SOME COMMUTATIVITY RESULTS FOR ONE SIDED s-UNITAL RINGS

H.A.S. ABUJABAL*, M. ASHRAF** and M.A. ALGHAMDI*

(*) Department of Mathematics, Faculty of Science, King Abdul Aziz University, P.O. Box 31464, Jeddah 21497, SAUDI ARABIA
(**) Department of Mathematics, Aligarh Muslim University, Aligarh 202002, INDIA *
Summary : Let R be an associative ring, $\mathbf{Z}[t]$ is the totality of polynomials in t with coefficients in \mathbf{Z}, the ring of integers, and let A be any non-empty subset of R. In this paper, we consider the following ring properties:
$(H):$ For each x, y in R, there exits $f(t) \in t^{2} Z[t]$ such that $[x-f(x), y]=0$.
(C) : For all x, y in R, there exist $f(t), g(t) \in t^{3}, Z[t]$ such that $[x-f(x), y-g(y)]=0$.
$(I-A):$ For each x in R either x is central or there exists $f(t) \in$ $\in t^{2} \mathbf{Z}[t]$ such that $x-f(x) \in A$.
$P(m, n, p, q):$ For each x, y in R, there exists $f(t) \in t^{2} \mathbf{Z}[t]$ such that $\left[x^{m} y x^{n}-x^{p} f(y) x^{q}, x\right]=0$, where m, n, p, q are fixed non-negative integers.
$P^{*}(m, n, p, q):$ For each x, y in R, there exist integers $m \geq 0, n \geq 0$, $p \geq 0, q \geq 0$ and $f(t) \in t^{2} Z[t]$ such that $\left[x^{m} y x^{n}-x^{p} f(y) x^{q}, x\right]=0$.

In fact, we prove "If R is a left (resp. right) s-unital ring satisfying $P(m, 0, p, q)$ (resp. $P(0, n, p, q)$), then R is commutative (and conversely)", and "If R is a left (resp. right) s-unital ring satisfying $P^{*}(m, 0, p, q)$ (resp. $P^{*}(0, n, p, q)$) and ($I-N(R)$), then R is commutative (and conversely)".

TEK YANLT " s-UNITAL" HALKALAR ICGiN BAZI KOMÜTATIELIK SONUÇLARI

Özet : R asosyatif bir halka, $\mathbf{Z}[t] t$ nin katsayıları \mathbf{Z} tamsayılar halkasından alınmiş bütün polinomlarından oluşan halka, A da R nin boş olmayan herhangi bir alt kümesi olsun. Bu çalışmada
$(H):$ Her $x, y \in R$ için, $[x-f(x), y]=0$ olacak şekilde $f(t) \in t^{3} Z[t]$ vardur.
(C) : Bütün $x, y \in R$ ler için, $[x-f(x), y-g(y)]=0$ olacak şekilde $f(t), g(t) \in t^{2} \mathbf{Z}[t]$ vardır.

1990 AMS Subject Classification: 16U80.
Key words and phrases: Commutativity of rings, ring with unity, s-unital rings.
$(I-A):$ Her $x \in R$ için ya x merkeze aittir veya $x-f(x) \in A$ olacak şekilde $f(t) \in t^{2} \mathbf{Z}[t]$ vardır.
$P(m, n, p, q):$ Her $x, y \in R$ için, $\left[x^{m} y x^{n}-x^{p} f(y) x^{q}, x\right]=0$ olacak şekilde $f(t) \in t^{2} \mathbf{Z}[t]$ vardır (burada m, n, p, q negatif olmayan sabit tam sayılardır).
$P^{*}(m, n, p, q):$ Her $x, y \in R$ için, $\left[x^{m} y x^{n}-x^{p} f(y) x^{q}, x\right]=0$ olacak şekilde $m \geq 0, n \geq 0, p \geq 0, q \geq 0$ tam sayıları ve $f(t) \in t^{2} \mathrm{Z}[t]$ vardir. gibi halka özelikleri kullanılarak şunlar ispat edilmektedir:

1) " $R, P(m, 0, p, q)(P(0, n, p, q))$ özeliǧini gerçekleyen bir sol (sağ) s-unital halka ise R komütatiftir ve bunun karşitı da dogrudur",
2) " $R, P^{*}(m, 0, p, q)$ özeligini ($P^{*}(0, n, p, q)$ ve $(I-N(R))$ özeliklerini) gerçekleyen bir sol (sağ) s-unital halka ise R komütatiftir ve bunun karşitı da dogrudur".

Let R be an associative ring (not necessarily with unity 1). A ring R is called left (resp. right) s-unital if $x \in R x$ (resp. $x \in x R$) for every $x \in R$. Further, R is called s-unital if $x \in R x \cap x R$ for all $x \in R$. If R is s-unital (resp. left or right s-unital), then for any finite subset F of R, there exists an element $e \in R$ such that $e x=x e=x$ (resp. $e x=x$ or $x e=x$) for all $x \in F$. Such an element e will be called a pseudo (resp. pseudo left or pseudo right) identity of F in R. Throughout the paper $Z(R)$ will denote the center of $R, N(R)$ the set of nilpotent elements of $R, C(R)$ the commutator ideal of R, and A a nonempty subset of R. As usual $Z[t]$ is the totality of polynomials in t with coefficients in Z, the ring of integers, and for any $x, y \in R,[x, y]=x y-y x$.

By $G F(q)$, we mean the Galois field (finite field) with q elements, and $(G F(q))_{2}$ the ring of all 2×2 matrices over $G F(q)$. Set $e_{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), e_{12}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, $e_{21}=\left(\begin{array}{ll}0 & 0 \\ \mathrm{i} & 0\end{array}\right)$, and $e_{22}=\left(\begin{array}{ll}0 & 0 \\ 0 & \mathrm{i}\end{array}\right)$ in $(G F(p))_{2}$ for a prime p.

Now, we consider the following types of rings :
(i) $\left(\begin{array}{cc}G F(p) & G F(p) \\ 0 & G F(p)\end{array}\right), p$ a prime.
(i) $\quad\left(\begin{array}{cc}G F(p) & G F(p) \\ 0 & 0\end{array}\right), p$ a prime.
(i) $r_{r}\left(\begin{array}{ll}0 & G F(p) \\ 0 & G F(p)\end{array}\right), p$ a prime.
(ii) $M_{\sigma}(\mathbf{K})=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & \sigma(a)\end{array}\right) \right\rvert\, a, b \in \mathbf{K}\right\}$, where \mathbf{K} is a finite field with a non-trivial automorphism o.
(iii) A non-commutative division ring.
(iv) $S=<1>+T$, where T is a non-commutative radical subring of S.
(v) $S=<1>+T$, where T is a non-commutative subring of S such that $T[T, T]=[T, T] T=0$.
From the proof of [19, Korollar 1] it can be easily seen that if R is a non-commutative ring with unity 1 , then there exists a factorsubring of R, which is of type (i), (i) $)_{i}$, (i) ${ }_{r}$, (iii), (iv) or (v). This gives the following Meta Theorem, which plays the key role in our subsequent study:

Meta Theorem. Let \mathbf{P} be a ring property which is inherited by factorsubrings. If no rings of type (i), (i) ${ }_{i}$, (i) $)_{r}$, (ii), (iii), (iv) or (v) satisfy \mathbf{P}, then every ring with unity 1 satisfying \mathbf{P} is commutative.

Next, we consider the following ring properties:
$(H):$ For each x, y in R, there exists $f(t) \in t^{2} Z[t]$ such that $[x-f(x), y]=0$.
$(C):$ For all x, y in R, there exist $f(t), g(t) \in t^{2} Z[t]$ such that $[x-f(x)$, $y-g(y)]=0$.
$(I-A)$: For each x in R either x is central or there exists $f(t) \in t^{2} Z[t]$ such that $x-f(x) \in A$.
$P(m, n, p, q):$ For each x, y in R, there exists $f(t) \in t^{2} Z[t]$ such that [$\left.x^{m} y x^{n}-x^{p} f(y) x^{q}, x\right]=0$, where m, n, p, q are fixed non-negative integers.
$P^{*}(m, n, p, q):$ For each x, y in R, there exist integers $m \geq 0, n \geq 0$, $p \geq 0, q \geq 0$ and $f(t) \in t^{2} Z[t]$ such that $\left[x^{m} y x^{n}-x^{p} f(y) x^{q}, x\right]=0$.

A well-known theorem of Herstein [10] (signified as Theorem H) asserts that every ring satisfying (H) is commutative. Recently, various authors have studied commutativity of rings satisfying conditions (C), but always under some restrictions (cf. [9], [13] \& [15] etc.). More recently, Komatsu et al. [13] investigated the commutativity of rings satisfying the condition $P^{*}(m, 0,0, q)$. Further, in a paper [16] Nishinaka established the commutativity of ring R with the conditions $P(m, 0,0, q)$ and $P(m, 0, p, 0)$. In fact, he proved that a ring R with unity 1 satisfying any one of the conditions $P(m, 0,0, q)$ and $P(m, 0, p, 0)$ must be commutative. In the present paper, first we shall study the commutativity of rings satisfying $P(m, n, p, q)$ and establish the commutativity of one sided s-unital ring with either of the conditions $P(m, 0, p, q)$ and $P(0, n, p, q)$. We then proceed to investigate the commutativity of rings satisfying $P^{*}(m, 0, p, q)$ or $P^{*}(0, n, p, q)$ together with the condition (C). As corollaries to our theorems we shall give several results concerning the commutativity of ring R. The results obtained in sequel generalize [1, Theorem 1.1], [2, Theorems 2\&3], [3, Theorems 1\&2],
[4, Theorem], [5, Theorem 2], [6, Theorems 1-4], [7, Theorems 4\&5], [15 Theorems $2 \& 3$ (2)], [16, Theorem 1], [18, Theorem] and [20, Theorem 2 (5)], and thus provide an effective measure to determine the commutativity of R.

We begin with the following lemmas, which are essentially proved in [13] and [15] respectively.

Lemma 1 [13, Corollary 1]. Let R be a ring with unity 1 satisfying (C). If R is non-commutative, then there exists a factorsubring of R, which is of type (i) or (ii).

Lemma 2 [15, Lemma 1]. If R is left s-unital and not right s-unital, then R has a factorsubring of type (i) ${ }_{l}$.

We pause to remark that the dual of Lemma 2 asserts that if R is right s-unital and not left s-unital, then R has a factorsubring of type (i) $)_{r}$.

The following proposition is an important one from the point of view that it serves as the foundation for our entire discussion.

Proposition 1. Let R be a ring with unity 1. If R satisfies $P(m, n, p, q)$, then there exists no factorsubring of R which is of type (ii), (iii), (iv) or (v).

Proof. Consider the ring $M_{\sigma}(\mathbb{K})$, a ring of type (ii). Let $x=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \sigma(\alpha)\end{array}\right)$, $(\sigma(\alpha) \neq \alpha), y=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Then

$$
\left[x^{m} y x^{n}-x^{p} f(y) x^{q}, x\right]=-x^{m}[x, y] x^{n}=-\alpha^{m}(\alpha-\sigma(\alpha))(\sigma(\alpha))^{n} y \neq 0
$$

for every $f(t) \in t^{2} Z[t]$. Thus no rings of type (ii) satisfy $P(m, n, p, q)$.
Next, if R is a ring of type (iii), then choose $f(t) \in t^{2} Z[t]$ such that

$$
\left[x^{-m} y x^{-n}-x^{-p} f(y) x^{-q}, x^{-1}\right]=0 .
$$

This yields that $\left[x^{-m} y x^{-n}-x^{-p} f(y) x^{-q}, x\right]=0$, that is

$$
x^{-m}[x, y] x^{-n}=x^{-p}[x, f(y)] x^{-q}
$$

It follows that

$$
\begin{equation*}
x^{p}[x, y] x^{q}=x^{m}[x, f(y)] x^{n} . \tag{1}
\end{equation*}
$$

Now, choose $g(t) \in t^{2} Z[t]$ such that $\left[x^{m} f(y) x^{n}-x^{p} g(f(y)) x^{q}, x\right]=0$. Hence we get

$$
\begin{equation*}
x^{m}[x, f(y)] x^{n}=x^{p}[x, g(f(y))] x^{q} . \tag{2}
\end{equation*}
$$

Comparing of (1) and (2) yields that $x^{p}[x, y] x^{q}=x^{p}[x, h(y)] x^{q}$, where $h(t)=g(f(t)) \in t^{2} Z[t]$. But, since x is unit, $[y-h(y), x]=0$ and by Theorem H, R is commutative, a contradiction. Hence no rings of type (iii) satisfy $P(m, n, p, q)$.

Further, suppose that R has a factorsubring of type (iv). Let $a, b \in T$. Since $1-a$ is a unit, there exists $f(t) \in t^{2} Z[t]$ such that $[a, b-f(b)]=-[1-a$, $b-f(b)]=0$, by above paragraph. Hence, by Theorem H, T is commstative. This is impossible. Hence no rings of type (iv) satisfy $P(m, n, p, q)$.

Finally, suppose that R is of type (v). For each $a, b \in T$, there exists $f(t) \in$ $\in t^{2} Z[t]$ such that

$$
[a, b]=(a+1)^{m}[a, b](a+1)^{n}=(a+1)^{p}[a, f(b)](a+1)^{q}=0 .
$$

This is a contradiction.
Hence, it proves that no rings of type (ii), (iii), (iv) or (v) satisfy $P(m, n, p, q)$.
Lemma 3. Let R be a ring with unity 1 . If for each x, y in R there exists an integer $k=k(x, y) \geq 1$ such that $x^{k}[x, y]=0$ or $[x, y] x^{k}=0$, then necessarily $[x, y]=0$.

Proof. Choose an integer $k_{1}=k(x, y) \geq 1$ such that $(x+1)^{k_{1}}[x, y]=0$. Now, if $N=\max \left(k, k_{1}\right)$, then it follows that $x^{N}[x, y]=0$ and $(x+1)^{N}[x, y]=0$. We have $[x, y]=\{(x+1)-x\}^{2 N+1}[x, y]$. On expanding the expression on right hand side by binomial theorem and using the fact that $x^{N}[x, y]=0$ and $(x+1)^{N}$ $[x, y]=0$, we get $[x, y]=0$. Similarly, if $[x, y] x^{k}=0$, then using the same techniques, we get the required result.

Lemma 4. Let R be a ring with 1 satisfying any one of the properties $P^{*}(m, 0, p, q)$ and $P^{*}(0, n, p, q)$. Then $N(R) \subseteq Z(R)$.

Proof. Property $P^{*}(m, 0, p, q)$ may be written as $x^{m}[x, y]-x^{p}[x, f(y)] x^{q}=0$. Let $a \in N(R)$ and x be an arbitrary element of R. Then there exist integers $m_{1}=m(x, a) \geq 0, p_{1}=p(x, a) \geq 0, q_{1}=q(x, a) \geq 0$ such that $x^{m_{1}}[x, a]=x^{p_{1}}\left[x, f_{1}(a)\right] x^{q_{1}}$ for some $f_{1}(t) \in t^{2} Z[t]$. Similarly, for the pair of elements $x, f_{1}(a)$, there exist integers $m_{2}=m\left(x, f_{1}(a)\right) \geq 0, p_{2}=p\left(x, f_{1}(a)\right) \geq 0, q_{2}=q\left(x, f_{1}(a)\right) \geq 0$ such that

$$
x^{m_{2}}\left[x, f_{1}(a)\right]=x^{p_{2}}\left[x, f_{2}\left(f_{1}(a)\right)\right] x^{q_{2}},
$$

for some $f_{2}(t) \in t^{2} Z[t]$, which yields that

$$
x^{m_{1}+m_{2}}[x, a]=x^{p_{1}+p_{2}}\left[x, f_{2}\left(f_{1}(a)\right)\right] x^{q_{1}+q_{2}} .
$$

Thus, it is clear that for an arbitrary k, there exist integers $m_{1}, m_{2}, \ldots, m_{k} \geq 0$, $p_{1}, p_{2}, \ldots, p_{k} \geq 0$, and $q_{3}, q_{2}, \ldots, q_{k} \geq 0$ such that

$$
x^{m_{1}+m_{2}+\ldots m_{k}}[x, a]=x^{p_{1}+p_{2}+\ldots+p_{k}}\left[x, f_{k}\left(\ldots f_{1}(a) \ldots\right)\right] x^{q_{1}+q_{2}+\ldots+q_{k}} .
$$

But since a is nilpotent, $x^{m_{1}+m_{2}+\ldots+m_{k}}[x, a]=0$ for sufficiently large k. Hence in view of Lemma 3, we get $[x, a]=0$ for all x in R. This proves that $N(R) \subseteq Z(R)$.

Using the similar arguments one can establish the result if R satisfies $P^{*}(0, n, p, q)$.

Following [11], let \mathbf{P} be a ring property. If \mathbf{P} is inherited by every subring and every homomorphic image, then \mathbf{P} is called an h-property. More weakly, if \mathbf{P} is inherited by every finitely generated subring and every natural homomorphic image modulo the annihilator of a central element, then \mathbf{P} is called an \mathbf{H} property.

A ring property \mathbf{P} such that a ring R has the property \mathbf{P} if and only if all its finitely generated subrings have \mathbf{P}, is called an \mathbf{F}-property.

Proposition 2 [11, Proposition 1]. Let \mathbf{P} be an H-property, and let \mathbf{P}^{\prime} be an F-property. If every ring R with unity 1 having the property \mathbf{P} has the property \mathbf{P}^{\prime}, then every s-unital ring having \mathbf{P} has \mathbf{P}^{\prime}.

We are now well-equipped to prove the following:
Theorem 1. If R is a left s-unitaI ring satisfying $P(m, 0, p, q)$, then R is commutative (and conversely).

Proof. Consider the ring of type (i) $)_{l}$. Then

$$
\left[\left(e_{11}+e_{12}\right)^{m} e_{12}-\left(e_{11}+e_{12}\right)^{p} f\left(e_{12}\right)\left(e_{11}+e_{12}\right)^{q}, e_{11}+e_{12}\right]=-e_{12} \neq 0
$$

for all integers $m \geq 0, p \geq 0, q \geq 0$ and $f(t) \in t^{2} Z[t]$. Accordingly, R has no factorsubrings of type (i) $)_{l}$. Hence by Lemma $2, R$ is s-unital and in view of Proposition 2, we may assume that R has unity 1 .

Combining the above fact with Proposition 1, we see that no rings of type (i), (ii), (iii), (iv) or (v) satisfy the ring property $P(m, 0, p, q)$ and hence by Meta Theorem, R is commutative.

Theorem 2. If R is right s-unital ring satisfying $P(0, n, p, q)$, then R is commutative (and conversely).

Proof. Consider the ring of type (i) $)_{r}$. Then

$$
\left[e_{12} e_{22}^{n}-e_{22}^{p} f\left(e_{12}\right) e_{22}^{q}, e_{22}\right]=e_{12} \neq 0
$$

for all integers $n \geq 0, p \geq 0, q \geq 0$ and $f(t) \in t^{2} Z[t]$. Thus, R has no factorsubrings of type (i), and by the dual of Lemma 2, R is s-unital. Now, using the same arguments as used in the proof of Theorem 1, we get the required result.

As corollaries to our theorems we have the following results improving [1, Theorem 1.1], [4, Theorem], [5, Theorem 2 (iii)], [6, Theorems 1-4], [7, Theorems $4 \& 5$], [15, Corollary 2 (3)], [18, Theorem] and [20, Theorem 2 (5)]. Also, note that Theorem 1 generalizes the results proved in [15, Theorem 2] and [16, Theorem 1].

Corollary 1. Let m, p and q be fixed non-negative integers, and let R be a left s-unital ring. If for each x, y in R, there exists an integer $s=s(x, y)>1$ such that $\left[x^{m} y-x^{p} y^{s} x^{q}, x\right]=0$, then R is commutative (and conversely).

Corollary 2. Let n, p, and q be fixed non-negative integers, and let R be a right s-unital ring. If for each x, y in R, there exists an integer $s=s(x, y)>1$ such that $\left[y x^{n}-x^{p} y^{s} x^{q}, x\right]=0$, then R is commutative (and conversely).

Theorem 3. Let R be a left s-unital ring satisfying $P^{*}(m, 0, p, q)$ and ($I-N(R)$). Then R is commutative (and conversely).

Proof. It is easy to see that the arguments given in the first paragraph of the proof of Theorem 1 are still valid in the present situation. So we assume henceforth that R has unity 1 and no rings of type (i) satisfy the condition $P^{*}(m, 0, p, q)$. Also, if R is a ring of type (ii), then choose $x=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \sigma(\alpha)\end{array}\right)$ $(\sigma(\alpha) \neq \alpha), y=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, to get

$$
\left[x^{m} y-x^{p} f(y) x^{q}, x\right]=-x^{m}[x, y]=-\alpha^{m}(\alpha-\sigma(\alpha)) y \neq 0
$$

for every $f(t) \in t^{2} Z[t]$. Thus no rings of type (ii) satisfy $P^{*}(m, 0, p, q)$. Since $N(R) \subseteq \boldsymbol{Z}(R)$ by Lemma 4 , it is straightforward to see that R satisfies (C). Hence, in view of Lemma $1, R$ is commutative.

The following theorem can also be proved on the same lines as above, employing necessary variations.

Theorem 4. Let R be a right s-unital ring satisfying $P^{*}(0, n, p, q)$ and $(I-N(R)$). Then R is commutative (and conversely).

As an immediate consequence of the above theorems, we obtain the following results improving [2, Theorem 2], [5, Theorem 2 (iii)], [15, Corollary 2 (2)] and [20, Theorem 2 (4)].

Corollary 3. Let R be a left s-unital ring. Suppose that for each x, y in R, there exist integers $m \geq 0, p \geq 0, q \geq 0$ and $s>1$ such that $\left[x^{m} y-x^{p} y^{s} x^{q}, x\right]=0$ and for each x in R either x is central or there exists $f(t) \in t^{2} Z[t]$ such that $x-f(x) \in N(R)$. Then R is commutative (and conversely).

Corollary 4. Let R be a right s-unital ring. Suppose that for each x, y in R, there exist integers $n \geq 0, p \geq 0, q \geq 0$ and $s>1$ such that $\left[y x^{n}-x^{p} y^{s} x^{q}, x\right]=0$ and for each x in R either x is central or there exists $f(t) \in t^{2} Z[t]$ such that $x-f(x) \in N(R)$. Then R is commutative (and conversely).

REFERENCES

[1] ABUJABAL, H.A.S. : A commutativity theorem for left s-unital rings, Internat. J. Math. and Math. Sci., 13 (1990), 769-774.
[2] ABUJABAL, H.A.S., : Some commutativity theorems for rings with constraints on a ASHRAF, M. and subset, Math. Japonica, 37 (5) (1992), 965-972. OBAID, M.A.
[3] ASHRAF, M. : Some commutativity theorems for associative rings with constraints involving a nil subset, Tamkang J. Math., 22 (1991), 285-289.
[4] ASHRAF, M. and : On commutativity of associative rings, Bull. Austral. Math. QUADRI, M.A.
[5] ASHRAF, M. and : On commutativity of associative rings with constraints involving QUADRI, M.A. a subset, Radovi Mat., 5 (1989), 141-149.
[6] ASHRAF, M., : On commutativity of one sided s-unital rings, Radovi Mat., QUADRI, M.A. and 6 (1990), 111-117. ALI, A.
[7] BELL, H.E., : Commutativity of rings with some commutator constraints, QUADRI, M.A. and Radovi Mat., 5 (1989), 223-230. ASHRAF, M.
[8] BELL, H.E. : A criterion for commutativity of rings, Resultate Math., 18 (1990), 197-201.
[9] CHACRON, M. : A commutativity theorem for rings, Proc. Math. Soc., 59 (1976), 211-216.
[10] HERSTEIN, I.N. : Two remarks on commutativity of rings, Canad. J. Math., 75 (1955), 411-412.
[11] HIRANO, Y., : Some polynomial identities and commutativity of s-unital rings, KOBAYASHI, Y. and Math. J. Okayama Univ., 24 (1982), 7-13. TOMINAGA, H .
[12] KOMATSU, H. : A commutativity theorem for rings II, Osaka J. Math., 22 (1985), 811-814.
[13] KOMATSU, H. and : Chacron's condition and commutativity theorems, Math. J. TOMINAGA, H. Okayama Univ., 31 (1989), 101-120.
[14] KOMATSU, H. and : Some commutativity theorems for left s-unital rings, Resultate TOMINAGA, H. Math., 15 (1989), 336-342.
[15] KOMATSU, H., : On commutativity of rings, Radovi Mat., 6 (1990), 303-311. NISHINAKA, T. and TOMINAGA, H.
[16] NISHINAKA, T. : A commutativity theorem for rings, Radovi Mat., 6 (1990), 357-359.
[17] NISHINAKA, T. : On commutativity of rings, Proceedings of 23 rd. Symposium on Rings Theory, Chiba University, Chiba (1990), 1-7.
[18] QUADRI, M.A. and : A commutativity theorem for associative rings, Math. Japonica, KHAN, M.A. 33 (1988), 275-279.
[19] STREB, W. : Zur Struktur nichtkommutativer Ringe, Math. J. Okayama Univ., 31 (1989), 135-140.
[20] TOMINAGA, H. and : Some commutativity properties for rings II, Math. J. Okayama YAQUB, A. Univ., 25 (1983), 173-179.
[21] TOMINAGA, H. and : A commutativity theorem for one sided s-unital rings, Math. YAQUB, A. J. Okayama Univ., 26 (1984), 125-128.

