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ON THE BOUNDEDNESS AND THE STABILITY RESULTS FOR THE
SOLUTIONS OF CERTAIN FIFTH ORDER DIFFERENTIAL EQUATIONS

Cemil TUNC
University of Yiziincti Yil, Faculty of Bducation, 65080, Van-TURKEY

Sammary : The paper investigates the equation (1.1) in the two
cases : (I) p==0, (i) p (50 0) satisfies |p (t, x, y, 2o Wy ) | == (14| ¥ |+ 2|+
+| w|+| u}) g(£). where g{r) is a nonnegative function of t. For the case
(i) the asymptotic stability in the large of the trivial selution x =0 is in-
vestigated and for the case (if) a boundedness result is obtained for solu-
tions of (1.1). The results obtained here extend several well-known results.

5. MERTEBEDEN BELIRLI DIFERANSIYEL DENKLEMLERIN
COZUMLERI ICIN SINIRLILIK VE STABILITE SONUCLARI HAKKINDA

Ozet : Bu calismada (1.1) denklemi su iki halde incelenmektedir:
(i) p==0 dur, G) p(F0) | p o oy 2w ) | S L+ y |+ z |+ w |+ u ]y g @)
bagintisint gergekler ki, burada g (¢), ¢ nin negatif olmayan bir fonksiyonu-
dur. (i) hali igin x=0 trivial ¢dzlimiiniin asimtotik stabilitesi incelenmekte,
(ii) halinde de (1.1) in ¢éztimleri igin bir sturlilik sonucu elde edilmektedir
ve burada elde edilen sonuglar, bilinen bazi sonuglara genisletilmektedir.

1. Iniroduction and statement of the results

We shall consider the non-linear fifth order differential equation

X4 (v, X, X, X, ¥®) X0py (x, D+Hh (D) e W D=p @, %, 5, 5 59 (L1)
in which the functions ¢, y, #, g, / and p, which depend only on the arguments

shown explicitly, are such that @ (x, ¥, z, w, 1), v (z, w), Bi yiz,w), g (),
. Z

and p(x, y, z, w, &) are continuous for all values of ¢, x, y, z, w and wu.

The boundedness and stability properties of solutions of non-linear fourth

order differential equations have been the subject of intensive investigation.
Many of these results are summarized in [4]. Similar investigations have been
carried out on various special cases of (1.1) by a number of authors.
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Chukwu [2] dealt with the equation of the form

X 4 ax® 4 f,(x) + ex + 14 ) +fHx)=0 (1.2

and presented sufficient conditions for asymptotic stability in the large of the
zero solution for that equation.

A similar result was also obtained for the equation

X0+ £ ()X £, + £, + £, + (0 =0 (1.3)
by Abou-El-Ela and Sadek [I].
Furthermore, recently, in [5], Yuanhong studied fifth order non-linear dif-
ferential equations of the form
XD | g (6, X, X, X, X9) X® 4 bx + A+ 2(0) () =p@).  (14)
He obtained some results concerning asymptotic stability in the large of the zero
solution of (1.4) with p(¢) = 0 and the boundedness of solutions of (1.4) with
p{) = 0.
The assumptions which will be established here are generalizations of the
Routh-Hurwitz conditions
a=>0,ab—c>0,(ab—c)yc— (ad —~¢) a > 0,
A=(cd—be) (@b —¢c)— (ad — e >0, e > 0,
which are necessary and sufficient for the asymptotic stability in the large of the
trivial solution of the linear differential equation

(1.5)

X | ax® 4 bx | ex |+ dx | ex =0 (1.6)
with constant coefficients. :

Equation (1.1) has an equivalent system

x=y, y=z, =W, W=i,

(L7

u=—q (x, ¥, 2, w, ) u—v (z, W)—h (2)—g O—Lx)+p (1, x, y, 2, w, ).
We start with the case p=0 in (1.1) and prove here that:

Theorem 1. In addition to the fundamental assumptions of ¢, ¥, &, &
and f, we suppose that:

I) The constants a, b, ¢, d and e satisfy (1.5) and following two inequalities:
_ (ed—be) (ab—c) |

ad — ¢

A, g () —e) >2bforall y,  (1.8)
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ed—be d@d—e & i

A, = — >0 for all y, 1.9
2T d—e  db—e a 4 (1.9)
where
&) s ¥,
d={ Y (1.10)
g’ (0), y=0,
N f0)=g©0) =h(0)=vy(z0 =0,
M-— > a >0 for all x s 0, where o is a positive constant,
x
EO) S g for all y »= 0,
y
h @) > ¢ for all z = 0,
z

VG b forall 2 and w % O,
w

@(x,y,z,w, 1) = a for all x,y,z w and wu

) f'(x) < e for all x,

e2d eA d
' (x) — e < min , ——1 for all x. 1.11
-9 [16 W] 1.1
W) g»m— £0). < B for all y = 0, (1.12)
¥y
where B is a positive constant such that

eA
L 1.13
P d*(ab — ¢) (1.13)

¥ 2 EAI
[g'(y) —dP*< 7y for all y. (1.14)

2
v (29 _ ] < B g a2 0, (1.15)
z l6 §?
where & is a positive constant satisfying

5= eab—o + €, (1.16)

ad — e

2
[M_ - c] < %(cp —g)forall x,y, w,u and z% 0,  (L.17)
z

and
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E ed A (ad—e)
40 ° 482 164 (ab—c)?

2 __2)2 2
vI) m —b| < min eA, (ad—c) . ed for ail z and w0,
64d? (ab—c)* 1682

P--a< suﬁmin[ ]for all x,y,z,w and ». (1.18)

v (1.19)
and
vy, (z, w) < 0 for all z, w. (1.20)
Then every solution (x (¢), ¥ (2), z (), w(z), u(?)) of system (1.7) satisfies
XA 2E 2@ v (@) + 12 (E)~>0 as {—> oo, (1.21)

provided that the positive constants € and ¢, are sufficiently small,

For the case p (¢, x, y, z, w, 1) # 0, we shall prove

Theorem 2. Suppose that

(I) conditions (I)-(VI) of Theorem 1 hold,

(ID) the function p (2, x, y, z, w, u) satisfies {p (¢, x, y, z, w, ) | <(1+ |¥| +
4lz|+|w|+|u]|) ¢(t), where g (¢) is a nonnegative and continuous function

i .
of ¢, and satisfies f q (5) ds< A< oo, forall t>0, 4 is a positive constant. Then for
0
any given finite x,, y,, z,, W,, 1, there exists a constant D=.D (x,, ¥, Z5 Wy 1),
such that any solution (x (#), y(¢), z (£), w(Z), u(t)) of system (1.7) determined by
x(0) = Xos Y ) = Yo z(0) = Zpy w(0) = Wg, u(0) = Uy,
satisfies for all =0,
Ix@{<D, ly@Ol<D, |zO)| <D, {w®| =D, |u@®)| <D. (1.22)

Remark 1. When ¢ (x, );, )'C‘, x, xXN=g, wy (JL., ;):b;c., h (;c) —cx , 2 ();) —dx

and f(x) = ex and p(?, x, X, x, x, X)) =0, equation (1.1) reduces to the linear
differential equation (1.6) with constant coefficients and conditions (I)-(VI) of
Theorem 1 reduce to the corresponding conditions of Routh-Hurwitz criterion.

ditions of Theorem 1 and Theorem 2 reduce to those of Yuanhong [5].

2. The function Vix,y z wu

The proofs of the theorems depend on a scalar differentiable function
V(x, », z, w, ). This function and its time derivative satisfy fundamental ine-
qualities, The function ¥V = ¥V (x, , z, w, u) is defined by:
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w
2V=u*2awu+ 2—a!'g—zﬂzu—ﬂ f v (z, 5) ds+ [az— g(ﬁéﬂ] w4
ad—e ad—e

ad (ab— c)

ad—e

42 I:C._|_ ] w428 yu+-2adyw-+2wf (x)+-2wg (1) +

ad—e

+2a f h(s) ds+- [bd (ab:fl —d—ad ] 224 2b3yz+2azg (Y)—2epyz-+
2.1

1 2azf () + (e —ae) y 1 200 f g()dst 2P iyt
ad—e ad--e
0

2 fxf(s) ds,

where £ 2> 0 and 8 > 0 are constants satisfying (1.8), (1.9) and (1.16).

The properties of the function ¥V, which are required for the proof of (1.21)
and (1.22), are summarized in Lemma 1 and Lemma 2.

Temma 1. Under the conditions of Theorem 1, there exist positive con-
stants D,=D,(a, b, ¢, d, e, 0, B, &) (i =1, 2,3, 4,5) such that

V=D x*+ D, y*+ D, 22+ D, w4 D, u?

for all x,y, z, w, u

Proof. V(0,0,0,0,00 =0, since f() =g =~0) =y 0 =0

qr( W) o ] 2

Also, since y (z, 0)=0 and 1=~ >b (wy0) it is clear that [ w (z, 5) ds= dw?

0

Therefore (2.1) takes the form
d(ab—c)

ad—e

dA
(ad—e)*

d (ad—e)
+ d'(ab—c) [(ad— ) Ser (a —e)

5
o,

2
2V > [u—{—aw—l— z—I—By] -+

[er - ] +A, Twtaz]>+

Jeet)lr

g (s) ds—yg o»)]

d (ah—c)

2
d,(d_)f()+

+26ff()d¥
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et A 3
-+ [Scae-— ——82] V+a [2 j h(s) ds—cz* ]—I—

0
+ (i) We i 2 [“H’e] v, 2.2)
a ad—e : .

where A and A, are defined by (1.5) and (1.9), respectively.

The terms on the right-hand side of the inequality (2.2) are the same as the
terms on the right-hand side of the inequality (2.4) in [S, pp. 269, 270]. In fact,
the estimation there for the terms on the right-hand side of (2.2) yields

V=D x*+D,y*+ D, 22+ D, w+ D, v (2.3)
This completes the proof of Lemma 1.
Temma 2. Let all the conditions of Theorem 1 be satisfied. Then there

exist positive constants D, = D, (b, d, g) (i =6,7,8) such that every solution
(x, ¥, z, w, w) of system (1.7) satislies

/= -§~ V(x,p,z,w,u) < — (Dg y* + D, 22 + Dy w?). (2.4)
{

Proof. A straightforward calculation using the identity
oV av 14 av av -

Ve=So gyt Sz Sw e St T
ax ay oz aw ou
yields
V=-—(p—a)y*— | a @) —c+-8&— a_d(gb—_c)] wr—
w ad — e

U= hD) s ry—en) } 2
| ad—e =z

— (5002272 2] —ato -arm

— ﬁ—@— ~c} Zy— d(ab—e) (p—a)zu—8(p—a)yu+
 z ad—e

b [ O)—dlzw L (e yw-— 5 [Q —c] yo—
_ dab—

— ale—f'()]yz

yz,w)z—

w

—dypy(z,w)+ (d C) 2w+ BSyw+w f Vi (Z,5)ds. (2.5)

ad—e

L+
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It follows from Y3 5 b and (1.16) that
W
a ¥zw) —e+8— ad(ab-—c) Wt > lab—c+3— adab—c) wi=gw? (2.6)
w ad—e ad—e
By using —- ( ) >c¢,{(1.8) andab — ¢ + 86 — Eci(%lz—_c) =z we find
ad —e

dab—) h@ _ (5p 4 @) — O} =

ad — e
> (cd — be) (@b — ¢) ') &) —eb >
ad — e
=[S e 9] @
2 ad — e
From — £0) > d and f'(x) < e, we obtain
[Sy 81— 229 2 ] edy— (] —ed?. 28)

Because of (1.20), it follows that
wf v, (z,8)ds <0, (2.9
0

Combining inequalities (2.6)-(2.9) in (2.5) we get
1

3 sd A g
Voo — 2y - L2 T oyt V., 2.10
g.yz : y E f (2.10)

=7

oot [ "2 ezt () 2,
z 16

1

7)

1 d(ab— '
—4—)((p4a)u2+f1—£;-—ei)(q;—a)zu+(%‘—)22,
1

4)

where

(q)—a)u2+a((p—a)wu+( )wz
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wt — [g"(y) — dl zw + dlab—¢) [ \H(z’ L b] zZw 4 (—%) z*,

ad—e w

)wz+[e—-f'(x)]yw+s[}’_(z_”ﬂ ]w+( ) ’
w 4

(DY [ ], (o
e ()15 ()

v, = (%) 2 4 ale — £O] vz + (%) 2.

The functions V,, Vy, ¥V, , ¥V, , V5 and ¥, are the components of V in the

proof of [5, Lemma 2]. For precisely the same reasons as in [3]
V,20,¥;20,V,206,¥V,>0,¥,=0 and ¥V, > 0.
Now consider the expressions

. (% ) ¢ oy 2 [w(.:w) _ b] W+ ("??) 2

and
v, = ( : ) Wit fe — [ vw+s[‘"(i”’) ]ywir(ff) ”.

By similar estimation using (1.11), (1.14) and (1.19) we obtain V,; > 0 and ¥, > 0.
Summing up the above discussion we obtain

SNER

£
=, 2.11
8 4 ) ( )

By (1.8), inequality (2.11) implies that
: ed eb E
V< —|—3¥P4+ 22+ —wn], 2.12
(.8 d 4 4 ) @12
which verifies (2.4).
Proof of Theorem 1. See [5].

Proof of Theorem 2. Consider the function ¥ defined by (2.1). Then,
since p » 0, under the conditions of Theorem 2, the conclusion of Lemma 2 can
be revised as follows:

V(x, Wz, < — Doyt — D22 — D wt+
d(ab —¢)

ad — e

-+ [Lt —+ aw +

24 ay] ot x, oz, ). (213)

S ——— T OOt LTI RS O WPt Rt OO Rt IO IOON00nCDIUNOETT T T T T S T T T T T T
T T T T T T T T I o e T T T T T T T T o o DT T 7 2 o T T T T e I e P T e T L L e
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Let

Dg:max(l,a’M___c)_’g)_
ad — e

We have

V< Dyllpl+lzl+Iw|+lull L4yl + 1z +]|w|+ 2]l q@).
Using the inequalities ' ‘
[7l <1407 [2]< 1425 fw < 1-Hwh Ju| <1402, 2| pz | <2425 2 | pw | < 02w,
2l | =+, 2w | <22+ w2 zu| <22+ ud 2 |wn| < w24 o

we get

V < Dy [4 -+ 502 + 22 4+ w? + ud)] ¢(r). (2.14)
From the estimation given by (2.3} it is clear that
V > Dy (02 + 2 + w? + u?), . (2.15)
where Dy = min (D, ,D,,D,, D;).

Thus it follows from (2.14) and (2.15) that

V < Dy, q(t) + Dy, V), (2.16)

where D,, =4D,, D, = 5D, .

D,

Now, integrating (2,16} from 0 to ¢, we find

f

Vt)— V(©0) < D, f a(s)ds + D, f V(s) g(s)ds.
0 0

Using condition (i) of Theorem 2, we have
1
V) < Dyt Dy [ V) a(s)ds
]
where D,, = V(0) 4+ D,, 4. Hence Gronwall-Bellman inequality yields

V(1) < D,, exp (Dn j g(s)ds).
4]

"This completes the proof of Theorem 2.
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