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Swmmary : In this paper we establish the following result:
“If R is a semiprime ring admitting a derivation 4 such that either
@ xyx+d(xyx)=x*y+d(x*y) or (i) yxy+d (xyx)=xy"+d (xy™ for all x,
ye& R, then R must be commutative.”” Further, iff R is prime, then (i) or
(i) need only be assumed for all x, ¥ in some non-zero ideal of R.

YARI ASAT. HATKATARIN TUREVI HAKKINDA

Ozet : Bu calismada su sonug elde edilmektedir: “R, bir 4 tiirevini
haiz vart asal bir halka olsun, 8yle ki, her x, y € R igin ya (D) xyx+d (xpx)=
=x*ytd(x*y) veya (i) yxytd(xyx) = xp*+d (xy" olsun. Bu takdirde
R komutatif olmak zorundadir,” Bundan bagka, R nin asal halka olmas:
durumunda (i) ve (i) nin R nin s:fir idealden farkl: uygun bir idealine ait
biitiin x, ¥ ler igin gergeklenmesinin veterli oldugu gosterilmektedir,

INTRODUCTION

Recently, several authors interested in derivations on prime or semiprime
rings, and some of the results involved the commutativity of prime and semiprime
rings. In this paper, we investigate the commutativity on R of a derivation
satisfying one of the following conditions :

{(*} There exists a non-zero ideal I of R such that xyx+d{(xyx) =x2y+
d(x*y} for all x, yel

(**) There exists a non-zero ideal / of R such that xyx=®d(yxy)=xx)*+&
£d{xy*) for all x, yel
MAIN RESULTS
The principle results of this paper are the following:

Theorem 1. Let R be any prime ring admitting a derivation 4 and satisfying
‘the following: there exists a non-zero ideal I of R such that either xyx +d (xyx)=
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=xyxd(x®y) for all x, yel, or xyx+d(yxy) = £xp*+=d(xy* for all x,
yel Then R is commutative.

Theorem 2. Let R be a semiprime ring admitting a derivation & for which
either xyx + d(xyx) = x2y - d(x%y) for all x, ye R or xyx—d (xyx)=x y—
—d(x*y) for all x, ye R, Then R is commutative.

Theorem 3. Let R be a semiprime ring admitting a derivation 4 for
which either yxy + d(yxy) = xy* + d(xy*) for all x, ye R, or yxy—d(yxy)=
= xp*— d (xy*) for all x, ye R. Then R is commutative.

Theorem 4. Let R be a semiprime ring with a derivation 4 satisfying the
following: there exists a non-zero ideal F of R such that xyx+d(xyx) =x*y+
+d(x®y) for all x, yel. Then I is a central ideal.

Theorem 5. Let R be a semiprime ring with a derivation d satisfying the
following: there exists a non-zero ideal I of R such that xyx-+d (yxp)=+x)?+
+d(xy?) for all x, yel Then [ is a centra] ideal.

Theorem 1 and Theorem 2 are consequences of Theorem 4, and also the
proofs of Theorem 1 and Theorem 3 are based on Theorem 5. In this connection
we state the following well-known results:

Lamme 1. Let R be a prime ring with a non-zero central ideal. Then R
is commutative.

Lemma 2. Let R be a semiprime ring. Then the center of a non-zero ideal
is contained in the center of R.
The following lemma is proved in [1]. For the sack of completeness, we

prove it.

Temma 3. Let R be a semiprime ring and let 4 be a non-zero ideal of R.
If @ in R centralizes the set [4, 4], then a centralizes A.

Proof. Suppose that a centralizes {4, 4]. Then for all x, ye 4, we have

alx, y] = [x, 5] a. I
Replace y by xyin (1) to get
' a [x, xy] = [x, ] a.
Thus '
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a(x*y — xyx) = (x* y — xyx) q,
ax(xy — yx) = x(xy —yx) q,
ax [x, )] = x[x, y] &
ax [x, y] — xa[x, y] =0,
{(ax — xa) [x, ] =0,
[a, x] [x, y] = 0. 2
Replacing y by xa in (2) gives
[a, x] [x, xa] =0,
[a, x] x [a, x] =0,
[, x] A[a, x] = {0}.
Since A is an ideal, we have
[a, x] AR [a, x] = [a, x] RA[a, x] = {0}.
Thus
[a, x] A =0
or
Ala,x] =0

for all x 4. Hence by Theorem 3 of [2], a centralizes A.

Proof of Theorem 4. By hypothesis, there exists a non-zero ideal I such
that

xyx 4 d(xyx) = x* y - d(x* y), (3)
xyx — x*y =d(x*y — xyx),
x[y, x] = d(x[x, ¥, “@

for all x, yel.
Further, for all x, y, zel, we have
[x [y, x] —d{x[x,)]), 2] =0,
X[y, x] z—dx[x ] z =z(x[y, x]} — 2d (x [x, ¥]),
x [y, x] z — d(x[x, ]} z — (x [x, ¥]) d(2} = zx [y, x] — d(zx [x,)]),
x [y, x] z—d (x [x, ¥]) z—x [x, y] d(2)=zx [y, x]—d (2) x [x, y]—zd (x [x, y])- (3)
Using (4), (5) yields

x[x, y] d(z) = d(z) x[x, )],
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for all x, y, z in I. By Lemma 3, we observe that ¢ (I) centralizes I, and (3) gives
that x [x, 3] is in the center of I. Thus

[x[x, ], 2] =0
and
[[x, xy], 2] =0
for all z e I Using of the same line of Lemma 1 implies that z centralizes [/, I].

Therefore, [x, 3] lies in the center of I, for all x, yef Also this shows that I
is commutative. Thus by Lemma 2 I'is in the center of' R, Hence R is commutative,

Similary, we can establish that
xyx —dxyx)y =x2y — d(x®y)
for all x, y in I

Proof of Theorem 5. By the hypothesis, there exists a non-zero ideal I
such that for all x, yel, '

yxy + d(yxy) = xp* 4 d(xp?),
yxy — xy* = d(xy* — yxy),
(x —xy) y = d((xy — yx) »),
[y, x] y = d ([, 1 ).
Repeating the same line as in the proof of Theorem 4, we prove this theorem.
-, In the same way we can prove that for all x, ye],
yxy —d(pxy) = xp* — d(xp?).

Theorem 1 follows from Theorem 4, Theorem 5 and Lemma 1. Also Theorem 2
is direct from Theorem 4 and Theorem 3 is immediate from Theorem 5.
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