İstanbul Üniv. Fen Fak. Mat. Der., 54 (1995), 121-122

THE 2'-R GROUPS WITH ONE CONJUGACY CLASS OF INVOLUTIONS

Ion ARMEANU

University of Bucharest, Physics Faculty, Mathematics Dept., Bucharest-Magurele, P,O, Box MG-11, ROMANIA

Summary : In this note we shall study the structure of the Sylow 2-subgroups of the solvable groups all whose irreducible characters are rational valued on the 2-regular elements.

BİR EŞLENİK İNVOLÜSYONLAR SINIFINA SAHİP 2'-R GRUPLAR

Özet : Bu çalışmada, 2-regüler elemanlar üzerinde bütün indirgenemez karakterleri rasyonel değerli olan çözülebilir grupların 2-Sylow alt gruplarının yapısı incelenmektedir.

The notations and terminology are standard (see [2]). All groups will be finite.

Definition. A 2'-r group is a finite group all whose characters are rational valued on the 2-regular elements.

Proposition 1. A group G is a 2'-r group if and only if for every 2-regular $x \in G$, $N_G(\langle x \rangle)/C_G(\langle x \rangle) \approx \text{Aut}(\langle x \rangle)$ (see [1]).

Theorem 2 (Thompson, see [3], p. 511). Suppose that G is a solvable group of even order and that the Sylow 2-subgroup of G contains more than one involution. Suppose that all the involutions in G are conjugate. Then the Sylow 2-subgroups of G are either homocyclic or Suzuki 2-groups.

Theorem 3. Suppose that G is a solvable 2'-r group with one conjugacy class of involutions. Then, the Sylow 2-subgroups of G are either cyclic or generalized quaternion groups.

Proof. Clearly we can suppose that O_2 , (G) is trivial. Let $I(G) = \{x \in G \mid x^2 = 1\}$. Let A be a minimal normal subgroup of G. Since G is solvable and O_2 . (G) is trivial, then A is an elementary abelian 2-subgroup, hence A = I(G).

Ion ARMEANU

Let S be a Sylow 2-subgroup of G. We shall prove now by induction on |G| that $N_G(S)=S$. If |G|=1 the statement is trivial. Now G/A is a solvable 2'-r group (see [1]) having S/A as a Sylow 2-subgroup. If follows by induction that $N_{G/A}(S/A) = S/A$, so that if $x \in N_G(S)$, then $xA \in S/A$. Set xA = yA with $y \in S$. Then $y^{-r} x \in A$, therefore $x \in S$.

By Theorem 2, if G contains more than one involution, then the Sylow 2subgroups of G are either homocyclic or Suzuki 2-groups. If a Sylow 2-subgroup S is homocyclic then it is trivial that $A \subseteq Z(S)$. If S is a Suzuki 2-group, then (see [3], pg. 313) S' = Z(S) = A = I(S). By Burnside theorem (see [2], pg. 240) if $x, y \in Z(S)$ and $x^2 = y$, with $z \in G$, then there is $t \in N_G(S)$ such that $x^t = y$. Since $N_G(S) = S$ it follows that for every $x, y \in A \subseteq S$, there is a $t \in S$ such that $x^t = y$. This is a contradiction since $A \subseteq Z(S)$. Therefore G contains only one involution, so that S is either a cyclic group or a generalized quaternion group.

REFERENCES

[1]	ARMEANU, I.	:	The structure of the groups all whose characters are rational valued on the 2'-elements (to appear).
[2]	GORENSTEIN, D.	:	Finite Groups, Harper and Row, 1968.
[3]	HUPPERT, B. and	:	Fiuite Groups, Vol. 2. Springer-Verlag, 1982.

BLACKBURN, N.