AMBIVALENT GROUPS HAVING STRONGLY EMBEDDED SUBGRUOPS

Ion ARMEANU

University of Bucharest, Physics Faculty, Mathematics Dept., Bucharest-Magurele, P.O. Box MG-11, ROMANIA

Summary : In this note we shall prove that in an ambivalent solvable group having a strongly embedded subgroup, a Sylow 2-subgroup is either a cyclic group or a generalized quaternion group.

KUVVETLİ YATIRILMIŞ ALT GRUPLARI HAİZ AMBİVALANT GRUPLAR

Özet : Bu çalışmada, kuvvetli yatırılmış bir alt grubu haiz bir ambivalant çözülebilir grupta bir 2-Sylow alt grubum ya bir devresel grup veya bir genelleştirilmiş kuaterniyon grubu olduğu ispat edilmektedir.

Definition. Let G be a finite group. A subgroup H of G is said to be strongly embedded in G if the following condition are satisfied:

(1) H is a proper subgroup of even order.

(2) For any element $x \in G - H$, the order of $H \cap H^*$ is odd (see [3], pg. 391).

Theorem 1 (Bender, see [3], pg. 391). Let G be a group having a strongly embedded subgroup H. Then, we have one of the following alternatives:

(1) Every Sylow 2-subgroup of G contains exactly one element of order 2. Thus a Sylow 2-subgroup of G is either a cyclic group or a generalized quaternion group.

(2) The group G possesses a normal series $G > L > M > \{1\}$ such that both G/L and M are groups of odd order, and such that the factor group L/M is isomorphic to one of the simple groups PSL (2, q), Sz(q), or PS $\cup (3, q)$, where q is a power of 2.

In the first case (1), let t be any element of order two. Then, $C_G(t)$ is a proper subgroup of G, and any proper subgroup of G containing $C_G(t)$ is strongly embedded in G. In the second case (2), every strongly embedded subgroup H of G is of the form $H = N_G(S) O_2$. (G) for some Sylow 2-subgroup S of G.

Theorem 2 (see [3], pg. 393). Let *H* be a strongly embedded subgroup of a group *G*. Let *u* be an element of I(H), and let $C=C_G(u)$. Then, the following poropositions hold:

Ion ARMEANU

(1) The set $I(G) = \{x \in G \mid x^2 = 1, x \neq 1\}$ is a conjugacy class of G. In other words, all involutions of G are conjugate.

(2) The set I(H) is a conjugacy class of H. Furthermore, if $b = a^x$ for $a, b \in I(H)$ and $x \in G$, then we have $x \in H$.

Theorem 3 (see [1]). In the conditions of Theorem 1-part 2, a Sylow 2-subgroup of G is either homocyclic or a Suzuki 2-group (see [2]) and G/O_2 . (G) is a 2-normal group.

Definition. An ambivalent group is a finite group all whose characters are real valued.

Theorem 4. Let G be a solvable ambivalent group having a stronly embedded subgroup. Then:

i) A Sylow 2-subgroup of G is either \mathbf{Z}_2 or a generalized quaternion group.

ii) G is 2-nilpotent and $G = O_2$. (G) where $S \in Syl_2(G)$ inverts all elements of O_2 . (G).

Proof. To find the Sylow 2-subgroups of G we can suppose that O_2 . (G) is trivial.

Let $A = \langle I(G) \rangle$. Then A is a normal subgroup of G and because G is solvable, it contains an abelian minimal normal subgroup of G. Since O_2 . (G) is trivial it follows that $A = I(G) \cup \{1\}$ and A is abelian. Let H be a strongly embedded subgroup of G such that A < H. Let $S \in Syl_2(G)$ such that $A \subseteq S \subseteq H$. Since H is a strongly embedded subgroup of G and A is a normal subgroup of G it follows that S is the single Sylow 2-group of G and S is normal in G.

Since the irreducible characters of G/S are in fact irreducible characters of G, it follows that G/S is also an ambivalent group. Since no odd order group is ambivalent it follows that G = S. Clearly $Z(S) \neq 1$. Since I(S) must be a single conjugacy class, we have that |I(S)|=1, hence G=S contains only one involution. Therefore S is either a cyclic group or a quaternion group. Since S is an ambivalent group it follows that S is isomorphic either to \mathbb{Z}_2 or to a generalized quaternion group. If O_2 . $(G) \neq 1$, it follows that $G = O_2$. (G) S (semidirect product) and S inverts all elements of O_2 . (G).

REFERENCES

[1] -	ARMEANU, I.	:	The 2-Sylow subgroups of groups having strongly embedded sub-	
			groups (to appear).	
[2]	HUPPERT, B. and	:	Finite Groups, Vol. 2, Springer-Verlag, 1982.	
4 °	BLACKBURN, N.	. '		
[3]	SUZUKI, M.	:	Group Theory, Vol. 2, Springer-Verlag, 1986.	

50