

 Copyright © IJCESEN

International Journal of Computational and

Experimental Science and ENgineering

(IJCESEN)
Vol. 6-No.1 (2020) pp. 23-28

http://dergipark.org.tr/en/pub/ijcesen
ISSN: 2149-9144

Research Article

Analysis of TSP: Simulated Annealing and Genetic Algorithm Approaches

A. Reha BOTSALI*, Kemal ALAYKIRAN

N. Erbakan University, Engineering and Architecture Faculty, Industrial Engineering Dept., Konya –Turkey

* Corresponding Author : rbotsali@erbakan.edu.tr

ORCID: 0000-0002-8809-9353

Article Info:

DOI: 10.22399/ijcesen.637445

Received : 24 October 2019

Accepted : 12 March 2020

Keywords

Traveling Salesman Problem (TSP)

Simulated Annealing (SA)

Genetic Algorithms

Integer Programming

Abstract:

 This paper analyzes the performance of the popular heuristic methods

‘Simulated Annealing (SA)’ and ‘Genetic Algorithm (GA)’ on the symmetric

TSP. TSP is a well-known combinatorial optimization problem in NP-complete

class. NP-completeness of TSP originates many specific approximation

algorithms to find optimal or near optimal solutions in a reasonable time. On the

other hand, both SA and GA are general purpose heuristic methods that are

applicable to almost every kind of problem whose solution lies inside a search

space. The performance of SA and GA depends on many factors such as the

nature of the problem, design of the algorithm, parameter values, etc. In this

paper, a GA and an SA algorithm are given and their performance with respect

to several factors is analyzed. The algorithms are tested on some benchmark

problems (TSPLIB) which are obtainable via Internet from

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html.

1. Introduction

Traveling Salesman Problem (TSP) is an NP-

complete problem [1] and it is one of the most

popular problems in combinatorial optimization.

As a brief definition of TSP, there are n cities and

there is a distance between each city pair (If there is

no road between two cities then the distance can be

taken to be ∞). The distance between two cities

may depend on the travel direction as in the case of

asymmetric TSP, or it can be independent of the

travel direction which is called symmetric TSP.

The objective is to find a tour of minimum total

length in which every city is visited exactly once.

There are numerous ways to find the optimal

solution. The simplest and the most costly way may

be to enumerate all possible combinations which

has a size of n! for an n city problem. Other than

this, branch and bound (B&B) and mixed integer

programming (MIP) methods can be used to find

the optimal solution. However, none of these have

polynomial runtime and this makes TSP attractive

for heuristics.

In the literature, there are several variations of TSP

that are analyzed by the researchers. For example,

Cacchiani et al. [2] analyzes TSP for time-

dependent service times. TSP can be seen as a sub-

problem of vehicle routing problems (Ex. [3], [4]).

This problem also gathers attention from

researchers in computer science and electronics

fields (Ex. [5], [6]). Regardless of the context in

which TSP is analyzed, heuristics are the mostly

used solution methodology for this problem and

there are several heuristics to solve TSP. Some of

these heuristics are designed for only solving TSP

such as “nearest neighborhood algorithm” (NNA)

or “Christofides Heuristic” [7]. However, it is also

possible to apply general heuristic methods such as

“neural networks”, “simulated annealing” (SA) or

“genetic algorithm” (GA). In this paper, the

performance of the two of these methods, SA and

GA are tested on several symmetric TSP instances.

The outline of the paper is as follows: In section 2,

the GA and SA algorithms used in this study are

presented. In section 3 and 4, the results and the

discussion of the results are given respectively. In

the last section, the comments and further possible

http://dergipark.org.tr/en/pub/ijcesen
http://dergipark.ulakbim.gov.tr/ijcesen
mailto:rbotsali@erbakan.edu.tr

A. Reha BOTSALI, Kemal ALAYKIRAN / IJCESEN 6-1(2020)23-28

24

extensions of the methods used in this study are

suggested.

2. Design of the Algorithms

Both GA and SA methods rely on some main ideas

during the search of the solution space. Simply, SA

algorithm starts with an initial solution at some

specific temperature T. At each iteration, it checks

the solutions in the neighborhood of the current

solution. If a better solution is found, then it is

accepted. If a solution with worse objective value

than the current solution is found, then this worse

solution is accepted with some probability

depending on the temperature of the current

iteration. Throughout the iterations, by gradually

decreasing the temperature, for later iterations the

probability of accepting a worse solution is

decreased continuously and the convergence to a

solution is satisfied.

On the other hand, GA, as opposed to SA, works on

more than one solution at each iteration

(generation). Starting with an initial pool of

solutions, at each generation, with some rate (cross

over rate), the solutions are combined with each

other to generate new solutions (off-springs). Other

than this, also with some specific rate (mutation

rate), the existing solutions in the population are

modified. After a predetermined number of

generations or by some other stopping criterion, the

algorithm stops after hopefully converging to a

solution.

Although GA and SA depend on some basic ideas,

the performance of their solutions highly depends

on how these algorithms are implemented. In below

subsections, the implementation details of the

algorithms are given.

2.1 Design of the Genetic Algorithm

Generally, binary strings are used to represent the

solutions in GA implementation. However, the

nature of TSP allows us to use directly the

permutation of the cities as strings. So each

individual in the GA population consists of a

permutation of cities and the total distance cost for

the corresponding tour.

Each generation of GA consists of (population size

× crossover rate) number of new individuals and

(population size × (1-crossover rate)) of the best

individuals from the previous iteration. The

individuals for crossover operation are selected by a

tournament of size 2. At a cross over operation, for

each i
th

city position in the tour of the off-spring, a

coin is tossed. Depending on coin toss, the i
th
 city

from parent 1 or parent 2 is taken for the off-

spring. If this city is visited before in the off-

springs’ uncompleted tour string, then starting from

the beginning the first unvisited city from the

chosen parent is taken as the i
th
 city for the off-

spring.

Two types of mutation operations are used in the

algorithm. When it is decided to have mutation on a

tour, randomly two different city positions are

selected from the tour. If it is a type 1 mutation

then, all the cities between the chosen city positions

are flipped in the reverse order. On the other hand,

if it is a type 2 mutation, then just the positions of

the selected cities are changed.

Other than the general mutation rate, another

mutation rate is defined to decide on the type of the

mutation. The rate of type 1 and type 2 mutations

are defined to be dynamic depending on the

generation number. Whenever a mutation occurs,

with probability:

 1 −
(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 #)

(𝑚𝑎𝑥.# 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)
 (1)

Then, it is a type 1 mutation. As it is seen, type 1

mutation occurs mostly at the initial generations,

whereas type 2 mutation occurs mostly in later

generations. The logic behind this is that type 1

mutation radically changes the tour, so it is more

appropriate to make radical changes on the

individuals during the initial generations where the

population is unstable. On the other hand, type 2

mutation is more appropriate to make fine tuning

kinds of changes on the individuals which is better

when the population is about to converge. The

crossover and mutation operations are done

respectively for each generation. Iteratively new

generations are produced until a previously defined

number of generations limit is reached.

2.2 Design of the Simulated Annealing

Algorithm

The SA algorithm starts with an initial tour which is

randomly chosen and with some initial temperature

To. The temperature is decreased throughout the

iterations with a cooling rate R. At each

temperature, for a specified number of times

(number of cycles at a temperature), the neighbor-

hood of the current solution is checked. The

neighborhood of a solution is defined as the tours

that are different from the current solution by just

two city positions. If a better solution is found, then

A. Reha BOTSALI, Kemal ALAYKIRAN / IJCESEN 6-1(2020)23-28

25

it is accepted, otherwise it is accepted with

probability:

 e
(cost difference between solutions/ current temperature)

. (2)

If i and j denote the city locations, then the

neighborhood search process can be summarized as

in Fig. 1. After a predetermined number of

temperature decreases, the algorithm stops.

TSP has the constraint of visiting each city exactly

once in a given tour. When we apply GA or SA on

a constrained problem, we may choose two ways of

search strategies, we can either accept infeasible

solutions with some penalty or we may just search

over the feasible solutions. In this project, the

second method is applied. In the iterations of both

algorithms, only feasible tours are considered

Figure 1. Summary of Neighborhood Search Loop for

SA.

3. Results

The algorithms are coded in C programming

language and tested on a SGA Unix machine with 1

GB main memory. For GA code, upon a series of

trials, a set of effective parameter values is found

to be as 500 for population size, 0.6 for crossover

rate, 0.5 for mutation rate. It was observed that a

good maximum number of generations is problem

dependent. If the number of cities is higher, then a

higher maximum number of generations is better.

For this reason, depending on problem size

(size<50, 50<size<100, size>100) different number

of maximum generations (500, 1000, 1500) are

used.

For SA code, an initial temperature of 110 is found

to be effective. 60 temperature decreases are

allowed throughout the iterations. Depending on

problem size, a different value for the number of

cycles at each temperature is used (60 for size<50,

80 for 50<size<100, 100 for size>100).

The algorithms are tested using the symmetric TSP

instances obtained from TSPLIB [9]. The numbers

at the end of the problem names show the size of

the problem. The results of GA and SA algorithm

can be seen in Tables 1 and 2 respectively. In these

tables, the column OPT contains the optimal

solution for the TSP instance. Column BEST shows

the best solution obtained by the algorithm over the

trials. AVGBEST shows the average of the best

solutions from the trials. Column DEVBEST shows

the standard deviation of the best solutions.

GENAVG shows the overall final average of the

populations from all trials. DEVAVG contains the

standard deviation info for the population averages

over all the trials. TIME shows the average time

required per trial. Finally, DEV shows the

percentage deviation of the best solution obtained

over the trials from the optimal solution.

For SA, since the 20 trials of problem instance

Gr202 is not completed within 48 hours, no result is

presented. One of the initial objectives was to solve

TSP by a MIP model and compare the solution

time. For problems Burma14 and Uly16 the optimal

solution is obtained in seconds when corresponding

MIP model is solved by CPLEX [8]. However,

after observing for a 22 city problem (Uly22) the

solution is not found in 8000 sec, it is decided to

use the optimal solutions provided by TSPLIB. The

optimal costs are calculated by using the optimal

tours given for the problem instances.

To test the effect of the quality of the initial

population on GA, for some problem instances,

the tours found by NNA are included in the

initial population. The results of this

experiment are given in Table 3.

As first remarks, it is seen that the algorithms

generally perform well on small sized problems and

as the problem size increases, the deviation of the

solutions from the optimal solution increases. Also,

on average SA requires more time than GA. Further

discussion and analysis of the results are given in

the next section.

4. Discussion

As mentioned in previous section, it is observed

that SA requires more time than GA. As the

problem size increases, this difference becomes

more remarkable. The main reason for this can be

the neighborhood search procedure that is

summarized in Fig. 1. This search loop is O(n
2
) and

as the problem size increases, the search time

increases in a quadratic fashion. This also explains

the reason why SA gives better results than GA in

trial runs. Simply more search effort gives better

results. As mentioned in previous section, different

number of maximum generation limits are used

A. Reha BOTSALI, Kemal ALAYKIRAN / IJCESEN 6-1(2020)23-28

26

depending on the problem size. Given a fixed

population size, GA converges more quickly for

small size problems. This is also clear in Fig. 2

where the convergence of two problem instances

(Burma14 and St70) are compared. It is seen that a

small size problem converges much faster than a

larger problem. One of the questions related to GA

is the effect of the quality of the initial population

on the performance of the algorithm. This case is

analyzed by placing some tours found by NNA in

the initial population for some problem instances.

The results in Table 3 show that except one

instance, having better individuals in the initial

population have positive effect both on the best

solution and average solution of GA. For the

problem instance Uly22, placing better individuals

on the initial population led to convergence to a

sub-optimal tour. Most probably, for this problem

instance, the individuals found by NNA and placed

in the initial population become dominant and push

the population towards a sub-optimal tour.

Table 1. GA Results

 OPT BEST AVGBEST DEVBEST GENAVG DEVAVG TIME DEV

(%) Burma14* 4894 4894 4895.50 10.34 5746.18 78.38 <1min 0.00

Ulysses16* 8063 8063 8097.40 37.80 9089.64 119.68 <1min 0.00

Ulysses22* 8265 8265 8363.80 133.74 9592.90 232.44 <1min 0.00

Eil51** 426 441 473.50 15.94 508.09 22.98 <1min 3.52

Berlin52** 7542 8074 8579.38 303.04 9911.17 386.59 <1min 7.05

St70** 675 748 852.86 48.08 991.01 58.22 <1min 10.81

Pr76** 108159 117383 138968.00 7815.75 157887.30 9410.17 <1min 8.53

Gr96** 74804 90293 103668.90 6457.31 115594.60 6818.84 <1min 20.71

Ch150*** 6528 9935 11410.50 661.56 12181.71 736.50 1.2min 52.19

Gr202*** 53735 87345 94776.00 4075.45 98503.60 4064.86 1.7min 62.55

*over 100 trials , **over 50 trials, ***over 30 trials

Table 2. SA Results

 OPT BEST AVGBEST DEVBES

T

TIME DEV(%)

Burma14

*

4894 4894 4894.00 0.00 <1 min 0.00

Ulysses16

*

8063 8063 8069.96 23.84 <1 min 0.00

Ulysses22

*

8265 8265 8306.90 75.41 <1 min 0.00

Eil51** 426 432 443.87 5.30 1.5 min 1.41

Berlin52*

*

7542 7678 7988.97 167.53 1.6 min 1.80

St70** 675 690 721.63 18.45 1.8 min 2.22

Pr76** 108159 115527 121347.10 3121.22 4.9 min 6.81

Gr96** 74804 75343 80329.07 2028.98 9.6 min 0.72

Ch150**

*

6528 7412 7623.75 133.31 45.3 min 13.54

Gr202*** 53735 NA NA NA NA NA

 * over 50 trials, ** over 30 trials, *** over 20 trials

Table 3. Effect of the Quality of the Initial Population on GA

 OPT BEST AVGBEST DEVBEST GENAVG DEVAVG DEV(%)

Burma14* 4894 4894 4894.82 5.80 5721.58 77.09 0.00

Ulysses16* 8063 8063 8131.86 25.70 9016.50 59.80 0.00

Ulysses22* 8265 8446 8473.30 24.62 9468.52 58.56 2.19

Eil51** 426 428 439.78 6.18 507.35 15.32 0.47

Berlin52** 7542 7542 7802.28 116.74 8972.10 116.74 0.00

St70** 675 721 729.14 3.59 827.69 13.56 6.81

Pr76** 108159 112779 119955.60 3296.34 13885.70 5665.78 4.27

 * over 100 trials, ** over 50 trials

A. Reha BOTSALI, Kemal ALAYKIRAN / IJCESEN 6-1(2020)23-28

27

Figure 2. Convergence and Problem Size Relationship

Figure 3. Convergence of GA without Best Individual

Selection for Berlin52

In GA, at each generation, ((1-crossover

rate)×population size) of the best individuals from

the previous generation are included. The purpose

of this is to maintain a good population and force

the population to converge to an optimal or near

optimal solution. One argument may be that this

approach may lead GA to converge to a sub-

optimal solution quickly. However, in fact the

reverse of this argument may be correct which is

“neglecting the best values in the previous

generation may delay the convergence”. This is

also supported by the trial run of problem in-stance

“Berlin52”. For this problem instance, GA is run

without selecting best individuals from the previous

solution and as seen in Fig. 3, it is observed that

even for a maximum generation limit of 5000, the

population does not converge to the optimal

solution. The reason for this may be the low

crossover rate (0.6) used by the best individual

selection algorithm. However, when the crossover

rate is set to 0.9, the algorithm still does not

converge to a near optimal solution in 5000

generations as seen in Fig. 3.

5. Conclusion

In this study, the performance of GA and SA

methods are tested on TSP. Although, the initial

results show that SA performs better on the

average, there are many factors affecting the

performance of the algorithms and it is hard to give

a clear cut answer such as “SA performs better” or

vice versa.

It is shown that having better individuals lead GA

to give better solutions in general. This result brings

up the idea of focusing on hybrid algorithms. For

example, when GA is applied on a problem, the

initial population of individuals may be formed by

applying a greedy heuristic which is NNA in this

case. On the other hand, one thing should be

noticed that sometimes having good individuals in

the initial population may cause GA to converge to

a sub-optimal solution. So, analyzing the initial

population characteristics may be beneficial for GA

designer.

Another point that is focused on in this study is the

relationship between the consecutive generations of

GA. The methods like tournament selection or

transferring some proportion of the best individuals

from one generation to the next one affect the

convergence of the algorithm. By a careful analysis,

GA designer may find the balance point where the

algorithm converges to optimal or a near optimal

solution with minimum computational effort.

About SA algorithm, it is observed that as the

computational effort in search process increases,

SA gives better results. This means designing SA

algorithm requires attention for carefully defining

the tradeoff between the search procedure and the

computational effort.

One interesting extension may be to combine SA

and GA as a hybrid method, basically, at each

generation of GA, we can apply a limited

neighborhood search on the best solution of that

generation as done in SA. By this way, it may be

possible to both improve the current best solution

of the generation and search over other solutions

which are not in the neighborhood of the best

solution.

References

[1] Michael R. Garey and David S. Johnson. Computers

and intractability. A guide to the theory of NP-

completeness. WH Freeman and Company, San

Francisco 1979.

A. Reha BOTSALI, Kemal ALAYKIRAN / IJCESEN 6-1(2020)23-28

28

[2] Cacchiani, V., Contreras-Bolton, C., Toth, P.

“Models and algorithms for the Traveling Salesman

Problem with Time-dependent Service times”, V.

283, No. 3, 2020, P. 825-84.

[3] Saxena, R., Jain, M., Malhotra, K., Vasa, K.D. “An

Optimized OpenMP-Based Genetic Algorithm

Solution to Vehicle Routing Problem”, Advances in

Intelligent Systems and Computing, V. 767, 2020,

P. 237-245.

[4] Singh, V., Ganapathy, L., Pundir, A.K. “An

improved genetic algorithm for solving multi depot

Vehicle Routing Problems”. International Journal

of Information Systems and Supply Chain

Management, V. 12, No. 4, 2019, P. 1-26.

[5] Lu, Y., Tian, H., Yin, J. “A real-time routing protocol

in wireless sensor-actuator network”,

Communications in Computer and Information

Science, V. 931, 2019, P. 111-120.

[6] Wang, H., Zhang, N., Créput, J.-C. “A massively

parallel neural network approach to large-scale

Euclidean traveling salesman problems”,

Neurocomputing, V. 240, 2017, P. 137-151.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, Clifford Stein 2001. Introduction to

Algorithms. The MIT Press Cambridge,

Massachusetts.

[8] ILOG Cplex. World Wide Web,

https://www.ibm.com/tr-tr/products/ilog-cplex-

optimization-studio .

[9] TSPLIB. Library of Sample Instances for the TSP.

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/

index.html

