suppose £ (C,, [W,]) has a 3-fold basis . Then we have
three cases: '

"

Case 1. Suppose that B consists only of 3-cycles, Then | B | < 6m(n—1) since
every 3-cycle in B must contain an edge from the set .S and the fold of every

il
[
i
s
1=
I
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edge of S is at most 3. But |B|<6m{n — D<m(@® — )4+m@h —1)+1 =
=dim £(C, [W,]} for all m = 3 and »n = 23. Hence f cannot be a basis of
L (C, [W,]), a contradiction.

Case 2, Suppose that B consists only of cycles of length greater than or
equal to 4. Then Lemma 3.5 implies that 4(m@? — 1) +m@m —1) + 1) <
< 3(niPm+2m(n—1)). That is n*m +4 < 4m + 2mn — 2m, so that i*m +4<
=2m(n—1). But this inequality cannot hold for all m=3 and r=23.

Case 3. Suppose that B consists of s 3-cycles, and 7 cycles of length greater
than or equal to 4. Then s =< 6m(n—1) since we have at most 6m(rn—1) 3-cycles
in B as we explained in Case 1. Since the fold of every edge of C, [W,] is at
most 3 and 35 edges are joined to make the s 3-cycles, we have

s[31:21*11—1—31*11 (n—l)—3s} < { It m+3mn—1)—3 ]
4 4
being sz 1. Therefore, m(n*—1)+m(n—1)+1=dim {(C, [W ={B|=s+f=<
2 —
56m(n~1)+[ 3n m+3n;(n

mz3 and nx=23. Therefore, {(C, [W,]} cannot have any 3-fold basis for all
m=3 and n=>23. Hence b (C,, [W, ])=4 for all m=3 and n>23.

D—3 ] . This contradicts Lemma 3.18 for all

Theoremn 3.20. For every m=4, n>3, we have 3<b(S,, [P,])<4 More-
over, (S, [P,])=4 for all m=4 and n>20,

Proof. The graph S,,[P,] contains m~—1 copies of K ,. We denote these
copies by Ky ), o3 1 <r=sm—1. Note that each of these copies are joined
to the vertices (0,7) where jeZ,. Also §,[P] contains the set of edges
S={GHEj+1)]|ieZ,, jeZ,}. It is clear that b(S, [P,])} = 3. We now
exhibit a 4-fold basis for L (S, [P,]). For each 1 < r=<m —1, let

A, ={©0,1) () QO /4D (j+D O, D) | je Z,},

Ay ={a; =(0,0) (r, i) (r, i+1) (0, )] ie Z, ).

Also define the following sets:

A7 ={(,0) 0,)) (¢ —1,0) (0,i+1) (,0)|icZ,_,} if r is even and
2=r=m—1,
and

Ay {(r,n—1) (0, n—i—1) (r—1,n—1) (0, n—i—=2) (r,n—1) | ie Z,_,} il r is
odd and 3=r=<m—1.

m—1 m—I1

Let 4= ] 4., 4 =({] 4)u i, n—D QDO+, n—DicZ,},

=0 r=1
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A" U{Ay|ris even and 2<r<m—1},
U{d4y|ris odd and 3=r=m—1}.
Define the set B(S, [P,)=4AUA"UA"UA". For each l<r=m—1, 4, is the

™
4-fold basis constructed in Theorem 2.4 of Schemeichel [7] for the subspace
§(Ko.my . ) Since the edge-sets of the graphs K, () are pairwise-disjoint
then A is an independent set of cycles in L (S, [P,]). From the definition of
A" U A", any lnear combination of cycles in A*U A" (mod 2) is either a cycle
or an edge- disjoint union of cycles, Thus AU 4" is an independent set of
cycles in £ (S, [P,]). Moreover, every 4-cycle C,e 4" U A" cannot be generated
from the cycles of A because it consists of two edges from K, ¢, and the
others from K .y, (o1, where 1 = r=m—2 Therefore AUA"UA" is an
independent set of cycles in §( ' LP,]). It follows that B(S, [P,]) is an inde-
pendent set of cycles in £ (S, [P,]) since every cycle a; € A" contains the edge
(r, ) (r, i4+1) which does not occur in any other cycle of B(S,,[P,]). Therefore
B(S,[P)]) is a basis for {(S,[P,]). One may easily see that B(S, [P,]) is a

4-fold ba51S of £(S,,[P,]). Hence 3<b(

n

n

[P D=4 for all m=4, n23

On the other hand, using the same arguments as of Theorem 3.12, we can
prove that § (S, [P,]) cannot have a 3-fold basis for all m=4 and n=20.

"

n

Theorem 3.21. For every m>4, n=3, we have 3<b(S,[
over, b(S [C,])=4 for all m=4 and n=20.

n

C=4. More-

‘Proofl. Tt is clear that E(S,_ [

H={(G,n—1)(0,n—1)|icZ,}. Let

D={d=G0OGHDE2) . Gn—1)G0)ieZ,}

and B(S,[C]) = B(S,,[P,))UD where B(S,[P,]) is the basis of (S, [P,])
exhibited in Theorem 3.20. Since B (S, [P,]) is an independent set of cycles in
£(S,[C,) and each die D contains the edge (i, ﬁl) (i,0) which does not
occur in any other cycle of B(S,,[C.]), then B(S,[C]) is an independent set
of cycles in (S, [C,]). But IB(Sm[C | =n? (m’l)+!* dim £ (S, [C, ]), hence
B(Sm [C,]) is a basis for C( C,]). One may easily verify that B(S, [C.]) is
a 4-fold basis for ¢ (S [C D=4 for all m=4, n23.

)*E(,,, [P.) U H where

m

C,)). Therefore 3=<b(S

H?

H? n

On the other hand, using the same arguments as of Theorem 3.12 in the
case P, [C,], we can prove that {(S,[C,]) has no 3-fold basis for all m=>4
and »n=20.

Lemma 322, Let m,n be two positive integers (m > 4) such that

e N
(ml)(2n21)56mnﬁ3m+[6n G l)+43m(n D 3].Then n=117.
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Proof. . Using the same idea as in the proofs of the previous Lemmas we

2
have-—zf—(ﬂ—-l—)- < n. Therefore, n< Hﬂfi—, so that 'n<£ i =18. That
27m 2 (m—I1) 2 \3

is n<17.

Theorem 3.23. For every m=4, n=3, we have 3<b(W [P ])< 4 More-
over, b(W,,[P])=4 for all m=4 and n=18.

Proof, We consider W, [P,] as the graph constructed from joining the
nonplanar graphs S, [P,] and Cj_[P,] at the set of edges H={(} /) j+1)|
l<igm—l1, jeZ,,}, where C}_; denotes the cycle 123...0n—1)1. It is clear
that W, [P,] is a nonplanar graph and by Maclane Theorem, &(W, [P,])=3.

To prove that & (W, [P,]) =4, we exhibit a 4-fold basis for £ (W, [P,]) as follows:

Let D={di=0,n—DEa—1)GE+1L,n—1)O0n—1):1<i<m—2},

B(W,, [P))=B(S,[P,) UB(CE 1[P,) U D, where B(S,,[7,]) and B(Ci [P,])
are the bases of the subspaces £ (S, [P,]) and §(C¥ ;[P,]) that are obtained
in Theorem 220 and Theorem 3.12 respectively. Clearly B(S,,[P]) and
B(C} 4[P]) are two independent sets of cycles in & (W, [P,]). Since
E(S,[P)NE(C%_([P,])=H, then it is clear that non of the cycles of B(S_[P,])
can be generated from B(CJ,_[P,]) and vice-versa. Thatis B(S,,[P.]) U B(Cik_([P.])
is an independent set of cycles in L (W, [P,]). But die D contains the edge
(i, n—1) (i4-1,n—1) that does not occur in any other cycle of DU B(S,, [P,]).
Thus DU B(S,,[P,]) is an independent set of cycles in L (W, [P,]). Also every
d; contains .an edge of the form (0, n—1) (7, n—1) that does not appear in any
other cycle of B(CjH_([P,]). Thus DUB(C%_;[P,]) is an independent set of
cycles in § (W, [P]). Therefore, B(W,[P,]) is an independent set of cycles in
W, 1Py and |B(W,[P])|=@m—1) @n*—1)=dim {(W,[P,]). It follows
that B(W, [P,)]) is a basis for L (W, [P.]). It is easy to show that B(W,[P,])
is a 4-fold basis for { (W, [P,]). Hence 3<b (W _[P)<4 for all m=4, n=3.

. On the other hand, suppose {(W,,[P,]) has a 3-fold basis B. Then we have
three cases:

Case 1. Suppose that B consists' only of 3-cycles, Then |B| < 6mn — 3m,
since every 3-cycle in B must contain an edge from the set M={(, ) (i, j-+1)|
ieZ,, jeZ, JU{0,) (. )|ieZ,, I<j<m— UL D) (m—11)|ieL,},
| M |=2mn—m and the fold of every edge of § is at most 3. But |B|< 6mn—
—3m<(m—1) @n*—~1)=dim L(W [P, for all m, n=4, a contradiction to the
fact that B is a basis for L (W, [P,]).

Case 2. Suppose that P consists only of cycles of length greater than or
equal to 4. Then Lemma 3.5 implies that 4(m — 1) 2r® — 1)=<3 6% (m — 1)+
4 m(n—1)), so that 3w*Gn —1) —4m +4 < 682 (m — 1) +3m(n —1). That is
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2n%(m — 1) + 4 < 3mn +m. But this inequality cannot hold for all m,n = 4.
Therefore, this case cannot happen.

Case 3. Suppose that B consists of s 3-cycles, and # cycles of length greater

than or equal to 4. Then s< 6mn—3m since we have at most 6mn—3m 3-cycles

in B as explained in Case 1. Since the fold of every edge of W, [P,] is at most
3 and 3s edges are joined to make the s 3-cycles then

‘< [6n2 (m—l)—|—3m(n—l)—3s] - [ 6n* (m— 1) ~+3m(n—1)—3 :| ,

4 4
where s= |. Therefore, (m—1) (2n?—1)=dim (W, [PD=|Pi=stt<6mn--
3my [ 6n (m—1D+3mp—1)—3
4

diction to the fact that n=18§.

1t follows that L (W,[P,]) has no 3-fold basis for all m = 4 and n = 18
That is b(W,,[P,])=4 for m=4 and n=18.

Finaly, we study the basis number of the composition of a wheel and a cycle,

and a star and a wheel in the following two theorems, But first we need the
following Lemma: '

] , 50 that n< 17 by Lemma 3.22, a contra-

Lemma 324, Let m,n be two positive integers (m = 4), such that
6nt (m— 1) +3mn—3
4

(m—1) 2n?—1)+-m = Gmn+ . Then n<1T7.
Theorem 3.25. For every m=4, n=3, we have 3<bh (W, [C,])<4. More-
over, B(W,,[C =4 for all m=4 and n=18,

Proof. It is easy to see that E(W,[CD= E(W,[P,DUS where
S={G,n—1) G,0)|icZ,}. Let F={fi=(,0)( (G 2)...G,n—1) G 0)|ic Z,},
B(W, [CHh=B(W_,[P,] )UF where B(W, [P,]) is the basis of the subspace
L(W,IP.D. Then B(W, [P, is an independent set of cycles in T (W, [C,D.
Since f;e F contains the edge (i, n — 1) (% 0) which does not occur in any
other cycle of B(W,[C,]) then B(W,[C,]) is an independent set of cycles in
LW, [C. But |B(W,[CD|=(m—1)2rt—1)+m=dim {(W, [C,]. Then
B(W,IC ) is a basis for {(W,[C,]D. 1t is easy to see that B(W,[C,]D is a
4-fold basis of £ (W, [C1. Hence 3<b(W, [C D=4 for all m=4, nz3.

On the other hand, suppose that ¢ ( Wm ') has a 3-fold basis §. Then we
have three cases:

Case 1. Suppose that B consists only of 3-cycles. Then |B| < 6mn since
every 3-cycle in [} must contain at least one edge from the set

N=Mu{@Er—1DGE0|icZ,},
| N| =2mn and the fold of every edge of § is at most 3, where M
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15 the set of edges which is defined in Case 1 of Theorem 3,23, But
IB] < 6mn < (m—1) (262 — 1) +m = dim ¢ (W,,[C,]) for all m, n=4. Hence B
cannot be a basis of (W, [C,]), a contradiction. -

Case 2. Suppose that B consists only of cycles of length greater than or equal
to 4. Then Lemma 3.5 implies that 4((m—1) 2r2—1}+m)< 3 2n? (m—1)+mn),
so that 8n*(m—1)—3m—+4<6n*(m—1) +3mn. That is 2n*(m--1)-+4<3m(n11).
But this inequality cannot hold for all m, n=4. Hence this case cannot happen.

Case 3. Suppose that B consists of s 3-cycles and 7 cycles of length greater
than or equal to 4. Then s<6mn since we have at most émn 3-cycles in B as
explained in Case 1. Since the fold of every edge of W, [C,] is at most 3 and
6n2(m—l)+3mn—3s] <

35 edges are joined to make the s 3-cycles, then 7< [ 7

, Where s > 1, Therefore,

2 — —
P [6n2(m—1)4—|—3mn—3:| < 612 (m l)4—|— 3mn—3

2 (p— —
(1) 22— 1)+ m=dim { (W, [C,))—|B} =5+ 6mnt " ‘21*3’”" >
so that n< 17 by Lemma 3.24, a contradiction to the fact that n> 18, Therefore,
Y(w,[C,]) has no 3-fold basis for all m=4 and n=18. It follows that b(W, [P, )=

—4 for m=4 and n=18.

Theorem 3.26. For every m, n=4, we have 3<b(S, [W 1)<4. Moreover,
b(S, [W,)=4 for all m=4 and n=52.

Proof. The graph S,,[W,] consists of m — 1 copies of K, in the form
Ky, i, Where 1<r<m-—1, with the sets of edges H= {(r, 0) (r,z)]re >
lgi<n—I1} and K={(r, ) (i 1 D)|re Z,,, 1<i<n—=2} U {(r, 1) (,n—1|re Z,}.
It is clear that &(S,, [W,])=3. To prove that b (S, [W,])<4, we exhibit a 4-fold
basis for L (S, W,]). For each r=1,2,..., m—1, we define the following sets:

Ar={0,n—D(r, ) ", 0 (r, i+ 1) 0, n—1) | I<i<n—2)} U

{(0, n—1} (r, 0} (r, 1) (0, n— 1)},
Ao={(1, n—1} (0,10, 0 (0, i+ 1) (1, n—1)| 1 <i<n—2}; U
{1, 2—1) (0,0) (0, 1 (1, n—1)}
m—1
and A- |} A4,
U

Let D=1{d, = (r,0)(r,D)(r, i+ (r,0)|reZ,, | <i<n—2}U
{deg=(r, 0 (r, ) (r,n=1}(r, 0} | reZ,}, and B(S,[W,)=4dUd"U4d"U4"UD,
where A°, A° and A" are the same sets that are defined in Theorem 3.20. It is
clear that AU 4" U A" is an independent set of cycles in £ (S, [W,]). Since any
linear combination of cycles from A’ is either a cycle or an edge-disjoint union
of cycles then A" is an independent set of cyeles in § (S, [#,]). Moreover, each
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cycle of A" contains one of two edges from the set H and these edges occur
in no cycle of AU A"UJ A”. Thus non of the cycles of 4" can be generated
from AU A"UA", so that AU A"UA"UA" is an independent set of cycles in
§(S, [W,]). Also, since every cycle in D contains one edge from K and this
edge does not occur in any other cycle of B(S, [W,]) then B(S, [W,]) is an
independent set of cycles in (S, [W,]). But | B(S, [W.D|=@m—1)(@#—-1)+
+m (n—1)=dim £ (S, [W,]). Hence B(S,, [W,]) is a basis for § (S, [W,]). One
may easily see that B(S, [W,]) is a 4-fold basis for C(S, [W,]). Hence
3<b(S, [W,) =<4, for all m,n=4.

On the other hand, using the same arguments of Theorem 3.17, just replace

the set S of Theorem 3.17 by the set & of this theorem, we can prove that
£(S,,[W,]) has no 3-fold basis for all m=4 and n>52.

Corollary 3.27. For every m, n=4, we have 3<b(S,[S,)<4. Moreover,
b(S,[S,D=4 for all m=4 and r=352. '

Proof. It is cnough to note that E(S,, [S,D—=E(S,, [W,D—K and S, [S,]
is a nonplanar graph where K is the sei of edges ‘defined in Theorem 3.26.
Thus B(S,[S,D=8(S, [W,)—D is a 4-fold subbasis of B(S,[W,]) for the
subspace §(S,, [, -

On the other hand, using the same argumenis of Theorem 3.12, éonsideﬂng
the set H as it is defined in Theorem 3,26, we can prove that {(S),,[S,]) has no
3-fold basis for all m=4 and n=52,
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