FROBENIUS Q-GROUPS

Ion ARMEANU University of Bucharest, Physics Faculty, Mathematics Dept., Bucharest-Magurele, P.O. Box MG-11, ROMANIA

Summary : An important problem in Q-group theory is to classify particular classes of Q-groups. In this note we shall completely classify the Frobenius Q-groups.

FROBENIUS Q-GRUPLARI

Özet : Bu çalışmada Frobenius Q-grupları tamamen sınıflandırılmaktadır.

Definition. A Q-group is a finite group all whose characters are rational valued.

Proposition 1 (see [3]). Let G be a finite group. Then G is a Q-group if and only if for every $x \in G$, $N_G(\langle x \rangle)/C_G(\langle x \rangle) = \operatorname{Aut}(\langle x \rangle)$.

Theorem 2 (see [2], chap. V and 8). Suppose G is a Frobenius group having Frobenius kernel F and Frobenius subgroup H. Then:

(1) Let x be a nonidentity element of H. If a conjugate x^{y} is contained in H, then y is an element of H.

(2) If $x \in H - \{1\}$, then $C_G(x) \subseteq H$.

(3) If |H| is even, then

a) *H* contains only one involution.

b) Let *i* be the involution of *H*. Then, for every $f \in F$, $f^{l} = f^{-1}$.

Proposition 3. Suppose G is a Q-group and H a subgroup without fusion in G (this means that if $x, y \in H$ and there is an element z of G such that $x^{z} = y$, then there is an element t of H such that $x^{t} = y$). Then, H is also a Q-group.

Proof. Clearly by **Proposition 1.**

Ion ARMEANU

Theorem 4. Suppose G is a Frobenius Q-group having Frobenius kernel F and Frobenius subgroup H. Then:

(1) H has even order, contains a Sylow 2-subgroup of G, is without fusion in G and is also a Q-group.

(2) A Sylow 2-subgroup of G is isomorphic either to \mathbb{Z}_2 or to the quaternion group Q_8 of order 8.

(3) F is an odd order normal subgroup of G.

Proof. By Theorem 2 part (1) H is without fusion in G, so that H is also a Q-group and has even order. By Theorem 2 part (3) a, H contains only one involution so that a Sylow 2-subgroup of H is isomorphic either to a cyclic group or to a generalized quaternion group. By Proposition 31, pg. 31 of [3] then a Sylow 2-subgroup of H is either \mathbb{Z}_2 or \mathbb{Q}_8 .

Let $f \in F$ be an involution and *i* be the involution of *H*. By Theorem 2 part (3) b $f^i = f^{-1} = f$ so that $f \in C_G(i)$. By part (2) of Theorem 2, $C_G(i) \subseteq H$, therefore $f \in H$, contradiction. Hence *F* has odd order, and *H* contains a Sylow 2-subgroup of *G*. Therefore, a Sylow 2-subgroup of *G* is either \mathbb{Z}_2 or \mathbb{Q}_8 .

Theorem 5. Let G be a Frobenius Q-group. Then, $G = E_3 Z_2$ where E_3 is an elementary abelian 3-subgroup and Z_2 inverts all elements of E_3 .

Proof. By Theorem 4, a Sylow 2-subgroup of G is either \mathbb{Z}_2 or \mathbb{Q}_8 . If a Sylow 2-subgroup of G is \mathbb{Z}_2 by Proposition 33, pg. 33 of [3] the statement is true.

If a Sylow 2-subgroup of G is Q_8 , then by Glauberman Z* theorem (see [4]) $\mathbf{Z}(G)$ is not trivial. Hence the involution of H can't inverse the elements of F, contradiction to Theorem 2 part (3) b.

Corollary 6. The only Frobenius groups which can be embedded without fusion in a symmetric group are those of the form $E_3 \mathbb{Z}_2$ of the previous theorem.

Proof. By [1], a finite group can be embedded without fusion in a symmetric group if and only if it is a Q-group.

REFERENCES

[1]	ALEXANDRU, V. and ARMEANU, I.	:	Sur les caractères d'un groupe fini, C.R. Acad. Sci. Paris, 298 (1984), Serie I, No. 6
[2]	HUPPERT, B.	:	Endliche Gruppen, Springer-Verlag, 1967.
[3]	KLETZING, D.	:	Structure and Representations of Q-groups, Lecture Notes in Math., Springer-Verlag, 1984.
[4]	SUZUKI, M.	:	Group Theory, Vol. 2, Springer-Verlag, 1986.