İstanbul Üniv. Fen Fak, Mat. Der., 54 (1995), 119-120

2'-R GROUPS HAVING A FAITHFUL MONOMIAL IRREDUCIBLE CHARACTER

Ion ARMEANU

University of Bucharest, Physics Faculty, Mathematics Dept., Bucharest-Magurele, P.O. Box MG-11, ROMANIA

Summary : In this note we shall study the structure of the finite 2'-r groups having a nonlinear faithful monomial irreducible character of minimal degree.

BIR SADIK MONOMIYAL INDIRGENEMEZ KARAKTERE SAHIP 2'-R GRUPLAR

Özet : Bu çalışmada minimal dereceli, lineer olmayan bir sadık monomiyal indirgenemez karaktere sahip sonlu 2'-r grupların yapısı incelenmektedir.

The notations and terminology are standard (see for example [2] and [3]). All groups will be finite.

Definition (see [1]). A 2'-r group is a group all whose irreducible characters are rational valued on the 2-regular elements.

Theorem 1. Let G be an 2'-r group having a nonlinear faithful monomial irreducible character of minimal degree. Then G is a 2-nilpotent group, G=O(G)S, where $S \in Syl_2(G)$ and G' is abelian.

Proof. We shall prove first that G' is abelian. Suppose the contrary, thus $G'' \neq 1$. For a 2'-r group G/G' is an abelian 2-group (see [1]). Let χ be a faithful monomial nonlinear irreducible character of minimal degree. Let $H \leq G$ and $\mu \in Irr(G)$ a linear character such that $\mu^G = \chi$. Let λ be any irreducible constituent of $(1_H)^G$. It is clear that

$$\chi(l) = \mu^{G}(l) = (l_{B})^{G}(l) > l_{G}(l),$$

hence $\lambda(1) < \chi(1)$ and λ must be linear by the minimality of the degree of χ . Then $ker(\lambda) > G'$ (see [2], p. 25). Thus

$$G' \leq \bigcap \ker(\lambda) = \ker(i_H)^G = \bigcap_{p \in G} g^{-1} Hg \leq H.$$

Ion ARMEANU

Since G/G' is an abelian 2-group and G' is characteristic in G, it follows that H is normal in G and the inertia group $I_G(\lambda) = H$. By Clifford's theorem (see [2]) $\chi_H = \sum_{j=1}^k \mu_j$, where $\mu_j \in Irr(H)$ are the distinct conjugates of μ in G. Since μ_j are linear we have $ker(\mu_j) \ge H' \ge G''$ and hence $ker(\chi) = \bigcap_j ker(\mu_j) \ge G'' \ne 1$ which contradicts the faithfulness of χ .

Now let O(G) be the maximal odd order normal subgruop of G. Since G is a 2'-r gruop, $O(G) \le G'$ (see [1]) and hence O(G) is abelian and $G' = O(G) \times P$ with $P \in Syl_2(G')$. Let $S \in Syl_2(G)$ such that $P \le S$. Then $S \simeq G/O(G)$ so that G is 2-nilpotent. Since G is a 2'-r group and G' is abelian, it follows that $G/G' \simeq P$ where P is an abelian 2-group which inverts all elements of G'.

REFERENCES

[1]	ARMEANU, I.	:	The structure of the groups all whose characters are rational valued on the 2'-r elements (to appear).
[2]	ISAACS, I.M.	:	Character Theory of Finite Groups, Academic Press, 1976.
[3]	KURZWEIL, H.	:	Endliche Gruppen, Springer-Verlag, 1977.