ON P-SASAKIAN MANIFOLD

M. TARAFDAR - A. MAYRA
Department of Pure Mathematics, University of Calcutta, 35, Ballygemge Circular Road, CaIcutta-700019, INDIA

Abstract

Summary : A type of P-Sasakian manifold in which $R(\xi, X) . \mathrm{C}=0$ has been considered, where R is the curvature transformation and C is the conformal curvature tensor of the manifold. It has been shown that such a manifold is conformally flat and hence is an SP-Sasakian manifold.

P-SASAKIAN MANIFOLD HAKKINDA

Özet : Bu çalışmada, $R(\xi, x) . C=0$ koşuluna uyan bir tür P-Sasakian manifold incelenmekte (burada R eğrilik transformasyonunu ve C, manifoldun konform eğrilik tensörünü göstermektedir) ve böyle bir manifoldun konform olarak düz ve dolayısiyla bir SP-Sasakian manifold olduğu gösterilmektedir.

1. Introduction. In a recent paper [3] U.C. De and N. Guha proved that if in a P-Sasakian manifold $\left(M^{n}, g\right)(n>3)$ the relation $R(x, y) . \mathrm{C}=0$ holds, where $R(x, y)$ is considered as a derivation of the tensor algebra at each point of the manifold for tangent vectors, X, Y and C is the conformal curvature tensor, then the manifold is conformally flat and hence is an SP-Sasakian manifold. We have generalized this result by taking the weaker hypothesis $R(\xi, x) . C=0$ instead of $R(x, y) . C=0$ in a P-Sasakian manifold.
2. Preliminaries. Let $\left(M^{n}, g\right)$ be an n-dimensional Riemannian manifold admitting a 1 -form η which satisfies the conditions

$$
\begin{gather*}
\left(\nabla_{x} \eta\right) y-\left(\nabla_{y} \eta\right) x=0 \tag{2.1}\\
\left(\nabla_{x} \nabla_{y} \eta\right) y=-g(x, z) \eta(y)-g(x, y) \eta(z)+2 \eta(x) \eta(y) \eta(z) \tag{2.2}
\end{gather*}
$$

where ∇ denotes the operator of covariant differentiation with respect to the metric tensor g. If moreover (M^{n}, g) admits a vector field ξ and a ($1-1$) tensor field ϕ such that

$$
\begin{align*}
g(x, \xi) & =\eta(x) \tag{2.3}\\
\eta(\xi) & =1 \tag{2.4}\\
\nabla_{x} \xi & =1 \tag{2.5}
\end{align*}
$$

then such a manifold is called para Sasakian manifold or briefly a P-Sasakian manifold by I. Sato and K.Matsumoto [4], [5]. This paper deals with a type of of P-Sasakian manifold in which

$$
\begin{equation*}
R(\xi, x) . C=0 \tag{2.6}
\end{equation*}
$$

where C is the conformal curvature tensor, R is the Riemannian curvature and $R(x, y)$ is considered as a derivation of the tensor algebra at each point of the manifold for tangent vectors x, y.

Let (M^{n}, g) be an n-dimensional Riemannian manifold admitting a 1 -form η which satisfies the condition

$$
\begin{equation*}
\left(\nabla_{x} \eta\right) y=-g(x, y)+\eta(x) \eta(y) . \tag{2.7}
\end{equation*}
$$

If moreover $\left(M^{n}, g\right)$ admits a vector field ξ and a $(1,1)$ tensor field ϕ such that conditions (2.3), (2.4), (2.5) are satisfied, then it can be verified that a (M^{n}, g) becomes a P-Sasakian manifold. Such a P-Sasakian manifold has been called a special P-Sasakian manifold or briefly a SP-Sasakian manifold by Sato and Matsumoto [4], [5].

It is known [4], [5] that in a P-Sasakian manifold the following relations hold:

$$
\begin{gather*}
\phi \xi=0 \tag{2.8}\\
\phi^{2} x=x-\eta(x) \xi \tag{2.9}\\
g(\phi x, \phi y)=g(x, y)-\eta(x) \eta(y) \tag{2.10}\\
S(x, \xi)=-(n-1) \eta(x) \tag{2.11}\\
\eta(R(x, y) z)=g(x, z) \eta(y)-g(y, z) \eta(x) \tag{2.12}\\
R(\xi, x) y=\eta(y) x-g(x, y) \xi \tag{2.13}\\
R(\xi, x) \xi=x-\eta(x) \xi \tag{2.14}\\
R(x, y) \xi=\eta(x) y-\eta(y) x . \tag{2.15}
\end{gather*}
$$

We shall use these formulas later on.
3. P-Sasakian manifold satisfying $R(\xi, x) \cdot C=0$. The conformal curvature tensor C is given by

$$
\begin{align*}
C(x, y) z & =R(x, y) z- \\
& -\frac{1}{n-2}[g(y, z) Q x-g(x, z) Q y+S(y, z) x-S(x, z) y]+ \tag{3.1}\\
& +\frac{r}{(n-1)(n-2)}[g(y, z) x-g(x, z) y]
\end{align*}
$$

where S is the Ricci tensor, r is the scalar curvature and Q is the symmetric endomorphism of the tangent space at each point corresponding to the Ricci tensor S [3], i.e.

$$
g(Q x, y)=S(x, y) .
$$

Therefore, $\eta(C(x, y) z)=g(C(x, y) z, \xi)$
or

$$
\begin{align*}
\eta(C(x, y) z) & =\frac{1}{n-2}\left[\left(\frac{r}{n-1}+1\right)\{g(y, z) \eta(x)-g(x, z) \eta(y)\}-\right. \tag{3.2}\\
& -\{S(y, z) \eta(x)-S(x, z) \eta(y)\}] .
\end{align*}
$$

Taking $z=\xi$ in (3.2) we get

$$
\begin{equation*}
\eta(C(x, y) \xi)=0 . \tag{3.3}
\end{equation*}
$$

Again, taking $x=\xi$ in (3.2) we find
$\eta(C(\xi, y) z)=\frac{1}{n-2}\left[\left(1+\frac{r}{n-1}\right) g(y, z)-S(y, z)-\left(\frac{r}{n-1}+n\right) \eta(y) \eta(z)\right] .($
Now

$$
\begin{aligned}
(R(\xi, x) . C)(u, v) w & =R(\xi, x) C(u, v) w-C(R(\xi, x) u, v) w- \\
& -C(U, R(\xi, x) v) v-C(u, v) R(\xi, x) w .
\end{aligned}
$$

Using (2.6) we get

$$
\begin{align*}
R(\xi, x) C(u, v) w & -C(R(\xi, x) u, v) w-C(u, R(\xi, x) v) w- \tag{3.5}\\
& -C(u, v) R(\xi, x) w=0 .
\end{align*}
$$

or

$$
\begin{align*}
& \quad g(R(\xi, x) C(u, v) w, \xi)-g(C(R(\xi, x) u, v) w, \xi)- \tag{3.6}\\
& -g(C(u, R(\xi, x) v, w), \xi)-g(C(u, v) R(\xi, x) w, \xi)=0 .
\end{align*}
$$

From this, it follows that

$$
\begin{gather*}
C(u, v, w, x)-\eta(x) \eta(C(u, v) w)+\rrbracket(u) \eta(C(x, v) w)+ \\
+\eta(v) \eta(C(u, x) w)+\eta(w) \eta(C(u, v) x)-g(x, u) \eta(C(\xi, v) w)- \tag{3.7}\\
-g(x, v) \eta(C(u, \xi) w)-g(x, w) \eta(C(u, v) \xi)=0 .
\end{gather*}
$$

where $C(u, v, w, x)=g(C(u, v) w, x)$. Taking $x=u$ in (3.7) we get

$$
\begin{gather*}
C(u, v, w, x)+\eta(v) \eta(C(u, x) w)+\eta(w) \eta(C(u, v) x- \\
-g(u, u) \eta(C(\xi, v) w)-g(u, v) \eta(C(u, \xi) w)-g(u, w) \eta(C(u, v) \xi)=0 . \tag{3.8}
\end{gather*}
$$

Let $e_{i}: i=1,2, \ldots, n$ be an orthonormal basis of the tangent space at each point of the manifold. Then the sum for $u=e_{l}, 1 \leqslant i \leqslant n$ gives

$$
\begin{equation*}
\eta(C(\xi, v) w)=0 \tag{3.9}
\end{equation*}
$$

Using (3.3) we find from (3.7)

$$
\begin{align*}
& \quad C(u, v, w, x)-\eta(x) \eta(C(u, v) w)+\eta(u) \eta(C(x, v) w)+ \\
& +\eta(v) \eta(C(u, x) w)+\eta(w) \eta(C(u, v) x)-g(x, u) \eta(C(\xi, v) w)- \tag{3.10}\\
& -g(x, v) \eta(C(u, \xi) w)=0 .
\end{align*}
$$

In virtue of (3.4) and (3.9) we find

$$
\begin{equation*}
S(y, z)=\left(\frac{r}{n-1}+1\right) g(y, z)-\left(\frac{r}{n-1}+n\right) \eta_{1}(y) \eta(z) \tag{3.11}
\end{equation*}
$$

Using (3.2), (3.9) and (3.11) the relation (3.10) reduces to

$$
\begin{equation*}
C(u, v, w, x)=0 \tag{3.12}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
C(u, v) w=0 \tag{3.13}
\end{equation*}
$$

Thus we can state
Theorem. If a P-Sasakian manifold $\left(M^{n}, g\right)(n>3)$ satisfies tehe relation $R(\xi, x) . C=0$, then the manifold is conformally flat and hence is an SP-Sasakian manifold [1].

The above theorem has been proved by U.C. De and N. Guha [3].

REFERENCES

[1] ADATI, T. and : Some properties of P-Sasakian manifolds, TRU Math., 13 (1977), MIYAZAWA, T. 33-42.
[2] BISHOP, R.L. and : On coniformally flat spaces with commuting curvature and Ricci GOLDBERG, S.I. transformations, Canad. J. Math., XXIV (1972), No. 5, 799-804.
[3] DE, U.C. and : On a type of P-Sasakian manifold, İstanbul Üniv. Fen Fak. Mat. GUHA, N. Der., 51 (1992), 35-39.
[4] SATO, I. : On a structure similar to the almost contact structure, Tensor, N.S., 30 (1976), 219-224.
[5] SATO, I. and : On P-Sasakian manifolds satisfying certain conditions, Tensor, MATSUMOTO, K. N.S., 33 (1979), 173-178.

