BIPARTITE GROUPS

H.A.S. ABUJABAL - M. EL-MOSALAMY

Department of Mathematics, Faculty of Science, King Abdul Aziz University, P.O. Box 31464, Jeddah 21497, SAUDI ARABIA

Summary : In this paper we study bipartite groups and bipartite presentations. Further, we show that if G is bipartite group, then G is closed under the subgroups of G. The result of this paper is useful to recognize what each defining relator look like.

"BIPARTITE" GRUPLAR

Özet : Bu çalışmada "bipartite" gruplar ve "bipartite" gösterilişler incelenmekte ve G nin "bipartite" grup olması durumunda G nin, alt grupları altında kapalı olduğu gösterilmektedir.

1. Introduction. Given a group presentation (or more generally a 2-complex \mathscr{K}) one can associate with it a 1-complex, called the star complex. The star complex \mathscr{K}^{st} has been proved to be useful in several contexts (see [1], [3] and [5]). A group G is called a bipartite group if G is a fundamental group of a 2-complex \mathscr{K} with a bipartite complex \mathscr{K}^{st} . In this paper, we show that if G is bipartite group, then G is closed under the subgroups of G. Further, we consider a bipartite presentation (a presentation is a 2-complex with a single vertex). The result of this paper is useful to recognize what each defining relator look like. Our methods involve a rather geometric version of combinatorial group theory.

2. Preliminaries. A 1-complex χ consists of two disjoint sets V (vertices), E (edges) together with three functions $i: E \rightarrow V$, $\tau: E \rightarrow V$, $^{-1}: E \rightarrow E$ satisfying $i(e^{-1}) = \tau(e)$, $(e^{-1})^{-1} = e$, $e^{-1} \neq e$ for all $e \in E$. A non-empty path α in χ is a sequence $e_1 e_2 \dots e_n (n \ge 1)$ of edges with $\tau(e_i) = i(e_{i+1})$ $(1 \le i \le n)$. The inverse path α^{-1} of α is the path $e_n^{-1} \dots e_2^{-1} e_1^{-1}$. A path α is said to be closed if $i(\alpha) = \tau(\alpha)$. We say that a path α is reduced if $e_i \neq e_{i+1}^{-1}$ for all $i=1, 2, \dots, n-1$. Moreover if α is closed, then we say that α is cyclically reduced if all its cyclic permutations are reduced. With each vertex v in χ , we associate the empty path 1_v .

This path has no edges.

H.A.S. ABUJABAL - M. EL-MOSALAMY

A 1-complex χ is said to be connected if given any two vertices u, v in χ , there is a path γ such that $\iota(\gamma) = u$, and $\tau(\gamma) = v$. We remark that 1-complexes are called graphs by combinatorial group theorists (see [6]). In this paper a graph is a pair consisting of a set V of vertices and a subset E of $V \times V$. An element of E is called an edge. If $e = (v_1, v_2) \in E$, then e is the edge which joins the two vertices v_1 and v_2 . For the general theory of graph theory, we refer the reader to [2].

Now, given any 1-complex χ with vertex set V, we associate with it a graph $\Gamma(\chi)$ in the following way: the vertex set of $\Gamma(\chi)$ is V, and $\{u, v\}$ is an edge of $\Gamma(\chi)$ if and only if there is an edge e of χ such that $\iota(e) = u$ and $\tau(e) = v$.

A 2-complex \mathscr{K} is an object $\langle \chi ; p_{\lambda} (\lambda \in A) \rangle$, where χ is a 1-complex and each p_{λ} is a closed path in χ , called the defining path. The elements of A are called indices. If \mathscr{K} is a 2-complex, then we define $\mathscr{R}(\mathscr{K})$ as the set of all cyclic permutations of a non-empty defining paths with the inverses. Let $\mathscr K$ be a 2-complex. Then an equivalence relation $\sim_{\mathscr K}$ (or simply \sim) on paths in \mathcal{K} as follows: An elementary reduction of a path α is a transformation of α to $\alpha_1 \alpha_2$ if α has one of the forms $\alpha_1 \gamma \gamma^{-1} \alpha_2$, $\alpha_1 p \alpha_2$, where γ is any path and $p \in \mathcal{R}(\mathcal{K})$. If α and α' are two paths then we define $\alpha \sim \mathcal{K}(\alpha')$ if and only if there is a sequence of paths $\alpha = \alpha_0, \alpha_1, ..., \alpha_m = \alpha'$, where for i = 1, 2, ..., m-1one of α_i , α_{i+1} is obtained from the other by an elementary reduction. The ~equivalence class containing α is denoted by $[\alpha]_{\mathscr{H}}$ (or simply $[\alpha]$). A path which is \sim -equivalent to an empty path is called contractible. If α and β are two paths such that $\alpha\beta$ is defined, then we define $[\alpha][\beta] = [\alpha\beta]$. Let \mathscr{K} be a 2-complex and let v be a vertex of \mathscr{K} . Then the fundamental group $\pi_1(\mathscr{K}, v)$ of \mathscr{K} at v has the underlying set $\{[\alpha] : \alpha \text{ a closed path with } \iota(\alpha) = v\}$, where the binary operation is the product defined above, and $[\alpha]^{-1} = [\alpha^{-1}]$. If \mathscr{K} is connected, then the fundamental group $\pi_1(\mathcal{X}, v)$ is independent of the choice of the base vertex v of \mathcal{K} . Therefore, we can refer to the fundamental group of \mathcal{K} .

Now, let \mathscr{K} and \mathscr{L} be 2-complexes. Then a mapping $\phi : \mathscr{K} \to \mathscr{L}$ is a function taking vertices to vertices, paths to paths satisfying $\phi(1_v) = 1_{\phi(v)}$, for a vertex v of \mathscr{K} , $\phi(\alpha_1 \alpha_2) = \phi(\alpha_1) \phi(\alpha_2)$, α_1 , α_2 are paths in \mathscr{K} and $\alpha_1 \alpha_2$ is defined, $\phi(\alpha^{-1}) \sim \mathscr{L} \phi(\alpha)^{-1}$; $\phi(p)$ is contractible in \mathscr{L} for each defining path ρ of \mathscr{K} . We say that ϕ is rigid if it maps edges to edges, and satisfies $\phi(\alpha^{-1}) = \phi(\alpha)^{-1}$ for all paths α in \mathscr{K} . If $\phi : \mathscr{K} \to \mathscr{L}$ is a mapping, then there exists an induced homomorphism $\phi_* : \pi_1(\mathscr{K}, v) \to \pi_2(\mathscr{L}, \phi(v))$ defined by $\phi_*([\alpha]_{\mathscr{K}}) = [\phi(\alpha)]_{\mathscr{L}}$, where $[\alpha]_{\mathscr{K}} \in \pi_1(\mathscr{K}, v)$. A mapping $\phi : \mathscr{K} \to \mathscr{L}$ is said to be locally bijective if ϕ is rigid and maps $\operatorname{Star}(v) = \{e : e \in E(\mathscr{K}), \iota(e) = v\}$ bijectively onto $\operatorname{Star}(\phi(v)), \phi^{-1}(\mathscr{R}(\mathscr{L})) = \mathscr{R}(\mathscr{K})$. If, in addition, \mathscr{K} and \mathscr{L} are connected, then ϕ is called covering (see [1], [5]). Let \mathscr{K} be a

96

BIPARTITE GROUPS

connected 2-complex, ν a vertex of \mathscr{K} , and let H be a subgroup of $\pi_1(\mathscr{K}, \nu)$. Then there is a covering $\phi_H : \to \mathscr{K}$ and a vertex ν_H of \mathscr{K}_H such that ϕ_{H*} maps $\pi_1(\mathscr{K}_H, \nu_H)$ isomorphically onto H, where ϕ_H is the covering corresponding to H.

Let \mathscr{K} be a 2-complex. Then we can associate with \mathscr{K} a 1-complex \mathscr{K}^{st} called the star complex of \mathscr{K} by taking vertices $E(\mathscr{K})$, and edges $\mathscr{R}(\mathscr{K})$. If γ is an edge of \mathscr{K}^{st} , then we can define the inverse edge to be the inverse path $\gamma^{=1}$. In order to define the initial and terminal points of γ , we use the notation $t^{st}(\gamma)$, $\tau^{st}(\gamma)$. We define $t^{st}(\gamma)$ to be the first edge of γ and $\tau^{st}(\gamma)$ to be the inverse of the last edge of γ . We note that \mathscr{K}^{st} is a 1-complex provided that no element of $\mathscr{R}(\mathscr{K})$ is equal to its inverse.

A 2-complex \mathscr{K} satisfies T(4) — condition if and only if $T(\mathscr{K}^{st})$ has no triangles (see [3]).

3. Subgroups of bipartite groups. A 1-complex χ with a vertex set V is called a bipartite complex if V is disjoint union of two non-empty sets V_1 , V_2 such that if e is an edge of χ , then one of $\iota(e)$, $\tau(e)$ belongs to V_1 and the other to V_2 , that is, χ is a bipartite complex if $\Gamma(\chi)$ is a bipartite graph. We point out that a bipartite graph has no reduced closed path of odd length. In particular a bipartite graph has no triangles. It follows that a bipartite complex is a T(4)-complex (see [3]).

Theorem 1. Every subgroup of a bipartite group is a bipartite group. In order to prove Theorem 1, we prove the following lemma:

~

Lemma 1. Let $\phi : \tilde{\mathscr{C}} \to \mathscr{C}$ be a locally bijective mapping of 1-complexes $\tilde{\mathscr{C}}$ and \mathscr{C} . If \mathscr{C} is a bipartite complex, then so $\tilde{\mathscr{C}}$.

Proof. Define a vertex $\tilde{v} \in \tilde{\mathcal{C}}$ to be an element in \tilde{V}_1 or \tilde{V}_2 if $\phi(\tilde{v}) = v$ is an element in V_1 or V_2 . Then we have $\tilde{V} = \tilde{V}_1 \cup \tilde{V}_2$. Now, let \tilde{e} be an edge of $\tilde{\mathcal{C}}$. Then by the definition of $\phi(\tilde{e}) = e$ is an edge of \mathcal{C} has one of $\iota(e)$, $\tau(e)$ belonging to V_1 and the other to V_2 . But ϕ is locally bijective. Then one of $\iota(e)$, $\tau(e)$ belongs to \tilde{V}_1 and the other to \tilde{V}_2 . Therefore, $\tilde{\mathcal{C}}$ is a bipartite complex.

Proof of Theorem 1. Let \mathscr{K} be a 2-complex with a bipartite complex \mathscr{K}^{st} . Then $G \cong \pi_1(\mathscr{K})$ is a bipartite group. Let $H \leq \pi_1(\mathscr{K})$, and let \mathscr{K}_H be a covering of \mathscr{K} , where $\pi_1(\mathscr{K}_H) \cong H$. Then we want to prove that $\Gamma(\mathscr{K}_H^{st})$ as $\Gamma(\mathscr{K}^{st})$, that is \mathscr{K}_H^{st} is a bipartite complex if \mathscr{K}^{st} is a bipartite complex. Let $\eta : \mathscr{K}_H \to \mathscr{K}$ be locally bijective of 2-complexes. By the fact that $\eta^{st} : \mathscr{K}_H^{st} \to \mathscr{K}^{st}$ is locally bijective mapping of 1-complexes (see [5]), and by Lemma 1, we have $\Gamma(\mathscr{K}_{H}^{st})$ as $\Gamma(\mathscr{K}^{st})$.

4. Bipartite presentations. In order to state our result we recall the following definition (see [5]). Let x be an alphabet. A word w on x is said to be positive (resp. negative) if only positive (resp. negative) powers of elements of x appear in the word. Let u and v be two disjoint sets of non-empty words on x. A word $t_1 t_2 \dots t_s (s \ge 1, t_i \in u \cup v)$, for $i = 1, 2, \dots s$ is called an alternating (u, v)- word if the following holds: for $1 \le i \le s$, if $t_i \in u$, then $t_{i+1} \in v$. A word is called a cyclically alternating (u, v)- word with the additional property that t_1 and t_s do not belong to the same set u or v.

Consider a bipartite presentation having *n* generators **x**. Let $\mathbf{x} = \mathbf{x}_1 \cup \mathbf{x}_2 \cup \mathbf{x}_3$, where the numbers of generators \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 are *k*, *l*, *m* respectively such that k + l + m = n.

Theorem 2. Let \mathscr{P} be a bipartite presentation as described above. Then each defining relator is a positive word on \mathbf{x}_1 (up to replacing each generator by its inverse) or cyclically alternating $(\mathbf{x}_2^{\pm}, \mathbf{x}_3^{\pm})$ - word or cyclically alternating (\mathbf{u}, \mathbf{v}) - word, where \mathbf{u} is a positive word on \mathbf{x}_1 and \mathbf{v} is an alternating $(\mathbf{x}_2^{\pm}, \mathbf{x}_3^{\pm})$ - word.

Proof. The vertex set of $\Gamma(\mathscr{P}^{st})$ looks like :

BIPARTITE GROUPS

Note that for a presentation $\mathscr{P} = \langle \mathbf{x} ; \mathbf{r} \rangle$ that $\{x^{\varepsilon}, y^{\varepsilon}\}$ $(x, y \in \mathbf{x}, |\varepsilon| = |\delta| = 1)$ is an edge if and only if $y^{-\varepsilon} x^{\varepsilon}$ is a subword of some elements of \mathbf{r}^* where \mathbf{r}^* is the set of all cyclic permutations of elements of \mathbf{r} and their inverses.

Case 1. If $x_2 = x_3 = \phi$, then each defining relator will be a positive word on x_1 (up to replacing each generator by the inverse).

Case 2. If $\mathbf{x}_1 = \phi$, then each defining relator is cyclically alternating (\mathbf{u}, \mathbf{v}) -word where \mathbf{u} is a positive word on \mathbf{x}_1 and \mathbf{v} is an alternating $(\mathbf{x}_2^{\pm}, \mathbf{x}_3^{\pm})$ - word.

REFERENCES

[1]	EL-MOSALAMY, M.S.	:	Applications of star complexes on group theory, Ph.D. thesis, University of Glasgow, U.K., 1987.
[2]	HARARY, F.	:	Graph Theory, Addison Wesley, Reading. Mass., 1969.
[3]	HILL, P., PRIDE, S. and VELLA, A.	:	On the $T(q)$ - conditions of small cancellation theory, Israel J. Math., 120 (1985), 293-304.
[4]	NAPTHINE, A. and PRIDE, S.	:	On generalized braid group, Glasgow Math. J., 28 (1986), 199-209.
[5]	PRIDE, S.	:	Star complexes and the dependence problems for hyperbolic complexes, Glasgow Math. J., 30 (1988), 155-170.
161	SERRE, S.	:	Tress, Springer-Verlag, Berlin, Heidelberg, New York, 1980.

99