Istanbul Üniv. Fen Fak. Mat. Der., 54 (1995), 25-27

ABOUT A CLASS OF FINITE GROUPS

Ion ARMEANU

University of Bucharest, Physics Faculty, Mathematics Dept., Bucharest-Magurele, P.O. Box MG-11, ROMANIA

Summary: This note is concerned to prove some interesting facts about the groups G who have the property that NG(ax) is subnormal in NG(a) for every $a, x \in G$ such that ax = xa, where a has odd order and the order of x is a power of 2.

BİR SONLU GRUP SINIFI HAKKINDA

Özet : Bu çalışmada şu özeliği taşıyan sonlu G gruplarına ilişkin bazı ilginç sonuçlar elde edilmektedir: " $a, x \in G$, a nın mertebesi tek, x in mertebesi 2 nin kuvveti biçiminde ve ax = xa olmak üzere, her a, x çifti için NG(ax), NG(a) nın bir normal alt grubudur".

In this note we will use only finite groups and the notations and definitions will be those of [3].

Definitions :

a) We will say that a group G is an A-group if for every $a \in G$ of odd order and for every $x \in G$ of order a power of 2, such that ax = xa, then $N_G(ax)$ is subnormal in $N_G(a)$.

b) We will say that a group is a Q-group if all its irreducible characters are rational valued.

c) We will say that a group is a QA-group if it is a Q-group and an A-group too.

Proposition 1. Let G be an A-group. Let $a, x \in G$ be as in the Definitions. Then:

a) $N_{G}(ax) \leq N_{G}(a)$.

b) $C_G(ax)$ is subnormal in $N_G(a)$.

c) Let *H* be a 2-Sylow group of $N_G(a)$ and H_0 be the 2-Sylow group of $C_G(a)$ such that $H_0 \leq H$. Then $H \cap N_G(ax) = N_2$ is a 2-Sylow group of $N_G(ax)$ and $H_0 \cap C_G(ax) = C_2$ is a 2-Sylow group of $C_G(ax)$.

25

and the second
The proof is obvious.

For the next we will use the already introduced notations.

Theorem 2. Let G be a QA-group. Then $H_0 \leq H$ is fusion free.

Proof. Let be $x \in H_0$ and $b \in H \setminus H_0$. We will show that there exists a

 $h \in H_0$ such that $b^{-1}xb = h^{-1}xh$. Let $u \in \operatorname{Aut}_2(a)$ be the nontrivial inner automorphism given by b, where $\operatorname{Aut}_2(a)$ is the 2-Sylow group of $\operatorname{Aut}(a)$. Since G has rational valued characters we have that

 $N_G(ax)/C_G(ax) \approx \operatorname{Aut}(ax) \approx \operatorname{Aut}(a) \times \operatorname{Aut}(x)$ (see [3], pg. 11) and that $N_2/C_2 \approx N_2$. C(ax)/C(ax) (see [4], pg. 56).

Therefore there exists a $b_u \in N_2$ such that its image in $\operatorname{Aut}_2(a) \times \operatorname{Aut}_2(x)$ to be *u.*1, consequently $b_u^{-1} a b_u = b^{-1} a b$ and b_u commutes with *x*.

Since b and b_u lead to the same automorphism of $\langle a \rangle$, there exists a $h \in H_0$ such that $b = b_u h$. Then

$$b^{-1}xb = h^{-1}b_u^{-1}xb_u h = h^{-1}xh$$
.

Theorem 3. Let G be a QA-group. Then H_0 is a Q-group.

Proof. Let $f_a : N_G(a) \rightarrow \operatorname{Aut}(a)$ be given by $f_a(x)(a) = x a x^{-1}$. Since G has rational valued characters, f_a is an epimorphism. Let $h \in H_0$, and let z, w be the generators of Aut (h). For

$$f_{ab}: N_G(ab) \rightarrow \operatorname{Aut}(ab) \approx \operatorname{Aut}(a) \times \operatorname{Aut}(b)$$

there exist $x, y \in N_G(ah)$ such that $f_{ah}(x) = z$ and $f_{ah}(y) = w$. Since Aut(h) is a 2-group it follows that any odd powers of z and w are generators for Aut(h) too. Therefore if $|x|=2^j q$ and $|y|=2^k r$, with q and r odd integers, considering $x_1=x^q$ and $y_1=y^r$ it follows hat $f_{ah}(x_1)$ and $f_{ah}(y_1)$ are generators for Aut(h), besides h, $x_1, y_1 \in C(a) \cap N(ah)$. Since G is an A-group, using the Sylow's theorem we obtain that there exist u, $v \in C(a) \cap N(ah)$ such that the elements $x_2=ux_1u^{-1}$ and $y_2=vy_1v^{-1}$ belong to the 2-Sylow group $H_0 \cap N(ah)$ of N(ah). Besides $f_{ah}(x_2) = f_{ah}(x_1)$ and $f_{ah}(y_2) = f_{ah}(y_1)$. Therefore $f_{ah}(x_2)$ and $f_{ah}(y_2)$ generate Aut(h).

Remark. In particular, for a = 1 we obtain that for a QA-group it holds the old standing conjecture (see [3], pg. 13) that asserts that for a Q-group the 2-Sylow subgroups are Q-groups too. In fact, at this moment I do not know an example of a Q-group which is not an A-group.

ABOUT A CLASS OF FINITE GROUPS

Proposition 4. a) Let G be an A-group and H≤G. Then H is also an A-group.
b) Let G be a QA-group and H≤G fusion free. Then H is also a QA-group.

Proof. We know that $N_G(ax)$ is subnormal in $N_G(a)$. Then $N_{H}(ax) = N_G(ax) \cap H$ is subnormal in $N_{H}(a) = N_G(a) \cap H$ (see [4], pg. 127).

Proposition 5. Let G be a QA-group with abelian 2-Sylow group. Then: a) Any 2-Sylow group is isomorphic with $\mathbb{Z}_2 \times ... \times \mathbb{Z}_2$ and the Schur index $m_{\mathbb{Q}}(X) = 1$, $\forall X \in Irr(G)$.

b) G is strong real.

Proof. Since the 2-Sylow groups are abelian Q-groups it follows immediately that they are isomorphic with $\mathbb{Z}_2 \times \ldots \times \mathbb{Z}_2$. Through the Brauer-Speiser Theorem (see [5], pg. 9) and Fein-Yamada Theorem (see [5], pg. 143) we obtain that $m_{\mathbf{Q}}(X) = 1$ for every $X \in \operatorname{Irr}(G)$. We get b through the Theorem 2.4 of [2].

Remark. The 2-QA-groups are exactly the 2-Q-groups.

Proposition 6. a) \mathbf{Z}_2 wr ... wr \mathbf{Z}_2 is a QA-group.

b) A 2-group is a QA-group if and only if it can be embedded without fusion in a direct product of Z_2 wr ... wr Z_2 (wr means wreath product).

For the proof see [1].

Proposition 7. Let G be a QA-group with nonabelian dihedral resp. quaternionic 2-Sylow groups. Then the 2-Sylow groups are isomorphic with D_8 resp. Q_8 .

Proof. D_8 resp. Q_8 are the only dihedral resp. quaternionic nonabelian groups whose characters are rational valued.

REFERENCES

[1]	ALEXANDRU, V. and ARMEANU, I.	:	Sur les caractères d'un groupe fini, C.R. Acad. Sei. Paris, 298 (1984), Serie I, No. 6.
[2]	GOW, R.	:	Real-Valued and 2-Rational Group Characters, J. of Algebra, 61 (2) (1979), 388-413.
[3]	KLETZING, D.	:	Structure and Representations of Q-groups, Lecture Notes in Mathematics, Springer-Verlag, 1984.
[4]	ROSE, J.S.	:	A Course in Group Theory, Cambridge, 1978.
[5]	YAMADA, T.	:	The Schur Subgroup of the Brauer Group, Lecture Notes in Mathematics 397, Springer-Verlag, 1974.