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Abstract:  
 

  This paper analyzes the performance of the popular heuristic methods 

‘Simulated Annealing (SA)’ and ‘Genetic Algorithm (GA)’ on  the symmetric 

TSP.  TSP is a well-known combinatorial optimization problem in NP-complete 

class. NP-completeness of TSP originates many specific approximation 

algorithms to find optimal or near optimal solutions in a reasonable time. On the 

other hand, both SA and GA are general purpose heuristic methods that are 

applicable to almost every kind of problem whose solution lies inside a search 

space. The performance of SA and GA depends on many factors such as the 

nature of the problem, design of the algorithm, parameter values, etc. In this 

paper, a GA and an SA algorithm are given  and their performance with respect 

to several factors is analyzed. The algorithms are tested on some benchmark 

problems (TSPLIB) which are obtainable via Internet from 

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html.  

  
 

1. Introduction 
 
Traveling Salesman Problem (TSP) is an NP-

complete problem [1] and it is one of the most 

popular problems in combinatorial optimization.  

As a brief definition of TSP, there are n cities and 

there is a distance between each city pair (If there is 

no road between two cities then the distance can be 

taken to be ∞). The distance between two cities 

may depend on the travel direction as in the case of 

asymmetric TSP, or it can be independent of the 

travel direction which is called symmetric TSP.  

The objective is to find a tour of minimum total 

length in which every city is visited exactly once.  

 

There are numerous ways to find the optimal 

solution. The simplest and the most costly way may 

be to enumerate all possible combinations which 

has a size of n! for an n city problem. Other than 

this, branch and bound (B&B) and mixed integer 

programming (MIP) methods can be used to find 

the optimal solution. However, none of these have 

polynomial runtime and this makes TSP attractive 

for heuristics. 

  

In the literature, there are several variations of TSP 

that are analyzed by the researchers. For example, 

Cacchiani et al. [2] analyzes TSP for time-

dependent service times. TSP can be seen as a sub-

problem of vehicle routing problems (Ex. [3], [4]).  

This problem also gathers attention from 

researchers in computer science and electronics 

fields (Ex. [5], [6]). Regardless of the context in 

which TSP is analyzed, heuristics are the mostly 

used solution methodology for this problem and 

there are several heuristics to solve TSP. Some of 

these heuristics are designed for only solving TSP 

such as “nearest neighborhood algorithm” (NNA) 

or “Christofides Heuristic” [7]. However, it is also 

possible to apply general heuristic methods such as 

“neural networks”, “simulated annealing” (SA) or 

“genetic algorithm” (GA). In this paper, the 

performance of the two of these methods, SA and 

GA are tested on several symmetric TSP instances. 

The outline of the paper is as follows: In section 2, 

the GA and SA algorithms used in this study are 

presented. In section 3 and 4, the results and the 

discussion of the results are given respectively. In 

the last section, the comments and further possible 
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extensions of the methods used in this study are 

suggested. 

 

2. Design of the Algorithms 
 

Both GA and SA methods rely on some main ideas 

during the search of the solution space. Simply, SA 

algorithm starts with an initial solution at some 

specific temperature T. At each iteration, it checks 

the solutions in the neighborhood of the current 

solution. If a better solution is found, then it is 

accepted. If a solution with worse objective value 

than the current solution is found, then this worse 

solution is accepted with some probability 

depending on the temperature of the current 

iteration. Throughout the iterations, by gradually 

decreasing the temperature, for later iterations the 

probability of accepting a worse solution is 

decreased continuously and the convergence to a 

solution is satisfied.  

 

On the other hand, GA, as opposed to SA, works on 

more than one solution at each iteration 

(generation). Starting with an initial pool of 

solutions, at each generation, with some rate (cross 

over rate), the solutions are combined with each 

other to generate new solutions (off-springs). Other 

than this, also with some specific rate (mutation 

rate), the existing solutions in the population are 

modified. After a predetermined number of 

generations or by some other stopping criterion, the 

algorithm stops after hopefully converging to a 

solution. 

 

Although GA and SA depend on some basic ideas, 

the performance of their solutions highly depends 

on how these algorithms are implemented. In below 

subsections, the implementation details of the 

algorithms are given. 

 

2.1 Design of the Genetic Algorithm 

 
Generally, binary strings are used to represent the 

solutions in GA implementation. However, the 

nature of TSP allows us to use directly the 

permutation of the cities as strings. So each 

individual in the GA population consists of a 

permutation of cities and the total distance cost for 

the corresponding tour.   

 

Each generation of GA consists of (population size 

× crossover rate) number of new individuals   and    

(population size × (1-crossover rate)) of the best 

individuals from the previous iteration. The 

individuals for crossover operation are selected by a 

tournament of size 2. At a cross over operation, for 

each i
th 

city position in the tour of the off-spring, a 

coin is tossed. Depending on coin toss, the i
th
 city 

from parent 1 or parent 2  is taken for the off-

spring. If this city is visited before in the off-

springs’ uncompleted tour string, then starting from 

the beginning the first unvisited city from the 

chosen parent is taken as the i
th
 city for the off-

spring. 

 

Two types of mutation operations are used in the 

algorithm. When it is decided to have mutation on a 

tour, randomly two different city positions are 

selected from the tour. If it is a type 1 mutation 

then, all the cities between the chosen city positions 

are flipped in the reverse order. On the other hand, 

if it is a type 2 mutation, then just the positions of 

the selected cities are changed. 

    

Other than the general mutation rate, another 

mutation rate is defined to decide on the type of the 

mutation. The rate of type 1 and type 2 mutations 

are defined to be dynamic depending on the 

generation number. Whenever a mutation occurs, 

with probability:  

        

               1 −
(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 #)

(𝑚𝑎𝑥.# 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)
         (1) 

 

Then, it is a type 1 mutation. As it is seen, type 1 

mutation occurs mostly at the initial generations, 

whereas type 2 mutation occurs mostly in later 

generations. The logic behind this is that   type 1 

mutation radically changes the tour, so it is more 

appropriate to make radical changes on the 

individuals during the initial generations where the 

population is unstable. On the other hand, type 2 

mutation is more appropriate to make fine tuning 

kinds of changes on the individuals which is better 

when the population is about to converge.  The 

crossover and mutation operations are done 

respectively for each generation. Iteratively new 

generations are produced until a previously defined 

number of generations limit is reached. 

 

2.2 Design of the Simulated Annealing 

Algorithm 

 
The SA algorithm starts with an initial tour which is 

randomly chosen and with some initial temperature 

To. The temperature is decreased throughout the 

iterations with a cooling rate R. At each 

temperature, for a specified number of times 

(number of cycles at a temperature), the neighbor-

hood of the current solution is checked. The 

neighborhood of a solution is defined as the tours 

that are different from the current solution by just 

two city positions. If a better solution is found, then 
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it is accepted, otherwise it is accepted with 

probability: 

 

     e
(cost difference between solutions/ current temperature)

.         (2) 

 

If i and j denote the city locations, then the 

neighborhood search process can be summarized as 

in Fig. 1.  After a predetermined number of 

temperature decreases, the algorithm stops.  

 

TSP has the constraint of visiting each city exactly 

once in a given tour. When we apply GA or SA on 

a constrained problem, we may choose two ways of 

search strategies, we can either accept infeasible 

solutions with some penalty or we may just search 

over the feasible solutions. In this project, the 

second method is applied. In the iterations of both 

algorithms, only feasible tours are considered 

           

 
 

Figure 1.  Summary of Neighborhood Search Loop for 

SA. 

 

3.  Results 
 

The algorithms are coded in C programming 

language and tested on a SGA Unix machine with 1 

GB main memory. For GA code, upon a series of 

trials, a set of effective  parameter values is found 

to be as 500 for population  size, 0.6 for crossover 

rate, 0.5 for mutation rate. It was observed that a 

good maximum number of generations is problem 

dependent. If the number of cities is higher, then a 

higher maximum number of generations is better. 

For this reason, depending on problem size 

(size<50, 50<size<100, size>100) different number 

of maximum generations (500, 1000, 1500) are 

used. 

     

For SA code, an initial temperature of 110 is found 

to be effective. 60 temperature decreases are 

allowed throughout the iterations. Depending on 

problem size, a different value for the number of 

cycles at each temperature is used (60 for size<50, 

80 for 50<size<100, 100 for size>100). 

 

The algorithms are tested using the symmetric TSP 

instances obtained from TSPLIB [9]. The numbers 

at the end of the problem names show the size of 

the problem. The results of GA and SA algorithm 

can be seen in Tables 1 and 2 respectively. In these 

tables, the column OPT contains the optimal 

solution for the TSP instance. Column BEST shows 

the best solution obtained by the algorithm over the 

trials. AVGBEST shows the average of the best 

solutions from the trials. Column DEVBEST shows 

the standard deviation of the best solutions. 

GENAVG shows the overall final average of the 

populations from all trials. DEVAVG contains the 

standard deviation info for the population averages 

over all the trials. TIME shows the average time 

required per trial. Finally, DEV shows the 

percentage deviation of the best solution obtained 

over the trials from the optimal solution.   

For SA, since the 20 trials of problem instance 

Gr202 is not completed within 48 hours, no result is 

presented. One of the initial objectives was to solve 

TSP by a MIP model and compare the solution 

time. For problems Burma14 and Uly16 the optimal 

solution is obtained in seconds when corresponding 

MIP model is solved by CPLEX  [8]. However, 

after observing for a 22 city problem (Uly22) the 

solution is not found in 8000 sec, it is decided to 

use the optimal solutions provided by TSPLIB. The 

optimal costs are calculated by using the optimal 

tours given for the problem instances.  

 

To test the effect of the quality of the initial 

population on GA, for some problem instances, 

the tours found by NNA are included in the 

initial population. The results of this 

experiment are given in Table 3. 
 

As first remarks, it is seen that the algorithms 

generally perform well on small sized problems and 

as the problem size increases, the deviation of the 

solutions from the optimal solution increases. Also, 

on average SA requires more time than GA. Further 

discussion and analysis of the results are given in 

the next section. 

 

4.  Discussion 
 

As mentioned in previous section, it is observed 

that SA requires more time than GA. As the 

problem size increases, this difference becomes 

more remarkable. The main reason for this can be 

the neighborhood search procedure that is 

summarized in Fig. 1. This search loop is O(n
2
) and 

as the problem size increases, the search time 

increases in a quadratic fashion. This also explains 

the reason why SA gives better results than GA in 

trial runs. Simply more search effort gives better 

results. As mentioned in previous section, different 

number of maximum generation limits are used 
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depending on the problem size. Given a fixed 

population size, GA converges more quickly for 

small size problems. This is also clear in Fig. 2 

where the convergence of two problem instances 

(Burma14 and St70) are compared. It is seen that a 

small size problem converges much faster than a 

larger problem. One of the questions related to GA 

is the effect of the quality of the initial population 

on the performance of the algorithm. This case is 

analyzed by placing some tours found by NNA in 

the initial population for some problem instances. 

The results in Table 3 show that except one 

instance, having better individuals in the initial 

population have positive effect both on the best 

solution and average solution of GA. For the 

problem instance Uly22, placing better individuals 

on the initial population led to convergence to a 

sub-optimal tour. Most probably, for this problem 

instance, the individuals found by NNA and placed 

in the initial population become dominant and push 

the population towards a sub-optimal tour. 

  
Table 1.  GA  Results 

 OPT BEST AVGBEST DEVBEST GENAVG DEVAVG TIME DEV 

(%) Burma14* 4894 4894 4895.50 10.34 5746.18 78.38 <1min 0.00 

Ulysses16* 8063 8063 8097.40 37.80 9089.64 119.68 <1min 0.00 

Ulysses22* 8265 8265 8363.80 133.74 9592.90 232.44 <1min 0.00 

Eil51** 426 441 473.50 15.94 508.09 22.98 <1min 3.52 

Berlin52** 7542 8074 8579.38 303.04 9911.17 386.59 <1min 7.05 

St70** 675 748 852.86 48.08 991.01 58.22 <1min 10.81 

Pr76** 108159 117383 138968.00 7815.75 157887.30 9410.17 <1min 8.53 

Gr96** 74804 90293 103668.90 6457.31 115594.60 6818.84 <1min 20.71 

Ch150*** 6528 9935 11410.50 661.56 12181.71 736.50 1.2min 52.19 

Gr202*** 53735 87345 94776.00 4075.45 98503.60 4064.86 1.7min 62.55 

*over 100 trials , **over 50 trials, ***over 30 trials 
 

 

Table 2.  SA Results 

 OPT BEST AVGBEST DEVBES

T 

TIME DEV(%) 

Burma14

* 

4894 4894 4894.00 0.00 <1 min 0.00 

Ulysses16

* 

8063 8063 8069.96 23.84 <1 min 0.00 

Ulysses22

* 

8265 8265 8306.90 75.41 <1 min 0.00 

Eil51** 426 432 443.87 5.30 1.5 min 1.41 

Berlin52*

* 

7542 7678 7988.97 167.53 1.6 min 1.80 

St70** 675 690 721.63 18.45 1.8 min 2.22 

Pr76** 108159 115527 121347.10 3121.22 4.9 min 6.81 

Gr96** 74804 75343 80329.07 2028.98 9.6 min 0.72 

Ch150**

* 

6528 7412 7623.75 133.31 45.3 min 13.54 

Gr202*** 53735 NA NA NA NA NA 

        * over 50 trials,     ** over 30 trials,      *** over 20 trials   

 

Table 3.  Effect of the Quality of the Initial Population on GA  

 OPT BEST AVGBEST DEVBEST GENAVG DEVAVG DEV(%) 

Burma14* 4894 4894 4894.82 5.80 5721.58 77.09 0.00 

Ulysses16* 8063 8063 8131.86 25.70 9016.50 59.80 0.00 

Ulysses22* 8265 8446 8473.30 24.62 9468.52 58.56 2.19 

Eil51** 426 428 439.78 6.18 507.35 15.32 0.47 

Berlin52** 7542 7542 7802.28 116.74 8972.10 116.74 0.00 

St70** 675 721 729.14 3.59 827.69 13.56 6.81 

Pr76** 108159 112779 119955.60 3296.34 13885.70 5665.78 4.27 

         * over 100 trials,       ** over 50 trials 
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Figure 2.  Convergence and Problem Size Relationship 

 

 
 

Figure 3.  Convergence of GA without Best Individual 

Selection for Berlin52 

     

In GA, at each generation, ((1-crossover 

rate)×population size)  of the best individuals from 

the previous generation  are included. The purpose 

of this is to maintain a good population and force 

the population to converge to an optimal or near 

optimal solution. One argument may be that this 

approach may lead GA to converge to a sub-

optimal solution quickly. However, in fact the 

reverse of this argument may be correct which is 

“neglecting the best values in the previous 

generation may delay the convergence”. This is 

also supported by the trial run of problem in-stance 

“Berlin52”. For this problem instance, GA is run 

without selecting best individuals from the previous 

solution and as seen in Fig. 3, it is observed that 

even for a maximum generation limit of 5000, the 

population does not converge to the optimal 

solution.  The reason for this may be the low 

crossover rate (0.6) used by the best individual 

selection algorithm. However, when the crossover 

rate is set to 0.9, the algorithm still does not 

converge to a near optimal solution in 5000 

generations as seen in Fig. 3. 

 

5.  Conclusion 
 

In this study, the performance of GA and SA 

methods are tested on TSP. Although, the initial 

results show that SA performs better on the 

average, there are many  factors affecting the 

performance of the algorithms and it is hard to give 

a clear cut answer such as “SA performs better” or 

vice versa. 

  

It is shown that having better individuals lead GA 

to give better solutions in general. This result brings 

up the idea of focusing on hybrid algorithms. For 

example, when GA is applied on a problem, the 

initial population of individuals may be formed by 

applying a greedy heuristic which is NNA in this 

case. On the other hand, one thing should be 

noticed that sometimes having good individuals in 

the initial population may cause GA to converge to 

a sub-optimal solution. So, analyzing the initial 

population characteristics may be beneficial for GA 

designer. 

 

Another point that is focused on in this study is the 

relationship between the consecutive generations of 

GA.  The methods like tournament selection or 

transferring some proportion of the best individuals 

from one generation to the next one affect the 

convergence of the algorithm. By a careful analysis, 

GA designer may find the balance point where the 

algorithm converges to optimal or a near optimal 

solution with minimum computational effort.  

 

About SA algorithm, it is observed that as the 

computational effort in search process increases, 

SA gives better results. This means designing SA 

algorithm requires attention for carefully defining 

the tradeoff between the search procedure and the 

computational effort. 

 

One interesting extension may be to combine SA 

and GA as a hybrid method, basically, at each 

generation of GA, we can apply a limited 

neighborhood search on the best solution of that 

generation as done in SA. By this way, it may be 

possible to both improve the current best solution 

of the generation and search over other solutions 

which are not in the neighborhood of the best 

solution. 

 

References 
 
[1] Michael R. Garey and David S. Johnson. Computers 

and intractability. A guide to the theory of NP-

completeness. WH Freeman and Company, San 

Francisco 1979. 



A. Reha BOTSALI, Kemal  ALAYKIRAN / IJCESEN 6-1(2020)23-28 

 

28 

 

[2]  Cacchiani, V., Contreras-Bolton, C., Toth, P. 

“Models and algorithms for the Traveling Salesman 

Problem with Time-dependent Service times”, V. 

283, No. 3, 2020, P. 825-84. 

[3] Saxena, R., Jain, M., Malhotra, K., Vasa, K.D. “An 

Optimized OpenMP-Based Genetic Algorithm 

Solution to Vehicle Routing Problem”, Advances in 

Intelligent Systems and Computing, V. 767, 2020, 

P. 237-245. 

[4] Singh, V., Ganapathy, L., Pundir, A.K. “An 

improved genetic algorithm for solving multi depot 

Vehicle Routing Problems”. International Journal 

of Information Systems and Supply Chain 

Management, V. 12, No. 4, 2019, P. 1-26. 

[5] Lu, Y., Tian, H., Yin, J. “A real-time routing protocol 

in wireless sensor-actuator network”, 

Communications in Computer and Information 

Science, V. 931, 2019,  P. 111-120. 

[6] Wang, H., Zhang, N., Créput, J.-C. “A massively 

parallel neural network approach to large-scale 

Euclidean traveling salesman problems”, 

Neurocomputing, V. 240, 2017, P. 137-151. 

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. 

Rivest, Clifford Stein 2001. Introduction to 

Algorithms. The MIT Press Cambridge, 

Massachusetts. 

[8] ILOG Cplex. World Wide Web,                                

https://www.ibm.com/tr-tr/products/ilog-cplex-

optimization-studio .    

[9] TSPLIB. Library of Sample Instances for the TSP. 

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/ 

index.html    

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 


