Istanbul Univ., Fen Fak. Mat. Der., 54 (1995), 129-145 129

BOUNDED AND ALMOST PERIODICAL SOLUTIONS OF THE
DIFFERENTIAL EQUATIONS OF SECOND ORDER

M.B. RAGIMOV
370149 Baku-149, Taganrogskaya Street, 31, flat 9, Azerbaijan Republic

Summary : In this paper we consider the linear differential equation
of the second order of the following type:

AxX + Bx + Cx =9 (0 (©.1)
where A : D(A)cX—+X, B: DB)<cX+X,C: D(C)c X+ X are
linear operators, acting in complex Banach space X and having the defi-
nition domains D(4), D(B), D(C) resp. such that the subspace X, =D(A)N
NDEIND(C) is dense in X, We make various assumptions about the
function v : (@, ) —+ X. Nevertheless one can obtain the most important
results in that case, where % belongs to the Banach space C (R ; X) of the
X-valued continuous functions on R and especially to the subspace of con-
tinuous almost periodical functions [1].

The case A, B, CeL(X;Y) and we B(R; Y) is considered sepa-
rately. The equation (0.1) for weC(R; X) is conveniently to consider
as the operator equation of the following type

Lx =1y,
where L: D(IL)<c C(R; X)-+C(R; X) is linear operator
Lx=s Ax + Bx + Cx,

with appropriate definition domain D (L),

TIKINCE MERTEBEDEN DIFERANSIYEL DENKLEMLERIN
SINIRLI VE HEMEN HEMEN PERIVODIK COZUMLERI

Ozet : Bu cahgmada
AX + Bx | Cx =y () ©.D

tipindeki 2. mertebeden lineer diferansiyel denklem g8zbniine almmalta-
dirki,burada A DA c X+ X, B: DB cX—-X,C. DY XX,
kompleks X Banach uzaymda etki eden ve tanim bolgeleri sirasivla D (4),
D (B), D(C) olan lineer operatdrlerdir ve X, =D (ANDEB)ND(C) alt
uzayi, X te yogundur. ¥ : (a, B) - X fonksiyonu ile iigili ¢esitli varsayim-
lar yapilmakta ve en dnemli sonuglar, ¥ nin, R lizerindeki X degerli stirekli
fonksiyonlarin C (R ; X) Banach uzayma ve Ozellikle, slirekli ve hemen he-
men periyodik fonksiyonlardan olugan alt uzaya [1] ait olmast durumunda
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elde edilmektedir. A, B, Cc L(X; ¥) ve v c B(R; ¥) halleri ayr1 ayrn gbzonii-
ne almmaltadit. y € CR; X) igin (0.1) denklemi, LX=1 tipindeki operatir
denklemi olarak digiiniilmektedir ki, burada L : (L)<= CR ; X) =+ CR ; X),
uygun bir D (L) tanum bolgesi ile,

Lx=Ax + Bx = Cx

lineer operatoridir.

§1. On the definition domain of differential operator

The problem to determine the definition domain D (L) is every complex in
the case when at least one of 4, B, C is non-bounded operator.

To determine D (L) one ought to make some additional assumptions on the
operators A, B, C considering the operator-valued function H, defined on R, with
values in the set of linear closed operators. This function is determined by the
formula H (A\)==—a2 A-+iB A+ C under the assumption that each of operators
H(\): D(H()cX-X is closed extension with X,=D(4)n D (B)n D(C) and
D(HM)oDD(A), D(HM)>D(B). Let us make the main assumptions respected
to the bundle of operators H (1), A ¢ C: There exists such complex number Z,
that the operator-valned function Hy(A\)=H (A)+Z, I satisfies the conditions:

1) Each of operators (), AR has a continnous inverse and the inverse
H'()) admits the estimation of the following type :

const
()

where o > 0 is some nwmber and const is absolute constant, independent
on LeR;

2) Operators A H;'(A), BH' ()) are bounded and

|| H;1 () || = , veR (LD

const
(L+12])
for each A e R (const -the absolute constant, independent on A e R. The trying

of the conditions (1.1)-(1.2) is simple than the tryingof the correctness condition
of the Cauchy problem for respective homogeneous eguation (0.1) (¥ =0).

| AHT M || =

|| BH;1(A) || < const. (1.2)

The correctness conditions of the Cauchy problem are offered in [2], [3], [4].

MNete 1.1, In the case A, B, Ce L (X ; ¥Y) the respective function
HR-LX:;Y)
is defined as: H(A) = — A2 A 4+ ix B -+ C and about this function one ought
to make the following assumption, different from above ones:

Suppose that the space X is continuously imbedded into ¥ and there exists
Z,eC such that the function Hy(A) = H(A)+ Z, I,, where the imbedding
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operator I, : X = Y has continuous inverse for each h.eR and analogs of the
conditions (1.1)-(1.2) hold '

const

!fHB_I(A)IIEW, a>0 (1.1)'
t
|4 H | s B < const, (L

where LeR and const is absolute constant.
Lemma 1.1. The function H, (A) satisfying the consditions (1.1)-(1.2) (resp.
H,:R - L(X;Y) satisfying the conditions (1.1)’-(1.2)’) has the property: there

exists the continuous operator-valued summable function G :R — L{X) (resp.
G:R—L(Y; X)) such that

Hy1() = [ G emdi, heR
i.e., the function Hy ' (1) is the Fourier transformation of the summable function

G(t)(f||G(t)||dt< +.oo). |

Proof. Set
G(t)=fHo—1 () entdh, 1eR. (1.3)

From the condition of summability of the function H;1(A) (which follows
from the condition (1.1) or (1.1)’) it follows that this function is continuous
and bounded (moreover, || G(#) || = 0 as | | - co). From the definition of the
function H;1(A) and condition (1.2) or (1.2)" it follows immediately .that

dH;1 (M) _
and 7
dH;1()) o | A ] | const A eR
dn ﬁ(fOI‘lSt“HO YR W"{- 5"‘1“—_&_—‘—7\‘7, eR,
ie., the function H;t(A) is continuously differentiable and summable on R.
da* H !

and

One can analogously prove that it has the second derivative

X
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A2 H1(\) const
[T

Taking it into account from (1.3) one can obtain the equality

o0

@H70)
“‘fsz(t)=f—dl2——*€'Md7\,,

00

from the condition Sup {| £2G () || <--<e it follows that |G (5) || < iz . Since
eR 5

this function is continuous, it is bounded in the neighbourhcod of 0 and

finally [ || G (@) | dt < + o.

Note 1,2, From the definition, the functions of the type

H71(A) x, eirot = f G (2) x, et dt
belong to D(L) and therefore from this equality it follows that the function
¥, €™ belongs to D (L) if y,e D (H,(A)). Since D (Hy(A))=D (H(3,)), the func-
tion y, e belongs to D (L) if y,e.D (H (Ay)-

Definition 1.1. Continuous bounded function ¢ : R—X is called the gener-
alized bounded solution of the equation (I) if it satisfies the equation

o0 = [ G- +2Z 0 d.

This approach to the definition of generalized solution of the equation (1) is very
convenient from operator viewpoint. The main reason of it is that the conditions
(1.1)-(1.2) on bundle make possible to define the natural definition domain D (L)
of the operator L : D(LycC(R; X)»C(R; X) in the Banach space C(R; X)
of the functions bounded on R with values on X, defined by the differential
expression :

Lx = A}.C.-|- Bx + Cx.

In order to define D (L) we procéed as follows : firstly we define the definition
domain of the operator L -}- Z, I and then write: D (L) =D (L + Z,I)..

§2. On the almost non periodicity set of bounded functions

For the investigation of almost periodical (generalized) solutions of the
equations we will proceed making use of the notions of Bdrling spectrum and
the almost non-periodicity set of bounded functions.
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Definition 2.1. The Bérling spectrum S(p) of the continuous bounded func-
tion ¢: R—=X (pcs C(R; X)) is referred to the common zeros set of the
Fourier transformation of the functions from the set

{feL (R): fxp =0},

where L, (R) is the Banach algebra of the complex-valued functions summable
on R with convolution as the product of functions

RO = [fC— L@ do, /. feL®.

The convolution of the functions fe L, (R), o C (R ; X) is referred to the func-
tion from C(R ; X), defined as follows :

) ) = [1¢=0) 9(0) do.
Note the property [[f*¢|lc<[If]|; - ||@]ic. where || - |[c is the norm in

CR;X) and || f|l, = [ (/@) || is the norm in L, (R).

From the definition of §(p) immediately follows that XDES (q}) if there
exists the function fe L, (R) with properties jr:'(kn);é() and fxo =0.

From the definition (2.1) also follows that the Bérling spectrum S () of the
function ¢ C (R ; X) is equal to the support of the Fourier transformation of
the function ¢ considering as generalized function of slow growth. This allows
to formulate the properties of the Borling spectrum. analogous to the property
of support of the functions.

Lemma 21. Bérling spectrum of the functions from C(R; X) has the
following properties :

1) S(gp) is closed and S(p) = ¢, if ¢ =0

2) S(fhxe)cSuppfnSp) viHeL, R), voel;
(supp f,-support of the function f);

3) foxe =0, if supp /,nS(P) = ¢;
4) (op | f*p) =g, if the function f(}) + o is equal to I in the neigh-
borhood of the set S(p) (feL;(R), acC);

5) Se+PcS@USE vo, YeC;

6) S@p) =o(p), if pe B(R; X), i.e. ¢ is almost periodical function with
the Fourier series of the kind
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o) ~ Doie™’, pre X, o(g) = {LeR: g;=0).

=1
Proof, 1) Tt is clear that fx =0 v fe L, (R) provided that ¢=0 and there-
fore the common set of zeroes of the Fourier transforms from £, (R) which is
equal to S{g) is empty. So S(p)=¢. Conversely, let S(p)=¢, i.e. the common
set of zeroes of the Fourier transforms of the function from M (¢)={fe L, (R):
S* =0} is empty. Since the set 4/ (p) is invariant with respect to functions shifts,
by the Viner’s taubers theorem, we obtain M (@)=L, (R), i.e. f*¢=0, fe L, (R).
From this it follows that ¢ = 0. The closedness of the set S (¢) is obvious,
'2) Let fieL,(R) and pe C(R:X). If 2,2 Supp/,, then f(A) =0 on
certain interval (A, — &, A, + &) for some & > 0. Select the function fe L, (R)
such that Supp f = (A, &, Ay t€) and F(h)=0. Then /¥ (f, * 9)=(f*£;) ¥ ¢=0.
For /(&) =0, A, e S(f*¢), S(f*¢)c=Supp o A, € S(@) then there exists
a function ge L, (R) with properties: ig(ho) #0, gxo =0. Then gx{fx¢) =
=f*(gx¢) =0, A, eS5(f*q), ie S(fxe)cS(p), finally S(f*¢@)=Supp, N
ns(e).

3 From 2) it follows that S(f*x¢)CSuppfnS(e) = ¢, S(fxe) =¢
and therefore from 1) it follows that fx¢ =0. ‘

4) Suppose that aeC and the function fe L, (R) is selected such that
FO)--o =1 in the neighborhood of the set S(p). Consider the function
¥ =a¢ +f+¢ — ¢. Then for each function ge L, (R) we obtain the equality
gx¥ =agxo+gxfvo—gro={(uag+g+f— g xp=f *o. Since f, (1) =

= agW) +20) FO) —2() =g () (@ +f() —1) =0 in the neighborhood
of S(g), then from (2) it follows that fy ¢ =0, i.e. g+¥ =0 yge L, (R) and
therefore the function ¥=a ¢+ *@—¢ is equal to zero, i.e. a@-+f*p=0p.

5) If %, €S()US(¥), then there exist functions f,, f,& L, (R) such thaf
F10)50, 7,050, f, %9 =f,+¢. Then the function f =f, +f, will have the
propetties F(hy)==F, Ohg) 7, ()0, and /x (p-H¥) =/, %1, (p-+¥) =1y ¥ (f, 9)+
+/,#(f,%0) =0, ie. heS{p -+ ¥). _

6) Suppose that ¢ e B(R; X) with the Fourier series

y i
91 ~ > s
j=1

Then for each function fe L; (R) one can immediately find from the definition
that f+ ¢ is again the almost periodical function and it has the Fourier series
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m_‘ N .
frp ~ ZfO\.J) fpjeljr.
i=1
From this type of Fourier series for the function fx ¢ it follows that if ¢, >0 and
F()=0 (ie. Mjea(p) then fx =0 and thercfore A& S(p), ic. o (p)=S(p),
and therefore a{p)c S (p) (o {p) may not be closed set). If logc? {ip), then

select the function fe L, (R) with properties f(xo);éo and supp f N c{p)=d.
Then

7ro~ > 0N =0

and therefore by the uniqueness theorem about Fourier series fx ¢ = 0; so
Ao € S{0).

Definition 2.2, By the set of non almost periodicity of the bounded con-
tinuous function ¢ : R — X we call the common set of zeroes of the Fourier trans-
formations of the functions from the set {fe L, (R): f+¢ -almost periodical
function}. The set of non-almost periodicity of the function ¢ is denoted by

S, (). Note that lo_éSo (¢p) iff there exists the function fje L (R) with prop-

erties: ;‘3(?\0);&0 and f,¥»9eB(R;X). In the following lemma we formulate
some properties of the set of non almost periodicity of functions, which are
analogous to the properties of the Bérling spectrum of functions.

Lemma 2.2. The set of almost periodicity of the functions from C{R ; X)
has the following properties :

) S,@cSp). pe CR; X);

2) S8, (p) is closed set and S;{g) = ¢ I ¢ is almost periodical;
3) S, Suppfyn S, (0) VAEL®), yocCR; X);
4) freeB(R;X) if Suppf NS, (e) = ¢;

5 Syl + VIO US (¥, ¢, Ye C(R; X).

The proof of the indicated properties is analogous to the proof of the respec-
tive properties of the Bérling spectrum, which formulated in Lemma 2.1. For

instance, prove the property 5). If A, € 5, () U S, ('), then there exist two func-
tions f;, f, € L,(R) with properties: /; (1) =0, /; Q) =0, /i » o=/, » ¥ B(R; X).

Then the function f=f, +f, has the propertics J;b\.o) = ];J\(?;o) ];; () = 0,
Fx@+W=fi+f, 20 +fixfx¥ =f,x(fixe) + /i x(f,xVeBR; X).
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§3. Almost periodicity of bounded solutions

Now return to the investigation of the differential equations (1) and offer
some sufficient conditions of almost periodicity of generalized bounded solution
of this equation (under the condition (1)-(1.2) on operator-valued function
HQ) :D(HOM) X=X (H: X-Y, if we consider the case of various spaces).

Defirition 3,1. The singular set of the function H(A) = — A2+ B(A) L
+ C: DHQ) X=X, AeR{H(): X-7) is the complement in R of the
set {AeR: H(}) has continuous inverse}. Taking into account the openness of
the set of invertible operations (in the case of various spaces X and Y} we obtain,
that the singular set of the function A is closed. We denote it by S(H), so S(HY)<R.
For the case of one space X we will demand the closedness of the set §(H).

Defizition 3.2. The sequence of functions (¢,, @,,...} from C(R; X)is cal-
led c-convergent to the function e C(R; X) if it is bounded and uniformly
converges to ¢ on each finite interval from R, ie. sup |l g, |[<ve, || 9,—¢ |0

for each interval [g, 5]. In this case we use the notation ¢, ——» ¢ ot ¢-im ¢, =o.
H

Definition 3.3. The linear operator L: D (L) C(R; X)=»C(R ; X) is called

c-closed, if from the conditions ¢,—~¢, ¢ e D(L) and L¢, —%5 ¥ it follows that
e D(L) and L ¢ = ¥. The bounded operator L. : C{R; X)-C(R; X) is called
c-continuous, if from ¢, —“ ¢ it follows that Lo, —— L¢. Analogous definitions
are offered if L: D(LYcC(R; Y)—»C(R; X) (in the case of various spaces).

Lemma 3.1. I the resolvent set p (L) of the operator L : D(L)c C(R; X)—
- C(R; X) is non-void and (L — %, )7t : C—»C is ccontinuous operator, then
L is ¢-closed operator.

Proof. Let A,ep(L) and the operator L, = L — X, is c-continuous,
Prove that the operator L is c-closed. Let@,—— ¢ and L, > ¥. Then

Ly (Lo @) — LT, ie. o, —°s Iy W, Therefore g =Ly ' ¥, ie. geD (Ly
and L, = W.

Since L =L, + A1, if ¢, —— ¢ and LoV, then L, p, — ¥ — 4 ¢.
Therefore pe D(L) =D(L) and Lo =¥ — \, 9, ie. Lo =V,

Theorem 3.1. The linear operator

L:D(LcCR;X)»C(R;Y) (Lx=dx + Bx | Cx)

is c-closed.
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Proof. As we assumed there exists a complex number Z, such that
H,(\)=H(\+Z,I, heR is invertible and for the lunction H;1(A) hold the

conditions (1.1), (1.2). Following Lemma 1.1 and definition (generalized) of soiun-
tion we obtain that the operator L, = L 4 Z; I is continuously invertible and
the inverse one Ly': C—C has the form

Lo =G ) =[Gt -9k d

where the Fourier transform 8: R— L (X) of the function G coinsides with the

function Hy1(A), LeR. If ¢, — ¢ then

Lo, — Lo =[G —9) ©@,6)— ¢(s)) ds

——00

and for all ze[a, b] (@ < b) we obtain the estimations

I L5 0u ) — Lito Ol < [116¢—9) (0,6) 0 () || ds =

N
=ff(rﬂs) ||(p”(s)—(p(s)||ds+ff(t-—s)||(pn(s)—(p(s)||ds<s,
—N

Islzw
for each te[a, #] and sufficiently large N, and each given >0, f)=|| G (@) ||.
Therefore, Lg! is e-continuous operator. Then, according to previous lemma L

is c-closed.

Lemma 3.2, The operator L: D (L)cC(R; X)=C(R; X) commutes with
shift operators of functions, ie. if ¢ e.D (L) then for each AeR the function
¢, () =0+ h), teR belongs to D (L) and L ¢,=(L ¢),. Moreover, for each
function fe L, (R) and ¢eD(L) the function fx¢ belongs to D (1) and

L(fx9) =fxLyg.

Proof. Consider the operator L, = L + Z,I which is invertible and its
inverse has the form

i) O =[G ~9 0() ds = Gre) (),

i.e. it is the operator of convolution with the summable function G(¢) which was
introduced in Lemma 1.1, The operator L-! commutes with shift operators, i.e.

if T, =0, ¢eC, FecR then
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Lt 0(t) = j’ G@t—s) o+ ds = f G+ h—5)9(s)ds = (v, L71e)(2).

Therefore Lzt v, ==, L;!. From this it follows that if ge D (L)=D(L,), then
there exists W e ¢ such that ¢ = L' ¥. Then Ljl<, ¥=1, 9D (L)=D(L)
and besides it L1 (v, ) =7, (Lyp). Then L(t,9)=17,Lg. Let us suppose
that fe L, (R). Then from the type of the operator I;1{l,p} =Gx¢ we
obtain that f¥ Lt = L1 (fxg), ie. the operator L' commutes with the

operator of convolution with any function from L, (R). From this equation it
follows that if ¢ e D(L)=D(L) then fxpec D(L) and L(f e @)=+ Lo, ¢ L)
(which can be proved completely analogously as the proof of commutability of
the operator L with operators <,, hcR.

Lemma 3.3. The set of trigonometrical polynomials (i.e. functions of the
N

type f (1) = Z X; e, x;e X) is c-densed i (L), i.e. for each function ¢ e D(L)
j=1 .
there exists a sequence of trigonometrical polynomials ¢; from (L) such that

P —— .
Proof. Consider the arbitrary function ¢eD(L) =D (L)L, =L+ Z,I)
and the function ¥ e C such that 7> W = ¢. Consider the arbitrary sequence of

trigonometrical polynomials (p,) such that ¢, — ¢ in C. Then

Ly S LV =g

Since Lt (xy o) = f G (t — 5) x, et ds = G (Ay) x, e = H1 () x, e,

—n

@, = L' (¥,) are trigonometrical polynomials ¢-converged to Lt =g,

Before the formulating of one of the main results we formulate one additi-
onal result about the conditions for almost periodicity for vector-functions
(spectral almost-periodicity condition). The scalar case was investigated by [5],
the vector one- in [6]. '

Thesvem 3.2. Let ¢: R—X is uniformly continuous bounded function
defined on R with values in Banach space X and the set S (@) is countable.
Then ¢ is almost-periodical if one of the following conditions holds :

a) The space X does not contain the subspaces, isomorphic to the space
C, of the sequences of complex numbers converged to zero;
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b) the set of the values of the function ¢ is weakly compact;

¢) S{p) has no limit points on finite intervals on R.

Theorems 3.3. Let o C(R; X) -(generalized) solution of the equation
Lx = Ax + By + Cx = ¥ (),

where ¥ : R— X -almost periodical function. The the set of none almost perio-
dicity S, () belongs to the set S(H) and S{p)cS(H)U S (¥).

Proof. Let A, e R\ S(H) and then the operators H (X), A € (Ay—e, Ayt6),
where ¢ is a positiv number, are continuously invertible, We represent these op-
erators in the form H (A\) = H, (\) — Z, I, where H, (1) is previously introduced
function, which is invertible for each g e R. We can represent the function H())
as follows: '

H(;\‘) = 'HO (A‘) (I - ZO H(Tl (l))n 7\'6 (l() — &, 7\1) + E)-

Since H (3) and H, ()) are invertible operators, then the operator I—Z, H;1(\)
* will be invertible and therefore

H= () = (I — Zy Hy ()~ Hyt (), he(hy — ¢, Ay + 9.

Consider the function f, ¢ L, (R) such that j/”; (Ap) == 0 and supp _;“;c(ko — 2g,
A, + 2¢) and _;“; =1 on (A, — ¢, Ay + ¢) and the operator-valued function

F0) Q) =150 (I — Zy Het Oyt Hy () = B (L),

the support of which lies in the interval (A, — ¢, A, + € for Lo =¥, then
from Lemma 3.2 it follows that f, * ¢ € D (L) and the following equality holds

L{fixe)=/f,+¥YecBR; X),

i.e. fy* @ is the solution of this equation.

Let us prove that the function f; ¥ ¢ can be represented in the form @ x f, ¥ ¥,
where ® : R— L (X) is summable operator function, the Fourier transform of

which coincides with ® (A)=7, &) H—1(3), L& R (from the kind of the function
@ it follows that it is the Fourier transform of the summable function ¢ as a .
function with compact support being the product of three functions, each of
them is the Fourier transform of some summable function). The equality
fo * o=@ »f, ¥ ¥ will be proved if we determine that for each function ¥, € B (&;X)
with S(J) < (hy—, A,+€) cach solution of the condition (CW¥=¥,) is represen-
table in the kind @ %¥,. By Lemma 3.3 there exists the sequence (p,) from

D (L) with properties: ¢, —+ ¢ and L ¢,—¥,, where ¢, aer trigonometrical
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polynomials. Therefore it is sufficient to verify the equality ¢, = @ »'¥, only
for the trigonometrical polynomials of the type:

Qo () = xgeet, we (g — g, Ay + ).
But for
Lo, ¢)=(—4 Lt% + iy B+ O) x, elwot = H () x, elwot = W, () = y, cleo!
and therefore
9o () = x, elwo! = H1(p) y, eivor.
On the other hand

((D ¥ \PQ) (t) = f‘D (t —_ S) Jf'o givot o — 8 (!_10) ya eli! =

—00

n}; (!'10) H(;—l (!'10) Yo efuol = H(TI (!-10) Yo eluol,

From this follows the equality ¢, = @ ¥, and the equality fx =0 *(f, +¥)
for ® « (f, *¥)e B(R; X) and [(A;) = 10, then &, €5, (p), so S, (9)= S (H).
If 2, SCH)US(P) then we select a function f, € L, (R) such that f:(),o);éO and
Supp £) N (S (D NS (F)=4. As we proved, f, ¥ g= *f, ¥ ¥=0 for f, x ¥=0
{by property 3 of Lemma 2.1). Since j/"; Ay =0, ?\,DES (p), Sy S (H) U S(D).

The following theorem follows immediately from Theorem 3.2 and 3.3.

Theerem 3.4, Each (generalized) bounded solution ¢ of the equation (3.1)
is almost periodical, if the singular set of the bundle # (1) is less than countable
and one of the following conditions holds:

1) The Banach space X does not contain the subspace isomorphic to the
space C, of number sequences convergent to 0 (for instance, if X is reflexive
or weakly complete one);

2) The solution ¢ has weakly compact domain of values;

3 the set S(H)US () has no limit points on finite intervals of R,

Preof. According to Theorem 3.3 S;(p) = S(H) and S(¢) c S(H)US(¥).
Taking into acount the assumtions of this theorem let us apply Theorem 3.2. To
that end note that the function ¢ is uniformly continuous. It follows from the
representation of ¢ as ¢ = G»f,, where G is the constructed summable
function. Actualily
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(]
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uniformly on feR (the continuousness of the shift for summable operator
functions).

Corollary 3.1. Let A=17, B=0 and the resolvent of the operator R(j1; C)
admits the estimation:

t
i R €)]f = ==

| Re

Then any generalized solution of the equation (3.1) is almost periodical if the
spectrum o (C) in intersection with R, = {¢ > 0} is less than countable (since
the distance of C has compact resolvent and one of the conditions of Theorem
3.4 holds). '

The results of Corollary 3.1 were obtained by Piskaryov [7] in the case that
C is the generating operator of strongly continuous cosine function. The veri-
fication of the condition, when € is the generating operator of strongly cosine
function is extremely complex (see [8]).

| : el Repz=w el

84. The existence of the bounded solutions

Now consider the problem of the existence of the generalized bounded
solutions of the equation (3.1) with continuous bounded (non-necessary almost
periodical) function ¥ : R— X. As previously we suppose that the bundle

H(\) =— AN+ B(@lA +C, AeR
sasitsfies the conditions (1.1) and (1.2).

Lemmza 4.5, Let Y& C'(R; X) be the function with compact Bérling spec-
trum S (%), Then the function ¥ is the bounding on R of some entire function of
exponential type,

Such a result can be count familiar, for the Fourler transform of the fync-
tion ¥, considering that the generalized function has compact support which is
equal to S(gp). Therefore it is sufficient to use the analogs of the Viner-Pely
theorem [9].

Lemma 4.2. if ¢ e D (L) then the following condition holds:
SL @)= 5 (g).
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Proef. Suppose that lOES(q)). Then there exists a function fe L, (R) such
that f(hg) 0 and
Suppf NS(p) =¢

(which implies the equality fx ¢ = 0). From Lemma 3.2 follows that fx ¢ e D (L)
and fax Lo =L{fx¢) =0, ie. A\,eSLey), SLe)=5(p).

Thesrem 4.3, Let S(HYNS(Y) = ¢ and the set S(¥) is compact. Then
the equation (3.1) has generalized bounded solution ¢ : R—X which (as a )
is the restriction on R of some entire function of exponential type (moreover
S{pyc S ).

Preof. Let S(¥) be a compact set which by the assumption does not intersect
with §(H). Consider the open set V containing § (%) and not intersecting with
S(H) (and separated from it : dist (5 (H), S(¥))=0). One can point out the [inite
number of intervals covering § (¥) and not intersecting with S (H) and the func-

tion fe L, (R) such that }‘(?\.) =1 in the neighbourhood ¥ of the set §(F) and
Supp_}:ﬂ S (H) == ¢. Consider now the function:

F0O H-1(), A eSuppf(1)D S(e),

0, A e Supp F (V).

@, ) =

The function @, is the Fourier transform of some summable operator function
(because H—1 (1) locally belongs to the algebra of the Fourier transforms of the
summable operator functions)

G (el (X), teR

From Note 1.2 it follows that the function of the type x, e belongs to
D(L) and the vector x, belongs to D (H(A)). If dyeV and xyeD(H(,)
then

L (xo ginor) H(?\.ﬂ) x, it
Since 1 (k) cxists, then
9, (1) = x, et = H=1(A) L(x, eo) = H-1 (&) ¥, (1), ¥, (1) = L(x, e™).

Similar equality also holds for trigonometrical polynomials with spectrum from
the set Vo R™_5(H). So, since

@, () =F0) H-1() = H-1(\), he ¥,

then ¢, = ® » ¥, for each trigonometrical polynomial ¥, with spectrum from
Vand L, = ¥,.
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Now use the c-density of trigonometrical polynomials (see Lemma 3.3)
in D (L) and prove that the equation has the generalized solution ¢ of the type
p==®, »'¥. Actually, if (¥}, »>1 is the sequence of periodical functions ¢-con-
vergent to ¥ with spectrum from V, then ¢, = @, ¥V, D (L) e-converges to
@, %% and Lo, = ¥,. From e-closedness of the operator L it follows that
Lo =¥ Moreover, it is proved that ¢ = @, %V from which, for instance,
implies that S(p)= S (y) (see the statement 2 of Lemma 2.1).

From the proof of Theorem 4.2 follows the uniqueness of the solution (I),
the spectrum of which does not intersect with S (}). Actually we proved the
local invertibility of the operator . on the subspaces of functions, the spectrum
of which is compact and does not intersect.

Theorem 4.2. The equation (3.1) has the unique solution for each function
yeC®R ;X)) If S(H)Y=¢.

Proof. Consider the arbitrary point A, R and vector x,eX. Then the
equation Lx == ) ei*of has the unique solution a,(#), Le. (Lay) () = y, et
Consider %k, and the function f& L, (R) with propertics 7{A,)=0, f(h,) = 0.
Then from Lemma 3.2 it follows that fxa, € D (L) and L{f x a))=f»(y, e*v}=0.
Then L{f%a) =0 and therefore f¥a, =0. It means that X, eS(a,), lLe.
S{ay) = {A,}. As is known in this case a, has the type a,(f) = x, €™ and
H () x5 =y, therefore for each vector y,e X there exists the unique vector
X, e D(H (W)

From the closedness of the operator A(ky) (since Hy Q)=HA)+Z, I is
invertible operator) follows its invertibility, i.e. A;e S(i1). From this by arbi-
trarity of A, we obtain that S (H) = ¢.

Sufficiency : Let S (H)=¢. Consider the operator function I (A)=H (\)}+
+Z, I, e R. Remember that for this function hold conditions (1.1), (1.2) from
which it follows that the function HO"I (Mg L(X), AeR is representable in the
form H;!'(d) = &; (), where @ is summable operator function A (A). Represent
the function H (L) in the form

HO) = Hy(A) — Z, I = Hy ) (I —~ Zy H1 ().

Since H(}) is invertible, the operators J — Z H ' ()) are invertible for each
A e R. Therefore the function H—t ()} is represecntable in the form

H'() = H) (0 Z, Hyt (A1
of product of two opefator functions Hz'(A) and (I—2Z, H;' (W)~1, the first
of which is the Fourier transform of summable function by the theorem of
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Bochner-Philips [10]. Then the function H—!(X) is the Fourier transform of
some summable function @ (t)e L (X), teR. Therefore the solution ¢ of the
equation (3.1) with y(r) = y, e admits the representation of the form

() = H 1) ¥y e =@, vy,

From this the equality ¢, = ® *y can be extended immediately on almost-
periodical function y (making use of the theorem of approximation for almost
periodical functions). So, the operator L is invertible on the subspace of almost
periodical functions and

LTy =@ +y, ye B(R;X)

In order to extend this formula on functions y from C(R; X) it is sufficient
to use Lemma 3.3.

Note 4.1. For the equation of the first order Ly x =% — Ax =y (1),
yeC(®R ; X) under the condition that 4 -infinitesimal generating operator of
strongly continuous semigroup of operators, the result analogous to Theorem 4.2
has not jet been obtained. But, X is Hilbert space and the spectrum o(4) of
the operator intersects with imaginary axis i R=={if:7eR} (which respects to
our condition S(H) = ¢) under the condition Sl;p [[GAT— Ay~ || < o sub-
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stituting our conditions (1.1) and (1.2). By immediate combination of the proofs
of Theorems 4.1 and 4.2 one can prove the following theorem:

Theorem 4.3. Suppose that the singular set § (/) of the bundle H (L),
A eR is compact and the following condition holds:

SH)NS (y) = ¢.

Then the equation (3.1) has the unique bounded generalized solution ¢ e C(R ; X)
having the property S{(g)c S5 (w).

Note 4.2, We can attach various values to the notion of the classical so-
lution of the equation (3.1). For instance, the classical solution ¢ of the equation
(3.4.) can be defined as twicely continuous differentiable function, the values of
which and of which first two derivatives lie in DN DB)NP(C) and for
which the equality holds

Ap -+ Bp -+ Cp = .
If x, e™f=gq, (1) is the function with x,e D {(AnD(BYn P(C) then it is clear
that

L (x, einor) == H (L) Xq € =y, (1)
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and very simple analysis suggests that ¢, is the solution of the equation L ¢, ==y,
in general sense. It is clear that from this considerations it follows also that the
similar equality can be extended on trigonometrical polynomials and then by
Lemma 3.3 on each classical solution ¢ of the equation Lo = w.
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