ON SOME MULTIVALUED SYSTEMS AND FUNDAMENTAL RELATIONS

M.I.M. AL ALI

Department of Mathematics, Mu'tah University, P.O. Box 7, Mu'tah-Alkarak, JORDAN

Summary: In this paper we introduce the definition of the *n*-hypering relation and prove some results related to it.

ÇOK DEĞERLİ BAZI SİSTEMLER VE TEMEL BAĞINTILAR HAKKINDA

Özet ; Bu çalışmada "n-hypering relation" tanımı ithal edilmekte ve bununla ilgili bazı sonuçlar ispat edilmektedir.

1. INTRODUCTION

In this paper we study the largest classes of multivalued systems that satisfy group-like and ring-like axioms. The first multivalued system is the hypergroup which is defined as follows: $\langle H, \cdot \rangle$ is a hypergroup if \cdot : $H \times H \rightarrow \rho(H)$ is a hyperoperation such that the associative law and the reproduction axiom are satisfied, i.e. x.(y.z)=(x.y).z and x.H=H.x=H for all $x, y, z \in H$. The multiplications $x \cdot (y \cdot z)$ and $x \cdot H$ are understood as $\bigcup_{t \in y, z} \{x \cdot t\}$ and $x \cdot H = \bigcup_{h \in H} \{x \cdot h\}$ respectively, and $\rho(H)$ is the power set of H. Special cases of those structures are: canonical hypergroups [9], reversible hypergroups, cogroups, polygroups [1], join spaces [12], [2], feebly canonical hypergroups [3] and others as for example in [4], [5], [6]. The second multivalued system is the hyperring in the general sense: $\langle R, +, \cdot \rangle$ is a hyperring in the general sense if $+: R \times R \to \rho(R)$, \cdot : $R \times R \rightarrow \rho(R)$ are two hyperoperatins such that $\langle R, + \rangle$ is a hypergroup and (.) is associative hyperoperation which is distributive with respect to (+) not necessarily strong, i.e. $x(y+z) \subset xy + xz$, where x(y+z) is understood as $\{x \cdot t\}$ for all $z, x, y \in R$. If only the multiplication (.) is a hyperoperation and the addition (+) is a usual operation then we say that R is a multiplicative

and the addition (+) is a usual operation then we say that R is a multiplicative hyperring [13], [11]. If only (+) is a hyperoperatin we shall say that R is an additive hyperring; a special case of this is the hyperring introduced by Krasner in [7] and studied by Miltas [10] and others. For more details see [13], where the above definitions have been taken.

2. The n-Fundamental Relation

Definition 2.1. [8] Let $\langle R, +, \cdot \rangle$ be a hyperring in the general sense. For a given natural number $n \neq 0$ we define in R the n-fundamental relation as follows, which we denote by n:

- (i) and for all $a \in R$,
- (ii) $a\underline{n}b$, $a \neq b$ if we can find elements $x_0, x_1, \dots x_k \in R$ where $x_0 = a$, $x_k = b$, and $i_1, i_2, \dots, i_k > 1$ are natural numbers such that

$$\{x_{s-1}, x_s\} \subset \sum_{\nu=1}^{n^{i_s-1}} \left(\prod_{\mu=1}^{i_s} x_{s\mu\nu}\right), \quad s=1,...,k,$$

where $x_{suv} \in R$. It can be easily seen that the *n*-fundamental relation is an equivalence relation. Let us denote by F_n the quotient set, we call it the *n*-quotient set, by $F_n(x)$ the *n*-fundamental class of the element x.

Proposition 2.2. [8] If $\{u, v\} \subset xy$ for some $x, y \in R$, then unv.

Proof. From the reproduction axiom with respect to (+) we can choose $y_1, y_2, ..., y_n \in R$ such that $y \in y_1 + y_2 + ... + y_n$, then

$$\{u, v\} \subset xy \subset x(y_1 + y_2 + \dots + y_n) \subset xy_1 + xy_2 + \dots + xy_n$$

Therefore from the definition we obtain unv.

Definition 2.3. [13] Let R be a hyperring. In the quotient set F_n we can define two hyperoperations in the usual manner:

$$F_n(x) + F_n(y) = \{F_n(z) : x \in x' + y', \text{ for all } x' \underline{n} x, y' \underline{n} y\}$$
$$F_n(x) \cdot F_n(y) = \{F_n(z) : z \in x' \cdot y', \text{ for all } x' \underline{n} x, y' \underline{n} y\}$$

for every $F_n(x)$, $F_n(y)$ of F_n .

Theorem 2.4. [13]
$$F_n(x) \cdot F_n(y) = \{F_n(z)\}$$
, for all $z \in xy$ (see [13]).

Definition 2.5. Let $\langle R, +, \cdot \rangle$ be a hyperring, then $\langle R, +, \cdot \rangle$ is called a distributive hyperring if (+) is a distributive operation with respect to (\cdot) as follows:

$$x + (y \cdot z) \subset (x + y) \cdot (x + z)$$
 for all $x, y, z \in R$.

We are now in a position to prove the following theorem:

Theorem 2.6. [13] Let $\langle R, +, \cdot \rangle$ be a distributive hyperring, then $F_n(x) + F_n(y) = \{F_n(z)\}$, for all $z \in x + y$.

Proof. Let

$$F_n(x) + F_n(y) = \{F_n(z) : z \in x' + y', \text{ for all } x'nx, y'ny\}.$$
 (1)

 $x'nx \Longrightarrow \exists x_0, x_1, ..., x_k \in R \text{ with } x_0 = x', x_k = x \text{ such that}$

$$\{x_{s-1}, x_s\} \subset \sum_{\nu=1}^{n^{i_s-1}} \left(\prod_{u=1}^{i_s} x_{su\nu}\right), \quad s=1,...,k.$$
 (2)

 $y'ny \Longrightarrow \exists y_0, y_1, ..., y_k \in R \text{ with } y_0 = y', y_k = y \text{ such that}$

$$\{y_{t-1}, y_t\} \subset \sum_{\nu=1}^{n^{t_t-1}} \left(\prod_{\mu=1}^{t_t} y_{t\mu\nu}\right), \quad t = 1, ..., \lambda.$$
 (3)

Since the reproduction axiom is valid in $\langle R, +, \cdot \rangle$ we can choose $u_1, u_2, ..., u_n, v_1, v_2, ..., v_n \in R$ such that $y' \in u_1 + ... + u_n, x \in v_1 + ... + v_n$.

Using these expressions we add y' to all members of (2) on the right side and we add x to all members of (3) on the left side, so we obtain for appropriate \overline{x} and \overline{y} :

$$\{x_{s-1} + y'\} \cup \{x_s + y'\} \subset \sum_{\nu=1}^{n^{l_s}} \left(\prod_{\mu=1}^{t_{s+1}} \overline{x}_{s\mu\nu}\right), \quad s = 1, ..., k,$$
 (4)

where $\overline{x}_{s\mu\nu} = y' + x_{s\mu\nu}$,

$$\{x + y_{t-1}\} \cup \{x + y_t\} \subset \sum_{\nu=1}^{n^{t}t} \left(\prod_{\mu=1}^{t_{t+1}} \overline{y}_{\mu\nu}\right), \quad t = 1, ..., \lambda,$$
 (5)

where $\overline{y}_{\mu\nu} = x + y_{\mu\nu}$. From (4) and (5) we take only one element of the sets $x_s + y'$, $x + y_t$ for s = 1, ..., k, $t = 2, ..., \lambda$ and observe that x'. $y' = x_0$. y' are in *n*-fundamental relation with all the elements of set $x \cdot y = x \cdot y_{\lambda}$.

Therefore we can write the relation (1) in the form

$$F_n(x) + F_n(y) = \{F_n(z)\} \text{ for all } z \in x + y.$$

Proposition 2.7. [13] If $\langle R, +, \cdot \rangle$ has the identity element 1 w. r. t. (•) and $\{u, v\} \subset x + y$, then *unv*.

Proof. Since the reproduction axiom is satisfied in $\langle R, +, \cdot \rangle$ then $\exists y_1, ..., y_n \in R$ such that $y \in y_1 + ... + y_n$ and then

$$\{u, v\} \subset x + y \subset x + (y_1 \cdot 1 + y_2 \cdot 1 + \dots + y_n \cdot 1)$$

$$\subset (x + y_1) \cdot (x \cdot 1) + (x + y_2) \cdot (x \cdot 1) + \dots + (x + y_n) \cdot (x \cdot 1)$$

$$= \overline{y}_1 \cdot x + \overline{y}_2 \cdot x + \dots + \overline{y}_n \cdot x,$$

where $\overline{y}_i = x + y_i$, i = 1, ..., n.

Therefore from the definition we obtain unv.

It is easily seen that $\langle F_n, +, \cdot \rangle$ is a hypergroup and \cdot is associative, so, since + is distributive over \cdot , $\langle F_n, +, \cdot \rangle$ is a ring.

Theorem 2.9. [13] Let $\langle R, +, \cdot \rangle$ be a hyperring with a zero 0 and a unit 1. If $\{u, v\} \subset \prod_{i=1}^k x_i$, then u = v.

Proof. From the reproduction axiom there exist $y_1, y_2, ..., y_t \in R$ such that $x_k \in y_1 + ... + y_t$, so

$$\{u, v\} \subset \prod_{i=1}^{k-1} x_i \cdot (y_1 + \dots + y_t)$$

$$\subset \prod_{i=1}^{k-1} x_i \cdot y_1 + \dots + \prod_{i=1}^{k-1} x_i \cdot y_t$$

$$\subset \prod_{i=1}^{k-1} x_i \cdot y_1 + \dots + \prod_{i=1}^{k-1} x_i \cdot y_t + \underbrace{0 \cdot 1^k + 0 \cdot 1^k + \dots + 0 \cdot 1^k}_{n^{k-1} - t \text{ times}},$$

where $1^k = \underbrace{1.1...1}_{k \text{ times}}$ so $u\underline{n}v$.

3. n-Hyperring Relation

Definition 3.1. Let $\langle R, +, \cdot \rangle$ be a hyperring, where + is distributive with respect to \cdot . For a given natural number $n \neq 0$ we define in R the n-hyperring relation as follows, which we denote by n:

- (i) \overrightarrow{ana} for all $a \in R$,
- (ii) anb, $a \neq b$ if we can find elements $x_0, x_1, ..., x_k \in R$ where $x_0 = a, x_k = b$ and $i_1, i_2, ..., i_k > 1$ are natural numbers such that $\{x_{s-1}, x_s\} \subset \sum_{r=1}^{n^{ls-1}} \left(\prod_{u=1}^{i_s} x_{suv}\right)$, s = 1, ..., k where $x_{suv} \in R$.

Remark 3.2. It is very clear that the n-hyperring relation is an equivalence relation.

Proposition 3.3. $F_{\hat{n}}(x) + F_{\hat{n}}(y) = F_{\hat{n}}(z)$, for all $z \in x + y$.

Proof. The proof is analogous to that of Theorem 2.6 except that we add y' to the right side of (2) of Theorem 2.6 using the distributive property of (+) on (.), namely $x + (y \cdot z) \subset (x + y) \cdot (x + z)$ to get

$$\{x_{s-1}+y'\}\cup\{x_s+y'\}\subset\prod_{\nu=1}^{n^{ls}}\Big(\sum_{\mu=1}^{ls+1}\overline{x}_{s\mu\nu}\Big),$$

where $\bar{x}_{s\mu\nu} = x_{s\mu\nu} + y'$, s = 1,...,k, also we add x to the left side of (3) in Theorem 2.6 to get

$$\{x + y_{t-1}\} \cup \{x_s + y_t\} \subset \prod_{v=1}^{n^{l_t}} \left(\sum_{u=1}^{i_t+1}\right) \overline{x}_{tuv}, \quad t = 1, ..., \lambda,$$

where $\overline{y}_{tuv} = x + y_{tuv}$. By following the same argument of Theorem 2.6 we get $F_{\hat{n}}(x) + F_{\hat{n}}(y) = F_{\hat{n}}(z)$, for all $z \in x + y$.

Definition 3.4. Let $\langle R, +, \cdot \rangle$ be a hyperring, it is called strong iff

$$\prod_{i=1}^{k} \left(\sum_{j=1}^{n} x_{ij} \right) \subset \sum_{j=1}^{n} \sum_{i=1}^{k-1} x_{ij} \cdot x_{i+1,j},$$

where $x_{ii} \in R$.

Theorem 3.5. If $\langle R, +, \cdot \rangle$ is a strong hyperring, then $F_{\hat{n}}(x) \subset F_{n+1}(x)$ for all $x \in R$.

Proof. Let $a \in F^{\hat{n}}(x)$, i.e. anx, this implies that there exist $x_0, x_1, ..., x_k \in R$ with $x_0 = a$ and $x = x_k$ such that

$$\{x_{s-1}, x_s\} \subset \prod_{v=1}^{n^{l_s-1}} \left(\sum_{\alpha=1}^{i_s} x_{s\mu v}\right), \quad s=1,...,k.$$

Since $\langle R, +, \cdot \rangle$ is a strong hyperring then

$$\prod_{v=1}^{n^{l_s-1}} \Big(\sum_{u=1}^{i_s} x_{s\mu v} \Big) \subset \sum_{v=1}^{(n+1)} \Big(\prod_{u=1}^{i_s-2} x_{s\mu v} \Big).$$

Therefore a and x are in the n+1 - fundamental ralation, so $F_{\hat{n}}(x) \subset F_{n+1}(x)$.

REFERENCES

[1] COMER, S. : Polygroups derived from cogroups, Journal of Algebra, 89 (1984), 397-405.

[2] CORSINI, P. : Contributo alla teoria degli ipergruppi, Atti Soc. Pelor. Sc.

Mat. Fis. Nat., Messina (1980).

[3] CORSINI, P. : Feebly Canonical and I-Hypergroups, Acta Un. Carolinae, Math. et Ph., 24 (2) (1983), 49-56.

[4] DESALVO, M. : Gli (H, G)-Ipergruppi. Convegno su, Ipergruppi, altre strutture multivoche e loro applicazioni, Udine, 111-119 (1985).

[5] DESALVO, M. : Ik_H ipergruppi, Atti Sem. Mat. Fis. Univ. Modena, XXXI (1982), 113-122.

[6] RENI, D. : Ipergruppi ciclici e torsione negli ipergruppi, Le Matematiche, XXXV (1983), Fas. I-II (1980), 270-286.

[7] KRASNER, M.
 Approximation des corps valué complète de caractéristique p = 0
par ceux de caractéristique 0, Actes du Colloque d'Algebre supérieure C.B.R.M. Bruxelles (1956).

[8] MITTAS, J. : Hypergroupes Canoniques, Mathematica Balkanika, 2 (1972), 165-169.

[9] MITTAS, J. : Sur les hyperanneaux et les hypercorps, Mathematica Balkanika,3 (1973), 368-382.

[10] PROCESI, R. and : Le spectre premier d'un hyperanneaux multiplicatif, Convegno su, Ipergruppi. altre strutture multivoche e loro applicazioni, 121-130 (1985).

[11] PRENOWITZ, W. and: Join geometries, U.T.M., Springer-Verlag, 1979. JANTOSCIAK, J.

[12] ROTA, R. : Sugli iperanelli moltiplicativi, Rend. di Math. e delie Applicazioni, Ser. VII, 2 (4) (1982), 711-724.

[13] VOUGIOUKLIS, T.: Representations of hypergroups by Hypermatrices, Rivista di Matematica Pura ed Applicata, N. 2 (1987), 7-19.