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ERROR IN DEMARTRES'S PAPER AND THE CORRECT RESULT
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" Summary @ Demartres has considered the problem of determining
isothermic Weingarten surfaces in {2], and proved that all the isothermic
Weingarten surfaces consist of the surfaces of revolution, surfaces of con-
stant mean cuirvature, cones, cylinders and isothermic helicoids.

In our present paper, the same problem is considered again, and
the following results are obtained:

1. It is shown that the Demartres’s result is incomplete; and all the
isothermic Weingarten surfaces are completed by a newly found class of
isothermic Weingarten surface. ‘

2. Tt is proved that the mean curvatures of the new isothermic
Weingarten surfaces and the isothermic. heiicoids satisfy the same ordinary
differential equation of order three.

3. Tt is also shown that all the isothermic Weingarten surfaces, except
some of the surfaces of constant mean curvature, can be isometrically
mappeéd to the surface of revolution.

DEMARTRES'IN CALISMASINDAKI HATA VE DOGRU SONUC

Ozet : Demartres [2]°deki calismasinda izotermik Weingarten Yii-
zeylerinin belirtilmesi problenini ele almis ve tlim izotermik Weingarten
yiizeylerinin donel ylzeyler, ortalama eprilifi sabit olan ylizeyler, koniler, :
silindider ve izotermik helikoidlerden ibaret oldufunu gSstermistir.

Bu ¢aligmamizda aym problem yeniden ele alinmig ve agapidaki
sonuglar elde edilmistir:

1. Demarires’in buldugu sonucin cksik oldugu gbsterilmis ve tiim
izotermik Weingarten yiizeyleri yeni buldugumuz bir izotermik Weingarten
yitzey simfi ile tamamlanmigtir.

2. Yeni bulunan izotermik Weingarten yiizeylerinin ve izotermik
helikoidlerin ortalama egriliklerinin 3. mertebeden aym bir adi diferansiyel
denklemi sagladiklart gosterilmistir.

3. Bazi sabit ortalama egrilikli yilizeyler disindaki biitlin izotermik
Weingarten ylzeylerinin donel yiizeye izometrik olarak tasvir edilebilecegi
de gosteritmistir.
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1. INTRODUCTHON

1.1. We have mentioned from the Demartres’s paper in [1]. Demartres con-
sidered, in his paper [2], the problem of determining of the isothermic Weingarten
(W-) surfaces and showed that there is not another isothermic W-surface except
surfaces of revolution, surfaces of constant mean curvature, cones, cylinders,
and isothermic helicoids. But this result is not correct.

There exist isothermic W-surfaces apart from surfaces above, and they have
more generality than isothermic helicoids. We call these surfaces “new isothermic
W-surfaces”,

In this paper, we considered the problem again, which nceds complicated
calculations and investigations in detail, and obtained the following results:

(1) The mean curvatures of the new isothermic W-surfaces and of the iso-
thermic helicoids satisfy the same ordinary differential equation of order three.
Therefore, the quantities of the new isothermic W-surfaces can be directly written
by means of the function of mean curvature to be found for the isothermic
helicoids.

(2) All the isothermic W-surfaces, except the surfaces of constant mean
curvature, can be isometricaliy mapped to the surfaces of revolution (As known
some surfaces of constant mean curvature can not be isometrically mapped to
any surface of revolution).

1.2, We assume that the surfaces under consideration are real, and suffi-
ciently differentiable. The coefficients of first and the second fundamental form
will be denoted by E, F, ¢ and L, M, A respectively, and the definitions

%3 —
K—r-r* H=r+: ’ J=r r
2 2

will be used where r and r¥ are the principal curvatures. We show the geodesic
curvatures of the lines of curvature # and v by — g and g* respectively. Therefore,
in the parameter system which consists of the lines of curvature,

F=M=0, r=—£=H+J, r*=£=H~J
E G
(1.1)
g=—", =t g p
eg eg

can he written, where ¢ = -} \/Hf, g =+ \/?, J#0, —g% =f, .

We denote arbitrary constants by a,, a,, 4,, B, ..., and a letter with the
subindex will always denote an arbitrary constant.
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2. The system of Mainardi-Codazzi equations and their solutions

2.1. Assume that the surface under consideration is an isothermic W-surface.
So we have
r=r(D), #*=r¥T), K=K, H=H(I), J=J(T), T=T(u, v)), (2.1)
and since the coordinate lines are the lines of curvature, we can take
E=G(=), (F=M=0). (2.2)

2.2, By means of the conditions (2.1) and (2.2), the Mainardi-Codazzi com-
patibility equations can be written in the form

E,

[ (D) I (TN T, = — 2=, [F (@) - J (T T, = 1; ;e

or

(f‘_d}g)vz_anﬁ‘l]l}v’ (fd_f)uz(lﬂEl‘]l)u {24)

Here we exclude the surfaces of revolution, surfaces of constant mean cur-
vature, and cones, and cylinders from our consideration. This means that
T T, e r’ Ty« r* (1)« (@) 4+ r* (1) = 0. (2.5)
For: (i) If the surface is a surface of revolution then T, - 7,=0; conversely ‘._
if T,« T,=0(szy T, =0, T, # 0) then from (2.1) we obtain r,=rf=0, so the J
surface is rotational [3, p. 591. (i) If " (T)=0 (or r*' (I)=0), then from (2.3)
we get E = E(u), and from the Gauss equation to be written by this E (i) in the
case of r = r, = const. # 0, we obtain r* = r* (4) (or r = r(v)); so in this case
the surface is a rotational Dupin eyelid, i.e., it is torus [3, pp.59, 61]. Therefore,
if the surface is not rotational then T, - T, - r'(T) « +*' (T} # 0. In the case of
r = ry = 0 (the case of developable surface), we know that the surface is a cone
or a cylinder [3, p. 541. (iil) If ' (T) + r*"(T) =0, then H = const. and vice
versa. Therefore, the condition (2.5) is the necessary and sufficient condition to
exclude the mentioned surfaces from our consideration.

Since H' # 0, from (2.4)

M wmE|T| 20w, f.f";_falnEquV(v)
or
iji-—:U(u)—i—V(v), In E|7| = UG) — V() (2.6)

can be directly written. This means that T = T (U <+ V). From this result, since
I’ # 0, by means of (2.5), we obtain
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r=r{t), r*=r¥@), [H=H(®), J=J(1)] (2.7)
where
U + V() =t (2.8)
Then the condition (2.5) reduces to the condition
prer¥ CH LU -V 20 2.9)

so the results (2.6) are replaced by the results
HO=JO, mE|J|=U—VW®, ¢t=U@-+ V), H £0. (210

It is easy to verify that these results consist of the solutions of the Mainardi
Codazzi equations (2.4) under the condition (2.9). :

3. The Gauss Equation

3.2, The important part of the problem is the problem of satisfying the
Gauss equation. Since U" V'#0 by means of (2.9), we can make the scale trans-
formation

x=U@,y=rw, t=x+y. : (3.1)

In the parameter system X, y the coefficients of the first fundamental form,
are obtained as

Eu(z ; )z_ex_,,’ G = (=0 (3.2)
a(x) alJ| b|J|
where
a (X) =U%w), b(0)=V"20). (3.3)
The Gauss equation :
| E® GY
K= -J=— 260 g® l:( eu:,,o )y + (eoZo )x]

reduces, by the values (3.2), to the equation

22— HY) o VAN 7 Y
— ery—x | — — -+ — b . .
W= [2(1 J) 2( J) (+)( )] (3.4)

Since t=x-+y and J (¢{)=H"(?), it is seen that the equation (3.4) is a function-
al-differential equation to be satisfied by the functions H (7), a (x), and b(p).

The left-hand side of the equation (3.4) depends only on the variable
t = x -+ y. Therefore, as independent variables, let us take x and ¢ instead of x
and y for a while. So y=¢—x, and for a function f())=f(t—x), f, N=—F"(»)
is obtained. Now, let us differentiate botl sides of the equation (3.4) with respect
to 4. Then, the left-hand side becomes zero and from the denvatlve of the right-
hand side, beacuse of f, (3) = — F" (),
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r

2 (?)’[2a—a'—|—25—-b']—|— (‘;

is obtained.

) [(2a~a’)'—|—(25—|—b’)’]—I—(2b+b'l)'*(2@*“a')'=0

For abbreviation, let us make the following definitions:

{r =h{t), 2a—d =), 2b+b =B0). (3.5)
Therefore, we obtain the main eguation as

2@+B A O+ @ +BYE@) B —a =0 (3.6)
It is clear that . :

a=—P=2q, (=P =0), h=h(). 3.7)

is a trivial solution of the equation (3.6). Tt is an expected result that the solution
(3.7) is the unique solution of the functional-differential equation (3.6), which
satisfies the eguation (3.4) as well.

In fact, if the equation (3.6) is satisfied for any special value of the function
g HYy . . " o

(1) (= "; = ,) , L.e., if the function /A {r) satisfies a condition, it is not an

expected result that this condition agrees with the equation (3.4), which reduces

to a differential equation, whose right-hand side is a function of the variable 7,

of third-order in H (s).

Now let us prove this claim:

First, if o + B == 0, Le., if the equation (3.6) has a sclution different from

the solation (3.7), then we show that
- B oo« B 0. ' (3.8)

(@ IfTA =0Goh=hy, J=he)and o' B’ # 0, then from (3.6) we

get 22— 1+ 0 and so from (3.6) and (3.5) we obtain
o Co
D2 Ry 201 + hy)

By these values, the right-hand side of (3.4) takes the form a, ¢! (1—#,)}
+b, et (1 +#,); so it can not be equal to the left-hand side, which is obtained by
the value H to be found from (2.10), no matter how the constants are chosen
(@ B’ —T1)#0). So if #* =0, then o” =0 or p’ = 0. Now let us assume
that A" =a’ =0, B"# 0 (or A" =" =0, @’ # 0). Then from (3.6) we have

a = 2a, & b == - 2B, e

h=—1 (or h=1) and the right-hand side of (3.4) becomes 2a, e (a:ao e — E;‘) .

Since J =k, e~ and H = — ko‘ e—;:' +k,, the equation (3.4) is satisfed for only
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dy =k, =0. But then K =r.s* =0, which contradicts to the assumption
(2.9). So B" =0. '
(b) Ifa"=0(a=ay) and B % 0 (or B’ =0 B =PB,), # a" = 0), by

the similar calculations, first

B=>5be 2w —a,, h+1=c e, a=aoezx—}—%, (=0

—2coy
are found. By this value of § from (3.5), in case of ¢, 1, b=b, =2 — %Le——zﬂ -
Cp —

— %—“— is found, in case of ¢, =1, b = ¥y + b)) e — —ai"—. Then the right-
hand side of (3.4), for ¢y # 1, becomes 2a,e‘(l — ¢yjc, e¥), for ¢, =1,

and H" = J, the lefi-hand side of

r

2a, ¢ (1l — ¢, ef) — b'z—c' Since h =

(3.4) will be a complicated function including an exponential function of eco,
This means that the left-hand side will not be equal to the right-hand side. So
AP =0.If " =0 and o + P + 0, then it is easly shown that & =p" =0.

Thus, in case of @’ B’ A" ==0 and a+p+#0, we showed that " =p" =4" = 0.
Then the equation (3.6) is satisfied. But, using the equations (3.5) and (2.10) and
carrying out the similar operations above, it can be shown that the equation (3.4)
can not be satisfied under the condition (2.9).

Therefore, we proved that, for the solutions which are different from the
solution (3.7), the condition (3.8) is valid.

3.2. Now we pass the general investigation. Above method, that is the method
of taking x and t as independent variables and differentiation with respect to x,
can be applied to the equation (3.6) infinitely many.

By the first two applications of the method, we find the equations
20 =B @)+ @ =P AE) o' — B =0,

: @9
260 +F) K O+ @ + B A@) —a” + B =0,
By eliminating 4 and 4" (& - £"#0) from (3.6) and (3.9), since o’ "0,
a4 B | 1
L4 r a” B,
o —p ; - =0 (@ P #£0) (3.10)

al_I_B,T

piﬁ_ 2
Y =X
=3 =
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is found. It is seen that the eight ones of the nine determinants, which are obtained
by successive differentiation with respect to x and y of the determinant (3.10), are
zero. Since o 4 B # 0, from the ninth determinant

A r\’ LAY ¥ I

a)ﬂZCo(a), i-)=~~2r:0 P

ar (1’ Br ﬁl
are obtained and so

o =20 +a0ta, B'=—2p+5p+05 (3.11)
are found. Substituting (3.11) in (3.10), we obtain the following results:

a) The case ¢, # 0. In this case, we find first

a, o+a, b, B+b

. (cla+-cz)+2(:0c1a=———?~3-(c,|3——c2)42c0c1|3=A0
and from (3.11) we have ¢, = ¢, = 0, that is,
a—b =a,+5b,=0, (4,=0) (3.12)
where
a—b =¢, a,+b,=¢,, @B =0 {3.13)
Therefore,

o' =20 +a0+a, P'=—2,p +ap—a, (¢+0). (314
It is easily seen that the equation (3.10) is satisfied by (3.14).
b) The case ¢, =0. From (3.11) it can be directly written

o' =a,04 20,0+ a,, BT =b R +2b,B+0b, (3.15)
and from (3.10)
4 % a-,l_aa + C, 4 _a__+a2 =0 bz B"‘f“bs = Oy bl B_'_—*bz = Bo (3.16)
o o’ p P
are obtained. Since the solution (3.14) satisfies (3.10) for ¢, = 0 also, it is natural

that (3.16) is satisfied by the conditions (3.12). If the conditions (3.12) are not
valid, then from (3.16), we obtain

o =dya-ta, B =5bp+b. (3.17)

Then the right-hand sides of (3.15) take the perfect squared form. By substi-
tuting (3.17) in (3.10)

(a, + by) (a, b, + bya,) =0
is found. From this:
bl) If g b, =0(a" « p* # 0), then a, = b, = 0 are obtained, so we have
o =a,, P'=5b (a b #0) (3.13)
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b2) if g,b, # 0 and a, + by == 0, then we have .
o =aota, B'=—a,B+b; (319
b3) if @, by (dy + by) # 0, then we have '
o =ay (o4 A, B =58 — A,), la,b,(a, 4 b,) = 0]. (3.20)
Therefore, we have shown that the solutions satisfying (3.10) are the solu-
tions (3.14), (3.18), (3.19) and (3.20).
3.3. Here we will show that none of the solutions above satisfy the
equation (3.4). ' '

A) Let us consider the solution (3.18) and use it in (3.6). Then, for a,#5, ,
4" (#) = 0 is obtained and this contradicts the condition (3.8). For ¢, = #,, from
(3.6) and (3.5)

(o =ax+a, BP=ay+b, c,=a+b,, a #0),

hy=— T atg e et B B %
a, t+e, 2 4 2

S/ a b

hiyy=§ (:*2)’4,,“_1, PR Y2

(=5, SV, + ;

are obtained. By these values, the right-hand side of the equation (3.4) takes the
form

R (R w— v
a t+e,  (a, t4c,) a t+c, (g t+e,)

and since at léast one of the a, and b, is not zero, because of the condition (2.9),
this right-hand side depends on e also. From (2.10) and (3.5) H =J =
=kq (a, 1 + ) is obtained. Thus, the left-hand side of (3.4), for 4, + 4, =0,
has the various powers and the logarithm of (4, ¢ + éz); for hy -+ a, # 0, has
only various powers of it. So the two sides of (3.4) can not be equal to each
other.
B) If the values
o =4, ey — AL P =B ey —|——b—‘, (4,8, #0),
ay 4y

obtained from (3.19) are used in (3.6), then (4" + 0) q, = 4, and

Jemt — B+ he? !
Ayett + B,
are obtained. By these values of a, B and A, the equation (3.6) is satisfied.
From (3.5), for a and &,

B =4 . (A4, - B, 0) (3.21)

P
I
3
L:
£
-
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B1) if a, # 2, then we find
a=A2€2"— AI eao X — al N b =_B2 e—2y_ Bl g“““l)?.—l—i_;
a, 2 2a, a, — 2 2a,

B2y if a, =2, then we find

am(Az-_Aix)eh__._‘;_l’ b=(Bz—|—BJy)€_2J’—}-%_

In the case of (Bl), the right-hand side of the equation (3.4), by the value
of #(¢) in (3.21) is obtained as

[(dye +Byey (1 —h)— (4,6 — B, e™) h.

It is seen that this expression is a function of ¢ and e® ¢, But, since & (#)=

, by means of (3.21), the function J(¢), no matter %, is equal to zero or

0 N2
not, has also the logarithn of the function (AI e’ +Be 7 ‘) @, (A4, B#0).
This means that the equation (3.4) is not satisfied in this case. Tn the case of
(B2) the right-hand side of the equation (3.4) becomes
2¢' (A, e¥—B,+h,e) (4, B,—A, B,+4, B 1) n hy (4, e*—B)—44, B, ¢
(A, € | B 2(d, ¢ + B, ’

i.e., it is an algebraic function of e’ and . But the left-hand side has the logarithm
of (4, e+ B, e*). So the equation (3.4) can not be satisfied in the case of (B2).

C) If the values a=4A, ¢5o¥—4,, B=B, ebvr44,, obtained from (3.20),
are used in (3.6), then @, + b, == 0. This means that the solution (3.19), which is
investigated in the case of (B), is obtained.

D) Finally, let us consider the solution (3.14).

D1}y For a,=0, since the case a,~0 corresponds to the case of (B), we
can assume that a, % 0. Then, using the values :

dy

a:Aleﬂccpxﬁ*E%_xﬁ%Az’ B=Bie--2¢:oyﬁ_, y+-Bz

€o o
in 3.6), (¢, 2, #0), A; = B, =0 are obtained, which corresponds to the case (4).
D2) If g, # 0, ¢} + a; # 0, then from (3.14)

a a
U«=A1€“°"+Azeb"x—-—2—, ]3=Bie—““+Bze—b”+—"‘,
ay a,

are obtained, where (q, — by) a, b,#0. By these values, from (3.6), 4,=B,=0
(or 4, = B, = 0) arc obtained. Thus, we have the case of (B).
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D3) If ¢+ a =0, (¢ga, # 0), then from (3.14)

a =(A1x—|—Az)e”°x—-a—", B=(By+B) e‘“”—l——ai
4 a
are obtained. Using this result in (3.6) we get 4, = B, == 0 which corresponds
to the case of {B). Hence, under the condition (2.9), the unique solution which
satisfies also the Gauss equation (3.4) is the solution (3.7).

4. Surfaces corresponding to the solution (3.7)
4.1. By means of (3.5), from the solution (3.7), we get
a(x) =aye* 4- ¢4, b)) =be ¥ —¢,. {4.1)
Since we have assumed that the surface under the consideration are real,
because of the definitions (3.3) and the condition (2.9), @ and b must be positive.
Hence, according to (4.1), the constants g, and &, can be neither negative

nor zero at the same time. Accordingly, it is easily seen that the equation (3.4)
reduces to the equation

2H (H" —H)=a,¢|H” + H" — H'(H" 4+ H")] +
+ b [H" + H" — H'(H" — H)] (£ =Sgn(/)))

which does not depend on the constant ¢,. Thus, the problem of determining
of the quantities of our surface is reduced to the problem of finding of the solu-
tion H(f) of the equation (4.2).

For, if H(¢) is known, then, from J{f)=H"(¢), J(t) is found {and so r (¢) and
r¥(1)). By the aid of the value of this J(f) and (4.1), from (3.2) E® and G° (F*=0)
are determined, and from (1.1) L°=r(¢) E%, N9=r*(£) G, M°=0 can be directly
written.

(4.2)

By the condition (2.9), we left the surfaces of revolution, the surfaces of
constant mean curvature, and cones and cylinders aside.

So, according to [2] all the surfaces which will be found by the values a(x)
and &()) to be obtained from (4.1), must consist of only isothermic helicoids. In
the following we will show that this is not correct and the surfaces corresponding
to the case ¢, # 0 are not the isothermic helicoids, and they form a new class of
surfaces. '

4.2, Now we will give an important criterium which determines a W-surface
whose quantities are given in the curvature lines parameters, whether it is helicoid
or not.

Theorem. A necessary and sufficient condition for a non-developable W~
surface, whose the principal curvatures are r(T) and % (T) (T=T (u, v)) and
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the geodesic curvatures of the lines of curvature are — g and g%, to be a
helicoid is that

g=q(T), g*=q*(T). 4.3)

Proof. Let ¢ be the angle between the constant curvature curves (the family
of the curve T = const.) and the family of the lines of curvature v = const.
(2¢ =0). Let k£, — p and 7 be, respectively, the normal curvature, the geodesic
curvature, and the geodesic torsiou of the family T = const. and k*, p* and
— 1 be those of the orthogonal trajectories.

We denote the derivatives (invariant) in the directions of the lines of cur-
vature v = const. and u# = const. by the subindices 1 and 2; and for the lines
T = const. and the orthogonal trajectories, they will be denoted by the indices
1* and 2* respectively. Accordingly, we know that

k=H-+JcosO, k¥*=H—Jcos8, t=—Jsin0,
—p=(9,—q) cos p+(p,+4%) sin ¢, p*=(g—¢,) sin @+{g*+¢,) cosp (4.4)
and for a general point function P (u, v)
Pu=P cosq | Pysing, Py =— P sing+ P,cos¢ 4.5
can be written.

Now let us assume that our surface is a non-developable helicoid. Hence,
in addition to II = H(T)and J = J(T) which are the conditions for a W-surface,
the conditions p*=0, p=p(T), 1= (1, and k =k (T) must be satisfied {3, p.85];
therefore (4.4) implies @ = ¢ (T). Tt is clear that a necessary and sufficient con-
dition for a point function P (u, v) to be the function of only T'(u, v), in the
parameter system the lines 7T{u, v) =const. and the orthogonal trajectories
S (u, v) = const., is that :

Ppr =0, (PS (1, V) =0, Ppr= \/L%) i

Hence H» = Jp» = ¢+ = 0, that is,
H, cos ¢+ H,sin =0, J, cos p4J,sin ¢=0, ¢, cos ¢-}¢,sin ¢p=0. (4.9)
In addition to these equations, we have the Mainardi-Codazzi equations
H+D, =297, H—J) =2"1J (4.7)
Here we can assume that H' J ¢’ #0. For, because of the condition (2.9),
H'%0; for J' = 0, the equation (3.4) to be written by the value H =J, t 4 ¢,
which will be obtained from (2.10), and by the values g and & in (4.1), can not

be satisfied; since p* =0, for ¢’ =0 from (44) gsing 4+ g¥cosp =0 is
obtained and so from (4.6), (47) H =0 again.
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It is seen that in case of helicoids, the conditions H = const. and ¢ = const.
are equivalent to each other. From (4.6), (4.7) and (4.4) (p* = 0),
Hy=J(g*+qtge), H,=—J(g*cotgptq), J,=J(gtge—g"),
J,=J (q* cotg ¢—q), - @,=sin ¢ (g sin ¢+g* cos ¢), (4.8)
P, =-—c08 ¢ (g sin p+g% cos ¢)
are obtained.

By the aid of the integrability condition from the first four equations of
(4.8), we get

(qztgcp+ql)+(q£‘+qi"cmg¢)+q( (pj +qtg<p+q*\—
cos® ¢ /
* it *
- q ( ) - g cotg(p—q)=0,
sin? ¢
4.9

(g, tg 9 + q,) — (i + g5 cotg ¢) + q(—cg(gj?+ gtg ¢ +q*) +

q*( D g oot g — q) =0
sin? @ _

By substituting the values in fifth and sixth equations of (4.8) of ¢, and
¢, in the equations (4.9), we obtain

g, 0080 + g, sin ¢ =gfcoso 4 gfsing =0 .10)
which means that ¢ = g (7T) and g* = g* (7).

Conversely, if H=H(T), J=J(T), g=¢(T) and g*=g* (T), then the first
four equations of (4.8), and (4.10) can be written; so (4.9), (4.10) remain valid.
Hence, the fifth and the sixth equations of (4.8) are obtained for ¢, and o,
This means that, according to the fifth equation of (4.4) and the third equation
of (4.6), ¢ = ¢ (T) and p* = 0, Finally, in order to show that the surface is a
helicoid, we must prove that p = p (T"), i.e., P;» = 0. Clearly, with the values of
¢, and @, in (4.8), from (44) p =gcos¢ — g*sin ¢ is found. So p =p(T)
and the theorem is proved.

4.3. Now let us apply the above criterium to the surfaces to be determined
by the functions a(x) and &(») in (4.1). By means of (4.1), the expressions (3.2)

can be written as
X - 13
I ex—7 o e

F =0). (@11

= 1 G° = >
(ap € + ) | T | (by — ¢4 ezy)l_]t
According to (L.1)
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' 1 1
=—{(nE%,, ¢*=
1= (_ )y‘ "=

Thus, from (4.11), we have

1 Jy -+ 1 J e
qzmwz—(l“l“ J)c 2 \/[Jl(bomcoezy), q*—2 (1-*7)62 \/]Il(a+coe'2x).

It is seen that a necessary and sufficient condition to be g=g(#), g%=g* (?),

that is, for the surface to be a helicoid, is that ¢,=0. Hence the case ¢, + 0,
corresponds to a class of the isothermic W-surfaces which are not helicoids.

Since the equation (4.2), from which the function H() is obtained, does
not have the constant ¢;, this equation is valid for both the isothermic hellcmds
(¢, = 0) and the new isothermic W-surfaces (¢, # 0). '

Accordingly, if the solution H(t) of the equation (4.2) is found for the heli-
coids, by replaciﬁg the constants @, and &, in this solution by the constants g, -
and b, which are mentioned for the new surfaces, we directly obtain the function
H(t) of our new surfaces,

4.4, Finally, we will prove the following theorem:

Theorem. An isothermic W-surface which can not isometrically mapped
to a surface of revolution is a surface of constant mean curvature,

Proof. We know that the isothermic helicoids, the surfaces of revolution,
cones and cylinders can be isometrically mapped to the surface of revolution,
and we also know that some of the surfaces of constant mean curvature can not
be isometrically mapped to a surface of revolution. Therefore, we must show
that the new surfaces, which are obtained for ¢, # 0 above, can be isometrically
mapped to a surface of revolution.

As known, a necessary and sufficient condition for a surface to be isometri-
cally mapped to a surface of revolution, is that A (K) =fF(K), A,(K) = g(X)
[3, p. 92].

Since K=H?2(t)—J()=K(t), A, K=K At and A, K=K A,t+K"A,t
can be written; so it is sufficient to show that A, =m(?), A, t = n (1)

From the definitions of A, and A, [3, pp. 15, 16], we have

A s At i G° 1 InE" _
et () T ), (T

By substituting the values in (4.11) of E® and G° in the last expressions, we
obtain
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At =er—=|J|(gge** + bye ™) =|J|(g ¢ + bye™) =m(r);

a 1 b’ 1
At =" .
2 ak® 2 bG°

=|J|er = (qy e¥* — by e W) =

=|J (@ e — bye) =n(o)

‘Therefore, the theorem is proved.

REFERENCES :

{11 URAS, F. 1 Egrilik Cizgilerinin Kiresel Tasviri Tzometrik Bir Sebeke Olug- *
turan Weingarten Yiizeyleri, Y1ldiz Teknik Universitesi Dergisi,

1994/1. 3

(2] DEMARTRES, G. . Détermination des surfaces W a lignes de conrbure isothermes, ,

Ann. Fac. Sci. Univ. Toulouse, Série 2, 4 (1902).

[3] URAS, F. :  Diferensiyel Geometri II Dersleri, Yildiz Teknik Universitesi
Fen-Edebiyat Fak. Yaywnt, Sayi: 261, 1992,




