RATIONAL ALTERNATING GROUPS

Ion ARMEANU
University of Bucharest. Physics Faculty, Mathematics Dept., Bucharest-Magurele, P.O. Box MG-11, ROMANIA

Summary : In this note we shall prove that only A_{10} is a rational alternating group.

RASYONEL ALTERNE GRUPLAR

Özet : Bu çalş̣mada tek rasyonel alterne grubun A_{10} olduğu ispat edilmektedir.

The notations and definitions will be those of [1] and [2].
Definition (see [2]). A rational group (or a Q-group) is a finite group all whose irreducible characters are rational valued.

Proposition 1 (see [2]). Let G be a finite group.
(i) Then G is rational if and only if for every $x \in G, N(\langle x\rangle) / C(x) \approx$ $\simeq \operatorname{Aut}(\langle x\rangle)$.
(ii) An element $x \in G$ is rational iff $N(\langle x\rangle) / C(x) \simeq \operatorname{Aut}(\langle x\rangle)$.

Theorem 2. A_{10} is the only nontrivial rational alternating group.
Proof. It is well known that the symmetric groups S_{n} are rational groups. Since the alternating group A_{n} is normal in S_{n}, it contains full conjugacy classes of S_{n}. Hence, for an elements x of A_{n} to be rational it is necessary that the conjugacy class of $x, \operatorname{cl}(x)$, in S_{n} splits in A_{n}. The length of $\mathrm{cl}(x)$ is the index of the centralizer of x in the corresponding group. Clearly $C_{A_{n}}(x)=C_{S_{n}}(x) \cap A_{n}$. Since $\left|S_{n}: A_{n}\right|=2$, either $C_{A_{n}}(x)=C_{S_{n}}(x)$ or $\left|C_{S_{n}}(x): C_{A_{n}}(x)\right|=2$. Therefore the S_{n} conjugacy class of x splits in A_{n} iff $C_{A_{n}}(x)=C_{S_{n}}(x)$.

We prove now that $C_{A_{n}}(x)=C_{S_{n}}(x)$ if and only if the type of x (see [1]), $T(x)=\left(t_{1}, \ldots, t_{s}\right)$ has t_{i} odd and pairwise different.

Suppose $C_{A_{n}}(x)=C_{S_{n}}(x)$. Since x commutes with its cyclic factors then x cannot have cyclic factors of even length. If x has two cyclic factors $\left(i_{1}, \ldots, i_{k}\right)$
and $\left(j_{1}, \ldots, j_{k}\right)$ of the same length, then $\left(i_{1} j_{1}\right) \ldots\left(i_{k} j_{k}\right)$ belongs to $C_{S_{n}}(x)$ hut is not in A_{n}.

Suppose now that $T(x)=\left(t_{1}, \ldots, t_{s}\right)$ with t_{i} odd and pairwise different. Then $\left|C_{S_{n}}(x)\right|=\Pi t_{i}$ is odd, hence $C_{S_{n}}(x)=C_{A_{n}}(x)$.

Let $x=(12 \ldots k) \ldots(j \ldots n)$ product of odd lengths disjoint cycles. Then $y=(2 k)(3(k-1)) \ldots(j+1 n) \ldots$ inverts x. Clearly, y is not in A_{n} if and only if the number of cyclic factors of x having length congruent to $3 \bmod 4$ is odd. Suppose $y \notin A_{n}$ and there is a $z \in A_{n}$ which inverts x. Then $\left(z^{-1} \cdot y\right) x\left(z^{-1} y\right)^{-1}=x$ and $z^{-1} y \notin A_{n}$, hence $C_{S_{n}}(x) \neq C_{A_{n}}(x)$, contradiction. We shall study how the existence of such conjugacy classes.

For $n=4 l+1, l \geq 2$ we have the partition $(4 l-3,3,1)$: For $n=4 l+2$, $l \geq 4$ the partition $(4(l-1)-3,5,3,1)$. For $n=4 l+3$ the partition $(4 l+3)$. For $n=4 l$ the partitions $(3,1)$ resp. ($4 l-3,3$). Hence no alternating group A_{n} with n like before can be rational.

Therefore it remains to study the rationality of $A_{5}, A_{6}, A_{10}, A_{14}$.
For A_{5} the partition (5) has odd and different elements. Let $x=(12345)$. Since Aut $(\langle x\rangle) \simeq \mathbf{Z}_{4}, A_{5}$ is not rational by Prop. 1 .

For A_{6} we have the partition $(5,1)$ and as before A_{6} is not rational.
For A_{14} we have the partition $(13,1)$ and as before the element $(1 \ldots 13)$ is not rational.

For A_{10} the only partitions with odd and different elements are $(9,1)$ and (7, 3). Since the elements of these types are rational, it follows that A_{10} is rational.

Remark. At this moment we do not know examples of rational simple groups other than \mathbf{Z}_{2} and A_{10}. We believe that only these groups are rational simple groups.

REFERENCES

[1] HUPPERT, B. : Endiche Gruppen, Springer-Verlag, 1967.
[2] KLETZING, D. : Structure and Representations of Q-Groups, Lecture Notes in Mathematics, Springer-Verlag, 1984.

