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Summary : In this paper the following theorem is proved: Let G 
be a finite group all whose subgroups are normal. Then G is nilpotent, the 
Sylow ^-subgroups for odd prime p are abelian and the Sylow 2-subgroups 
are metabelian. 

BÜTÜN A L T GRUPLARI N O R M A L O L A N GRUPLARIN YAPISI 

Özet : Bu çalışmada şu teorem ispat edilmektedir: G, bütün alt 
grupları normal olan sonlu bir grup olsun. Bu takdirde G nilpotenttir, tek 
p asal sayıları için /»-Sylow alt grupları abelyendir ve 2-Sylow alt grupları 
metabelyendir. 

In [1] Fujikawa proved the following : 

Theorem. Let 6 be a finite group. Then «(%)— for all %elrr(G) i ff 
every subgroup of G is normal (n (%) the permutation index (see [1])). 

The next statement is a similar result about Schur index and can be found 
in [3], pg. 173. 

Proposition. Let G be a finite group. Suppose that mF(%) = for all 
%eIrr(G) with F £ C. Then every subgroup of G is normal. 

These results lead us to study the structure of the finite groups all whose 
subgroups are normal. 

The abelian group and the quaternion group are examples of such groups. 
The class of these groups was studied by Dedekind (see [2]). I n this paper we 
shall study the structure of these groups using the character theory of groups and 
we shall derive some interesting consequences of this. 

We shall denote by stf the class of the finite groups all whose subgroups are 
normal. Notation and terminology are standard (cf. [3] and [4] for example). 

Proposition 1. Let Ges& and H < G. Then: 
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i) Hesf. 

ii) GlflEjtf. 

iii) %eZ (G) for every involution % of G. 

Proof, i) and i i i) are obvious and i i ) follows by the isomorphism theorem 
for groups (see [4], pg. 50). 

Theorem 2. Let G G J / . Then: 

i) G is nilpotent. 

ii) The Sylow /?-groups of G for odd primes p are abelian. 

iii) Let SeSyl2(G) nonabelian. Then 5" is a metabelian group, all its 
irreducible characters have degrees 1 or 2 and there exist H<S abelian of index 
2 or [G : Z ( G ) ] = 8 . Besides Gjker(y) is a generalized quaternion group for every 
nonlinear % e Irr (G). 

Proof. Step 1. G is nilpotent since all Sylow subgroups of G are normal 
subgroups. 

Remark. Since G is nilpotent, by Prop. 1 it is sufficient to study the 
structure of the 77-groups of s/. 

Ste$ 2. The /?-groups of s$ with p an odd prime are abelian. 

Let G be a minimal counter-example and % e In (G) non-linear. Then % is 
faithful and Z(G) is cyclic. Let M be a maximal abelian subgroup of G. We shall 
prove that M is cyclic. 

Since M is normal in G, by Clifford's theorem (see [3]) %M=e ^ -zg, where 
geG—M 

T 6 Irr (M). I f t is invariant in G, then %M=e T and T is an irreducible faithful 

character of M, hence M is cyclic. I f not, %M~ ^ ^ a n c * t n e n X ~ t G - Since x 

is faithful and i i i is abelian i t follows that T is also faithful and hence M is 
cyclic. Then (see [2], pg. 311, Prop. 8.4) G is cyclic. 

Step 3. Let G be a nonabelian 2-group of stf. Then G is a metabelian 
group and there exists an abelian subgroup H of G of index 2 or 4. Besides 
Gjker(x) is a generalized quaternion group for eveiy nonlinear %eIrr(G). 

Let %eIrr(G) nonlinear. Let H = G\ker(y). Then Hestf and has a non
linear faithful character. Hence Z (£T) is cyclic and by Prop. 1 H contains only one 
involution. Therefore H is a generalized quaternion group. Since the generalized 
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quaternion groups have irreducible characters of degrees at most 2, it follows 
that the irreducible characters of G have degrees also at most 2. Let K < G 
maximal such that GjK is nonabelian and let P<G such that Z(GfK)=PlK. 
Let L=GjK. Then L ' is the unique minimal normal subgroup of L . Since Z(L) 
is not trivial, L'<Z(L) and \ L'\=2. Then every nonlinear % e Irr (L) is faithful 
and % ( l ) 2 — \L:Z(L) \ (see [3], pg. 28). Let x, y e L . Since [x, y] eZ(L) and 
| V | — 2} we have [x 2 , j'J—IX y]2 = l. Thus x2eZ(L) for all xeL. Therefore 
Z (L) is cyclic and L(Z (L) is an elementary abclian group of order 4. Let now 
aeIrr(L) with a ( l ) = 2 and teIrr(P). Since P< Z (a ) , by Clifford's theorem 
'c( l ) ~ 1 and P is abelian. 

Step 4, Let G e ^ be a non-abelian 2-group. Then one of the following 
holds: 

i) There exists H < G abelian of index 2. 

ii) The index of Z(G) in G is 8. 

Assume i ) is false. By the previous step there exists K<G abelian of index 
4. Then K acts by conjugation on G\K and has an orbit of size 1 or 2. Since G 
does not have abelian subgroups of index 2, A=CG(K), therefore there exists 
x e G : K in an orbit of size 2. Let H = <K, x>. Then Z ( /f) ~CK (x) has index 
2 in K and index 8 in G. We shall prove that Z(G) = Z(H). 

Let L = Z(H) and %eIrr(G). I f % / f is irreducible, then Z < Z ( % ) and 
[G : L] < ker(%). I f not, then all irreducible constituents of x# are linear and 
H'<ker(x). Suppose [G : L] is non-trivial. Then H' n [G : L ] = l . Since i f ' [G : 
is the direct product of two non-trivial groups it has an irreducible character 
T such that PI' is not included in ker (T) and [G : L] < ker (-c). Let % be an 
irreducible constituent of T g . Then H' and [G : L] are not included in ker (x), 
contradiction. Hence [G : L] = 1. 

Corollary 3. Let G be a finite group. Then the following are equivalent: 

i) n (x) = X CO a ! i X e 0?)-

ii) mF{%) = % ( 1 ) for all %eIrr(G) with f e e . 

iii) Gestf. 

Proof. By Theorem 2 i t is easy to see that i f G G ^ , then mF(%)=x (0 for 
all %(=Irr(G) with i ^ eC so we have the converse to the Isaacs proposition 
quoted in introduction. 
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