İstanbul Üniv. Fen Fak. Mat. Der., 54 (1995), 9-10

THE SOLVABLE Q-GROUPS WITH ONE CONJUGACY CLASS OF INVOLUTIONS

Ion ARMEANU

University of Bucharest, Physics Faculty, Mathematics Dept., Bucharest-Magurele, P.O. Box MG-11, ROMANIA

Summary : One important problem in Q-group theory is to classify particular classes of Q-groups. In this note we will completely classify the solvable Q-groups with one conjugacy class of involutions.

BİR TEK EŞLENİK İNVOLÜSYONLAR SINIFINI HAİZ ÇÖZÜLEBİLİR O-GRUPLAR

Özet : Bu çalışmada, bir tek eşlenik involüsyonlar sınıfmı haiz çözülebilir Q-gruplar tamamen sınıflandırılmaktadır.

Definition. A Q-group is a finite group all whose characters are rational valued.

Proposition 1. A finite group G is a **Q**-group if and only if for every $x \in G$, $N_G(\langle x \rangle)/C_G(\langle x \rangle) \approx \operatorname{Aut}(\langle x \rangle)$ (see [3]).

Theorem 2 (Thompson, see [2], pg. 811). Suppose that G is a solvable group of even order and that the Sylow 2-subgroup of G contains more than one involution. Suppose that all the involutions in G are conjugate. Then the Sylow 2-subgroups of G are either homocyclic or Suzuki 2-groups.

Theorem 3. Suppose that G is a solvable Q-group with one conjugacy class of involutions. Then, the Sylow 2-subgroups of G are either cyclic or generalized quaternion groups.

Proof. Clearly we can suppose that O_2 . (G) is trivial. Let $I(G) = \{x \in G \mid x^2 = 1\}$. Let A be a minimal normal subgroup of G. Since G is solvable and O_2 . (G) is trivial, then A is an elementary abelian 2-subgroup, hence A = I(G).

Let S be a Sylow 2-subgroup of G. We will prove now by induction on |G| that $N_G(S) = S$. If |G| = 1 the statement is trivial. Now G/A is a solvable **Q**-group having S/A as a Sylow 2-subgroup. It follows by induction that

 $N_{G/A}(S/A) = S/A$, so that if $x \in N_G(S)$, then $xA \in S/A$. Set xA = yA with $y \in S$. Then $y^{-1}x \in A$, therefore $x \in S$.

By Theorem 2, if G contains more than one involution, then the Sylow 2-subgroups of G are either cyclic or Suzuki 2-groups. If a Sylow 2-subgroup S is homocyclic then it is trivial that $A \subseteq Z(S)$. If S is a Suzuki 2-group, then (see [2], pg. 313) S' = Z(S) = A = I(S). By Burnside theorem (see [1], pg. 240) if $x, y \in Z(S)$ and $x^z = y$, with $z \in G$, then there is $t \in N_G(S)$ such that $x^t = y$. Since $N_G(S) = S$ it follows that for every $x, y \in A \subseteq S$, there is a $t \in S$ such that $x^t = y$. This is a contradiction since $A \subseteq Z(S)$. Therefore G contains only one involution, so that S is either a cyclic group or a generalized quaternion group.

Corollary 4. Suppose G is a solvable Q-group with one conjugacy class of involutions. Then a Sylow 2-subgroup S of G is isomorphic either to \mathbb{Z}_2 or to the quaternion group Q_8 of order 8 and:

- (a) if S is \mathbb{Z}_2 , then $G = E_3 \mathbb{Z}_2$ where E_3 is an elementary abelian 3-group and \mathbb{Z}_2 inverts all elements of E_3 ,
- (b) if $S = Q_8$, then G is one of the following groups:
 - (i) $E_3 Q_8$ where E_3 is a direct sum of copies of the 2-dimensional irreducible representation of Q_8 over the field F_3 of 3 elements.
 - (ii) the Markel group $(\mathbf{Z}_5 \times \mathbf{Z}_5) Q_8$.

Proof. Immediately by Theorem 3 and Corollary 36, pg. 36 of [3].

REFERENCES

Mathematics, Springer-Verlag, 1984.

[1]	GORENSTEIN, D.	:	Finite Groups, Harper and Row, 1968.
[2]	HUPPERT, B. and BLACKBURN, N.	:	Finite Groups, Vol. 2, Springer-Verlag, 1982.
[3]	KLETZING, D.	:	Structure and Representations of Q-groups, Lecture Notes in