ON P-SASAKIAN MANIFOLD

M. TARAFDAR - A. GHOSH

Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Calcutta: 700019. INDIA

Abstract

Summary : In this paper, the nature of the P-Sasakian manifold has been studied, when $R(X, Y) \cdot \bar{C}=0$, where \bar{C} is the concircular curvature tensor.

P-SASAKİAN MANIFOLD HAKKINDA

Özet : Bu çalışmada, \vec{C} konsirküler eğrilik tensörü olmak üzere, $R(X, Y), \bar{C}=0$ olması durumunda P-Sasakian manifoldun yapısı incelenmektedir.

Introduction. Let (M^{n}, g) be an n-dimensional Riemannian manifold admitting a 1 -form η which satisfies the conditions

1) $\left(\nabla_{X} \eta \mid\right) Y-\left(\nabla_{Y} \eta\right) X=0$,
2) $\left(\nabla_{X} \nabla_{Y} \eta\right) Z=-g(X, Z) \eta(Y)-g(X, Y) \eta(Z)+2 \eta(X) \eta(Y) \eta(Z)$
where ∇ denotes the operator of covariant differentiation with respect to the metric tensor g. If moreover (M^{n}, g) admits a vector field ξ and a (1-1) tensor field ϕ such that
3) $g(X, \xi)=\eta(X)$,
4) $r(\xi)=1$,
5) $\nabla_{X} \xi=\phi X$
then such a manifold is called a Para-Sasakian manifold or briefly a P-Sasakian manifold ([2], [3]). The present paper deals with a type of P-Sasakian manifold in which $R(X, Y) \cdot \bar{C}=0$, where \bar{C} is the concircular curvature tensor, R is the curvature tensor and $R(X, Y)$ is considered as a derivation of the tensor algebra at each point of the manifold for tangent vectors X, Y. It is shown that such a manifold is locally isometric with a unit sphere $S^{n}(1)$. Further, it is shown that a concircularly symmetric P-Sasakian manifold is concircularly flat.
[^0]1. Preliminaries. Let S and r denote respectively the Ricci tensor of type $(0,2)$ and the scalar curvature of M^{n}. It is known that in a P-Sasakian manifold the following relations hold ([1], [2], [3]):

$$
\begin{gather*}
\phi \xi=0 \tag{1.1}\\
\phi^{2} X=X-\eta(X) \xi \tag{1.2}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{1.3}\\
S(X, \xi)=-(n-1) \eta(X) \tag{1.4}\\
\eta(R(X, Y) Z)=g(X, Z) \eta(Y)-g(Y, Z) \eta(X) \tag{1.5}\\
R(\xi, X) Y=\eta(Y) X-g(X, Y) \xi \tag{1.6}\\
R(\xi, X) \xi=X-\mathrm{\eta}(X) \xi \tag{1.7}\\
R(X, Y) \xi=\eta(X) Y-\eta(Y) X \tag{1.8}\\
S(\phi X, \phi Y)=S(X, Y)+(n-1) \eta(X) \eta(Y) . \tag{1.9}
\end{gather*}
$$

The above results will be used in the next section.
2. P-Sasakian manifold satisfying $R(X, Y) \cdot \bar{C}=0$. The concircular curvature tensor, denoted by \bar{C}, is defined as

$$
\begin{equation*}
\bar{C}(X, Y) Z=R(X, Y) Z-\frac{r}{n(n-1)}\{g(Y, Z) X=g(X, Z) Y\} \tag{2.1}
\end{equation*}
$$

Let

$$
R(X, Y) \cdot \bar{C}=0
$$

Then one must have

$$
\begin{aligned}
R(X, Y) \bar{C}(U, V) W & -\bar{C}(R(X, Y) U, V) W- \\
& -\bar{C}(U, R(X, Y) V) W-\bar{C}(U, V) R(X, Y) W=0
\end{aligned}
$$

or

$$
\begin{align*}
& g(R(\xi, Y) \bar{C}(U, V) W, \xi)-g(\bar{C}(R(\xi, Y) U, V) W, \xi)- \\
& -g(\bar{C}(U, R(\xi, Y) V) W, \xi)-g(\bar{C}(U, V) R(\xi, Y) W, \xi)=0 . \tag{2,2}
\end{align*}
$$

Taking $X=\xi$ in (2.1) and using (1,6) one gets

$$
\begin{equation*}
\bar{C}(\xi, Y) Z=\left\{1+\frac{r}{n(n-1)}\right\}\{\eta(Z) Y-g(Y, Z) \xi\} . \tag{2,3}
\end{equation*}
$$

Also, from (2.3), one finds

$$
\begin{equation*}
\eta(\vec{C}(\xi, Y) Z)=\left\{1+\frac{r}{n(n-1)}\right\}\{\eta(Z) \eta(Y)-g(Y, Z)\} . \tag{2.4}
\end{equation*}
$$

Taking $X=Z=U$ in (2.1) and using (1.5) we find

$$
\begin{equation*}
\eta(\bar{C}(U, V) U)=\left\{1+\frac{r}{n(n-1)}\right\}\{g(U, V) \eta(V)-g(V, U) \eta(U)\} . \tag{2.5}
\end{equation*}
$$

Using (1.6) in (2.2) we get

$$
\begin{align*}
& \eta(Y) \eta(\bar{C}(U, V) W) \rightarrow g(Y, \bar{C}(U, V) W)- \\
& -\eta(U) \eta(\bar{C}(Y, V) W)+g(Y, U) \eta(\bar{C}(\xi, V) W)- \\
& -\eta(V) \eta(\bar{C}(U, Y) W)+g(Y, V) \eta(\bar{C}(U, \xi) W)- \tag{2.6}\\
& -\eta(W) \eta(\bar{C}(U, V) Y)+g(Y, W) \eta(\bar{C}(U, V) \xi)=0 .
\end{align*}
$$

Taking $Y=U$ in (2.6), we obtain

$$
\begin{align*}
& g(U, \bar{C}(U, V) W)-g(U, V) \eta(\bar{C}(\xi, V) W)+ \\
& +\eta(V) \eta(\bar{C}(U, U) W)-g(U, V) \eta(\bar{C}(U, \xi) W)+ \tag{2.7}\\
& +\eta(W) \eta(\bar{C}(U, V) U)-g(U, W) \eta(\bar{C}(U, V) \xi)=0 .
\end{align*}
$$

Using (2.4) and (2.5), one gets from (2.7)

$$
\begin{align*}
g(U, \bar{C}(U, V) W) & +\left\{1+\frac{r}{n(n-1)}\right\}\{g(U, U) g(V, W)- \tag{2.8}\\
& -g(U, V) g(U, W)\}=0 .
\end{align*}
$$

Using (2.1), it follows from (2.8) that

$$
\begin{equation*}
g(U, R(U, V) W)=g(U, V) g(U, W)-g(U, U) g(V, W) \tag{2.9}
\end{equation*}
$$

Let $\left\{e_{i} ; i=1,2, \ldots, n\right\}$ be an orthonormal basis of the tangent space at each point of the manifold. Then the sum for $u=c_{i}, 1 \leq i \leq n$ gives

$$
\begin{equation*}
S(V, W)=-(n-1) g(V, W) \tag{2.10}
\end{equation*}
$$

Using (2.1) and (2.4), we get from (2.6)

$$
\begin{align*}
& \eta(Y) \eta(R(U, V) W)-g(Y, R(U, V) W)-\eta(U) \eta(R(Y, V) W)+ \\
& +g(Y, U) \eta(W) \eta(V)-g(Y, U) g(V, W)-\eta(V) \eta(R(U, Y) W)+ \tag{2.11}\\
& +g(Y, V) g(U, W)-g(Y, V) \eta(W) \eta(U)-\eta(W) \eta(R(U, V) \cdot Y)=0 .
\end{align*}
$$

Using (1.5), one gets from (2.11)

$$
\begin{equation*}
g(Y, R(U, V) W)=g(U, W) g(Y, V)-g(Y, U) g(V, W) \tag{2.12}
\end{equation*}
$$

whence

$$
\begin{equation*}
R(U, V) W=g(U, W) V-g(V, W) U \tag{2.13}
\end{equation*}
$$

From (2.10) one finds

$$
\begin{equation*}
r=-n(n-1) . \tag{2.14}
\end{equation*}
$$

Also; on using (2.14), we find from (2.1)

$$
\begin{equation*}
\bar{C}(X, Y) Z=R(X, Y) Z+g(Y, Z) X-g(X, Z) Y \tag{2.15}
\end{equation*}
$$

Consequently one finds from above

$$
\begin{equation*}
\bar{C}(\xi, X) \xi=0 . \tag{2.16}
\end{equation*}
$$

Thus we state
Theorem 1. Let $\left(M^{n}, g\right)$ be a P-Sasakian manifold with $R(X, Y) . \bar{C}=0$. Then
i) M is an Einstein manifold with scalar curvature $-n(n-1)$
ii) M is of constant curvature
iii) $\bar{C}(\xi, X) \xi=0$ for every X.
3. Concircularly symmetric P-Sasakian Manifold. For a concircularly symmetric P-Sasakian manifold, $\nabla \bar{C}=0$. Hence for such a manifold $R(X, Y), \bar{C}=0$. Thus (2.13) holds and consequently from (2.15) we have

$$
\bar{C}(X, Y) Z=0
$$

Thus we state the following theorems :
Theorem 2. A concircularly symmetric P-Sasakian manifold is locally isometric with a unit sphere $S^{n}(1)$.

Theorem 3. A concircularly symmetric P-Sasakian manifold is concircularly flat.

REFERENCES

[1] ADATI, T. and : On conformally recurrent and conformally symmetric P-Sasakian MATSUMOTO, K. manifolds, TRU Math., 13 (1977), 25-32.
[2] SATO, I. : On a structure similar to the almost contact structure, Tensor, N.S., 30 (1976), 219-224.
[3] SATO, I. and : On P-Sasakian manifold satisfying certain conditions, Tensor, MATSUMOTO, K. N.S., 33 (1979), 173-178.
[4] TARAFDAR, D. and : On a type of P-Sasakian manifold, Extracta Mathematica, 8 DE, U.C. (1993), Nr. 1, 31-36.

[^0]: 1991 Mathematics Subject Classification (AMS) : Primary 53 C 25
 Key words and phrases: P-Sasakian manifold, manifold locally isometric with a unit sphere, concircularly flat.

