ON THE STABILITY AND THE BOUNDEDNESS PROPRRTTES OF SOLUTIONS OF CERTAIN FOURTH ORDER DHEEERENTIAL EQUATIONS

Cemil TUNÇ
University of Yüzüncü Yıl, Faculty of Education, 65080, Van-TURKEY

Summary : The main purpose of this paper is to study the asymptotic stability in the large of the zero solution for Eq. (1.1) with $p \equiv 0$ and the boundedness of solutions for Eq. (1.1) with $p \neq 0$.

4. MERTEBEDEN BELIRLI DIBERANSIYEL DENKLEMLERIN STABILITE VE SINHKLHMK OZZLikLeRi HAKKINDA

Özet : Bu çalışmanın ana amacı, $p \equiv 0$ halinde (1.1) denkleminin sffur çözümünün asimtotik stabilitesini ve $p \neq 0$ halinde (1.1) in çözümlerinin sınırlılığını incelemektir.

1. Introduction and statement of the results

We consider the equation

$$
\begin{equation*}
x^{(4)}+\varphi(x, \dot{x}, \ddot{x}, \ddot{x}) \ddot{x}+f(\dot{x}, \ddot{x})+g(x, \dot{x})+h(x)=p(t, x, \dot{x}, \ddot{x}, \ddot{x}) \tag{1.1}
\end{equation*}
$$

in which the functions φ, f, g, h and p depend at most on the arguments shown explicitly and the dots denote differentiation with respect to t. Further, it will be assumed that the functions φ, f, g, h and p are continuous for all values of their respective arguments and that the derivatives

$$
\frac{\partial}{\partial x} \varphi(x, y, z, u), \frac{\partial}{\partial y} \varphi(x, y, z, u), \frac{\partial}{\partial u} \varphi(x, y, z, u), \frac{\partial}{\partial y} f(y, z), \frac{\partial}{\partial x} g(x, y),
$$

$\frac{\partial}{\partial y} g(x, y)$ and $h^{\prime}(x)$ exist and are continuous for all x, y, z and u. All functions and solutions are supposed to be real. Moreover, the existence and the uniqueness of the solutions of (1.1) will be assumed.

Key words: Nonlinear differential equations of the fourth order, V-function, Stability, Boundedness.
AMS Classification numbers: 34C11, 34D05.

It will be convenient in what follows to use the equivalent system:

$$
\begin{align*}
& \dot{x}=y, \dot{y}=z, \dot{z}=u \tag{1.2}\\
& \dot{u}=-\varphi(x, y, z, u) u-f(y, z)-g(x, y)-h(x)+p(t, x, y, z, u),
\end{align*}
$$

which is obtained from (1.1) by setting $y=\dot{x}, z=\ddot{x}$ and $u=\dddot{x}$.
The boundedness and stability properties of solutions for various equations of the fourth order differential equations have been considered by many authors. Many of these results are summarized in [12].

Ezeilo [4] investigated the stability and boundedness of the solutions of the equation

$$
x^{(4)}+f(\ddot{x}) \ddot{x}+\alpha_{2} \ddot{x}+g(\dot{x})+\alpha_{4} x=p(t)
$$

Harrow ([6], [7], [8]) studied the problem for the simple variant of (1.1) given by

$$
x^{(4)}+a \dddot{x}+f(\ddot{x})+g(\dot{x})+h(x)=p(t) .
$$

In [9], Lalli and Skrapek obtained a similar result for the equation

$$
x^{(4)}+f_{1}(\ddot{x}) \dddot{x}+f_{2}(\dot{x}, \ddot{x})+g(\dot{x})+h(x)=p(t) .
$$

Abou-El-Ela [1] investigated the boundedness of the solutions of the equation

$$
x^{(4)}+f(\dot{x}, \ddot{x}) \ddot{x}+\alpha_{2} \ddot{x}+g(\dot{x})+\alpha_{4} x=p(t) .
$$

Also recently, in [3], Bereketoğlu dealt with the equation of the form

$$
\begin{equation*}
x^{(4)}+f_{1}(\dot{x}, \ddot{x}, \ddot{x}) \ddot{x}+f_{2}(\dot{x}, \ddot{x})+g(\dot{x})+h(x)=p(t) \tag{1.3}
\end{equation*}
$$

He presented sufficient conditions for the asymptotic stability in the large of the trivial solution of (1.3) with $p(t) \equiv 0$ and the boundedness of solutions of (1.3) with $p(t) \neq 0$.

In the case $p(t, x, y, z, u) \equiv 0$ we have
Theorem 1. Suppose the following conditions are satisfied:
(i) $f(y, 0)=g(x, 0)=h(0)=0$.
(ii) There are positive constants $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ and Δ_{0} such that $\alpha_{1} \alpha_{2} \alpha_{3}-\alpha_{3} \frac{g(x, y)}{y}-\alpha_{1} \alpha_{4} \varphi(x, y, z, 0) \geq \Delta_{0}$ for all x, z and $y \neq 0$.
(iii) $\varphi(x, y, z, u) \geq \alpha_{1}>0$ for all x, y, z and u,

$$
\frac{f(y, z)}{z} \geq \alpha_{2} \text { for ali } y, z \neq 0
$$

$\frac{g(x, y)}{y} \geq \alpha_{3}$ for all $x, y \neq 0$,
$\frac{h(x)}{x} \geq \beta$ for all $x \neq 0$, where β is a positive constant.
(iv) $\left(\alpha_{4}-\frac{\alpha_{1} \Delta_{0}}{4 \alpha_{3}}\right)<h^{\prime}(x) \leq \alpha_{4}$ for all x.
(v) $\left(\frac{\partial}{\partial y} g(x, y)-\frac{g(x, y)}{y}\right) \leq \delta_{1}$ for all $x, y \neq 0$, where δ_{1} is a positive constant satisfying $\delta_{1}<\frac{2 \alpha_{4} \Delta_{0}}{\alpha_{1} \alpha_{3}^{2}}$.
(vi) $\left(\frac{1}{z}\right) \int_{0}^{z} \varphi(x, y, s, 0) d s-\varphi(x, y, z, 0) \leq \delta_{2}$ for all x, y and $z \neq 0$, where δ_{2} is a positive constant such that $\delta_{2}<\frac{2 \Delta_{0}}{\alpha_{1}^{2} \alpha_{3}}$.
(vii) $\frac{\partial}{\partial y} f(y, z) \leq 0, y \frac{\partial}{\partial x} \varphi(x, y, z, 0) \leq 0, z \frac{\partial}{\partial x} \varphi(x, y, z, 0) \leq 0$, $y \frac{\partial}{\partial y} \varphi(x, y, z, 0) \leq 0$ and $z \frac{\partial}{\partial y} \varphi(x, y, z, 0) \leq 0$ for all x, y and z.
(viil) $\frac{f(y, z)}{z}-\alpha_{2} \leq \frac{\varepsilon_{0} \alpha_{3}^{3}}{\alpha_{4}^{2}}$ for all $y, z \neq 0$, where ε_{0} is a positive constant such that

$$
\begin{align*}
\varepsilon_{0}<\varepsilon \leq \min & {\left[\frac{1}{\alpha_{1}}, \frac{\alpha_{4}}{\alpha_{3}}, \frac{\Delta_{0}}{4 \alpha_{1} \alpha_{3} D_{0}}, \frac{\alpha_{3}}{4 \alpha_{4} D_{0}}\left(\frac{2 \alpha_{4} \Delta_{0}}{\alpha_{1} \alpha_{3}^{2}}-\delta_{1}\right),\right.} \\
& \left.\frac{\alpha_{1}}{4 D_{0}}\left(\frac{2 \Delta_{0}}{\alpha_{1}^{2} \alpha_{3}}-\delta_{2}\right)\right] \tag{1.4}
\end{align*}
$$

with $D_{0}=\alpha_{1} \alpha_{2}+\frac{\alpha_{2} \alpha_{3}}{\alpha_{4}}$.
(ix) $\left[\frac{\partial}{\partial x} g(x, y)\right]^{2} \leq \frac{\alpha_{1} \Delta_{0}\left(\varepsilon-\varepsilon_{0}\right)}{16}$ for all x and y,
and $\frac{1}{y} \int_{0}^{y} \frac{\partial}{\partial x} g(x, s) d s \leq \frac{\sigma_{3}\left(\varepsilon-\varepsilon_{0}\right)}{4}$ for all $x, y \neq 0$.
(x) $\quad z-\frac{\partial}{\partial u} \varphi(x, y, z, u)+d_{2} y \frac{\partial}{\partial u} \varphi(x, y, z, u) \geq 0$ for all x, y, z and u, where

$$
\begin{equation*}
d_{2}=\frac{\alpha_{4}}{\alpha_{3}}+\varepsilon \tag{1.5}
\end{equation*}
$$

Then every solution of (1.1) satisfies

$$
\begin{equation*}
x(t) \rightarrow 0, \dot{x}(t) \rightarrow 0, \ddot{x}(t) \rightarrow 0, \ddot{x}(t) \rightarrow 0 \text { as } t \rightarrow \infty \tag{1.6}
\end{equation*}
$$

In the case $p(t, x, y, z, t i) \neq 0$ we have
Theorem 2. Suppose that the conditions of Theorem 1 hold and furthermore, the function $p(t, x, y, z, u)$ satisfies

$$
\begin{equation*}
|p(t, x, y, z, u)| \leq(1+|y|+|z|+|u|) q(t), \text { for all } t, x, y, z \text { and } u, \tag{1.7}
\end{equation*}
$$

where $q(t)$ is a nonnegative and continuous function of t, and satisfies

$$
\int_{0}^{t} q(s) d s \leq A<\infty
$$

for all $t \geq 0$, with a positive constant. A. Then for any given finite $x_{0}, y_{0}, z_{0}, u_{0}$, there exists a constant $D \equiv D\left(x_{0}, y_{0}, z_{0}, u_{0}\right)$, such that the unique solution $x(t)$ of (1.1) is determined by the initial conditions

$$
\begin{equation*}
x(0)=x_{0}, \dot{x}(0)=y_{0}, \ddot{x}(0)=z_{0}, \dddot{x}(0)=u_{0}, \tag{1.8}
\end{equation*}
$$

and it satisfies for all $t \geq 0$,

$$
\begin{equation*}
|x(t)| \leq D,|\dot{x}(t)| \leq D,|\ddot{x}(t)| \leq D,|\ddot{x}(t)| \leq D . \tag{1.9}
\end{equation*}
$$

Remark 1. When $\varphi(x, \dot{x}, \ddot{x}, \ddot{x})=\alpha_{1}, f(\dot{x}, \ddot{x})=\alpha_{2} \ddot{x}, g(x, \dot{x})=\alpha_{3} \dot{x}$ and $h(x)=\alpha_{4} x$, then equation (1.1) reduces to the linear differential equation with constant coefficients and conditions (i)-(x) of Theorem 1 reduce to the corresponding of Routh-Hurwitz criterion.

Remark 2. When we take $\varphi(x, \dot{x}, \ddot{x}, \ddot{x})=f_{1}(\dot{x}, \ddot{x}, \ddot{x}), g(x, \dot{x})=f_{3}(\dot{x})$ and finally $p(t, x, \dot{x}, \ddot{x}, \ddot{x})=p(t)$, then conditions of Theorem 1 and Theorem 2 are reduced to theose of Bereketoğlu [3]. When $\varphi(x, \dot{x}, \ddot{x}, \dddot{x})$ and $g(x, \dot{x})$ depend only on \ddot{x} and \dot{x}, respectively, and $f(\dot{x}, \ddot{x})=\alpha_{2} \ddot{x}, h(x)=\alpha_{4} x$ and

$$
p(t, x, \dot{x}, \ddot{x}, \ddot{x})=p(t)
$$

then conditions of Theorem 1 and Theorem 2 are reduced completely to those of Ezeilo [4]. Moreover, conditions of Theorem 1 and Theorem 2 reduce to the conditions of the relevant theorems by Lalli and Skrapek [9] and Harrow [6],
up to very small differences. These differences are due to the fact that the Lyapunov function is not identical.

2. The Function $V(x, y, z, u)$

The main tool, in the proof of the theorems, is the function $V=V(x, y, z, u)$ defined by:

$$
\begin{align*}
2 V & =2 d_{2} \int_{0}^{x} h(s) d s+\left[d_{2} \alpha_{2}-d_{1} \alpha_{4}\right] y^{2}+2 \int_{0}^{y} g(x, s) d s+2 \int_{0}^{z}\left[d_{1} f(y, s)-d_{2} s\right] d s+ \\
& +2 \int_{0}^{z} s \varphi(x, y, s, 0) d s+2 d_{2} y \int_{0}^{z} \varphi(x, y, s, 0) d s+d_{1} u^{2}+2 y h(x)+ \tag{2.1}\\
& +2 d_{1} z h(x)+2 d_{1} z g(x, y)+2 d_{2} y u+2 z u,
\end{align*}
$$

where

$$
\begin{equation*}
d_{1}=\frac{1}{\alpha_{1}}+\varepsilon \tag{2.2}
\end{equation*}
$$

d_{2} being the constant defined by (1.5).
First discuss some important inequalities.
Let Φ_{1} be the function defined by

$$
\Phi_{1}(x, y, z, 0)=\left\{\begin{array}{l}
\left(\frac{1}{z}\right) \int_{0}^{z} \varphi(x, y, s, 0) d s, z \neq 0 \tag{2.3}\\
\varphi(x, y, 0,0), z=0
\end{array}\right.
$$

Using (iii) and (vi) we obtain

$$
\begin{align*}
& \Phi_{1}(x, y, z, 0) \geq \alpha_{1}>0 \text { for all } x, y \text { and } z \tag{2.4}\\
& \Phi_{1}(x, y, z, 0)-\varphi(x, y, z, 0) \leq \delta_{2} \text { for all } x, y \text { and } z . \tag{2.5}
\end{align*}
$$

Further we define

$$
\Phi_{3}(x, y)=\left\{\begin{array}{l}
\frac{g(x, y)}{y}, y \neq 0 \tag{2.6}\\
\frac{\partial}{\partial y} g(x, 0), y=0
\end{array}\right.
$$

We have from (iii) and (v)

$$
\begin{align*}
& \Phi_{3}(x, y) \geq \alpha_{3} \text { for all } x \text { and } y \tag{2.7}\\
& \frac{\partial}{\partial y} g(x, y)-\Phi_{3}(x, y) \leq \delta_{1} \text { for all } x \text { and } y \tag{2.8}
\end{align*}
$$

From (2.2) and (1.5) we have

$$
\begin{aligned}
\alpha_{2} & -d_{1} \frac{g(x, y)}{y}-d_{2} \varphi(x, y, z, 0)= \\
& =\left(\frac{1}{\alpha_{1} \alpha_{3}}\right)\left[\alpha_{1} \alpha_{2} \alpha_{3}-\alpha_{3} \frac{g(x, y)}{y}-\alpha_{1} \alpha_{4} \varphi(x, y, z, 0)\right]-\varepsilon\left[\frac{g(x, y)}{y}+\varphi(x, y, z, 0)\right]
\end{aligned}
$$

But also (ii) and (iii) imply that

$$
\frac{g(x, y)}{y}<\alpha_{1} \alpha_{2}, \varphi(x, y, z, 0)<\frac{\alpha_{2} \alpha_{3}}{\alpha_{4}}
$$

Thus it follows that

$$
\begin{equation*}
\alpha_{2}-d_{1} \frac{g(x, y)}{y}-d_{2} \varphi(x, y, z, 0)>\left(\frac{\Delta_{0}}{\alpha_{1} \alpha_{3}}-\varepsilon D_{0}\right) \text { foI all } x, z \text { and } y \neq 0 \tag{2.9}
\end{equation*}
$$

by using (ii) and (viii).
Since $\Phi_{1}(x, y, z, 0)=\varphi(x, y, \tilde{z}, 0), \tilde{z}=\theta z, 0 \leq 0 \leq 1$, then

$$
\begin{equation*}
\alpha_{3}-d_{1} \frac{g(x, y)}{y}-d_{2} \Phi_{1}(x, y, z, 0) \geq \frac{\Delta_{0}}{\alpha_{1} \alpha_{3}}-\varepsilon D_{0} \tag{2.10}
\end{equation*}
$$

The following two lemmas are to prove that the function $V(x, y, z, u)$ is a Lyapunov function of the system (1.2).

Lemina 1. Suppose that the conditions of Theorem 1 hold. Then there is a positive constant D_{1} such that

$$
\begin{equation*}
V \geq D_{1}\left[x^{2}+y^{2}+z^{2}+u^{2}\right] \tag{2.11}
\end{equation*}
$$

for all x, y, z and u.
Proof. $V(0,0,0,0)=0$, since $f(0,0)=g(0,0)=h(0)=0$. Rewrite the function $2 V(x, y, z, u)$ as follows:

$$
\begin{align*}
& 2 V(x, y, z, u)=\frac{1}{\Phi_{1}(x, y, z, 0)}\left[u+z \Phi_{1}(x, y, z, 0)+d_{2} y \Phi_{1}(x, y, z, 0)\right]^{2}+ \\
& \quad+\frac{1}{\Phi_{3}(x, y)}\left[h(x)+y \Phi_{3}(x, y)+d_{1} z \Phi_{3}(x, y)\right]^{2}+V_{1}+V_{2}+V_{3}+V_{4} \tag{2.12}
\end{align*}
$$

where

$$
V_{1}=\left[d_{2} \alpha_{2}-d_{1} \alpha_{4}-d_{2}^{2} \Phi_{1}(x, y, z, 0)\right] y^{2}+2 \int_{0}^{y} g(x, s) d s-y^{2} \Phi_{3}(x, y)
$$

$$
\begin{aligned}
V_{2} & =2 d_{1} \int_{0}^{2}\left[f(y, s)-\alpha_{2} s\right] d s+\left[d_{1} \alpha_{2}-d_{2}-d_{1}^{2} \Phi_{3}(x, y)\right] z^{2}+ \\
& +2 \int_{0}^{x} s \varphi(x, y, s, 0) d s-z^{2} \Phi_{1}(x, y, z, 0) \\
V_{3} & =2 d_{2} \int_{0}^{x} h(s) d s-\frac{1}{\Phi_{3}(x, y)}\left[\frac{h(x)}{x}\right]^{2} x^{2} \\
V_{4} & =\left[d_{1}-\frac{1}{\Phi_{1}(x, y, z, 0)}\right] u^{2}
\end{aligned}
$$

From (1.5), (2.2), (iii) and (2.10) we obtain

$$
d_{2} \alpha_{2}-d_{1} \alpha_{4}-d_{2}^{2} \Phi_{1}(x, y, z, 0)>\frac{\alpha_{4}}{\alpha_{3}}\left(\frac{\Delta_{0}}{\alpha_{1} \alpha_{3}}-\varepsilon D_{0}\right) .
$$

Since $y g(x, y)=\int_{0}^{y} g(x, \eta) d \eta+\int_{0}^{y} \eta g(x, \eta) d \eta$, then

$$
2 \int_{0}^{y} g(x, \eta) d \eta-y^{2} \Phi_{3}(x, y) \geq\left(-\frac{\delta_{1}}{2}\right) y^{2}, \text { by }(2.8)
$$

Therefore we get

$$
V_{1} \geq \frac{1}{2}\left[\frac{2 \alpha_{4} \Delta_{0}}{\alpha_{1} \alpha_{3}^{2}}-\frac{2 \alpha_{4} D_{0}}{\alpha_{3}} \varepsilon-\delta_{1}\right] y^{2}>\frac{1}{4}\left[\frac{2 \alpha_{4} \Delta_{0}}{\alpha_{1} \alpha_{3}^{2}}-\delta_{1}\right] y^{2}, \text { by (1.4) }
$$

By similar estimation, using condition (iii), (1.5), (2.2) and (2.9) we get

$$
\begin{align*}
& d_{1} \alpha_{2}-d_{2}-d_{1}^{2} \Phi_{1}(x, y)= \\
& =d_{1}\left[\alpha_{2}-d_{1} \Phi_{1}(x, y)-d_{2} \varphi(x, y ; z, 0)\right]+d_{2}\left[d_{1} \varphi(x, y, z, 0)-1\right]> \\
& >d_{1}\left[\alpha_{2}-d_{1} \Phi_{3}(x, y)-d_{2} \varphi(x, y, z, 0)\right]>\left(\frac{1}{\alpha_{1}}\right)\left[\frac{\Delta_{0}}{\alpha_{1} \alpha_{3}}-\varepsilon D_{0}\right] . \tag{2.13}
\end{align*}
$$

From the identity

$$
\int_{0}^{z} s \varphi(x, y, s, 0) d s=z \int_{0}^{z} \varphi(x, y, s, 0) d s-\int_{0}^{z} s \Phi_{1}(x, y, s, 0) d s
$$

we get

$$
\begin{aligned}
& 2 \int_{0}^{z} s \varphi(x, y, s, 0) d s-z^{3} \Phi_{1}(x, y, z, 0)= \\
& \quad=\left[\int_{0}^{z}\left\{\varphi(x, y, s, 0)-\Phi_{1}(x, y, s, 0)\right\}\right] s d s \geq-\left(\frac{\delta_{2}}{2}\right) z^{3}, \text { by }(2.5) .
\end{aligned}
$$

Also from (iii) we obtain

$$
\int_{0}^{z}\left[\frac{f(y, s)}{s}-\alpha_{2}\right] s d s \geq 0
$$

Therefore

$$
V_{2} \geq\left\{\frac{1}{\alpha_{1}}\left(\frac{\Delta_{0}}{\alpha_{1} \alpha_{3}}-\varepsilon D_{0}\right)-\frac{\delta_{2}}{2}\right\} z^{3} \geq \frac{1}{4}\left(\frac{2 \Delta_{0}}{\alpha_{1}^{2} \alpha_{3}}-\delta_{2}\right) z^{3}, \text { by (1.4). }
$$

For the component V_{3}, from (i), (iii), (iv) and (1.5) it follows that

$$
\begin{aligned}
V_{3} & \geq 2\left(\varepsilon+\alpha_{4} \alpha_{3}^{-1}\right) \int_{0}^{x} h(s) d s-\frac{1}{\alpha_{3}}\left[\frac{h(x)}{x}\right]^{2} x^{2} \geq(\varepsilon \beta) x^{2}+ \\
& +2 \int_{0}^{x} \frac{h(s)}{s}\left[\frac{\alpha_{4}}{\alpha_{3}}-\frac{1}{\alpha_{3}} h^{\prime}(s)\right] s d s \geq(\varepsilon \beta) x^{2}
\end{aligned}
$$

By using (2.2) and (2.4) we obtain $V_{4} \geq \varepsilon u^{2}$.
Combining the estimates for V_{1}, V_{2}, V_{3} and V_{4} with (2.12) we have

$$
2 V \geq(\varepsilon \beta) x^{2}+\frac{1}{4}\left[\frac{2 \alpha_{1} \Delta_{0}}{\alpha_{1} \alpha_{3}^{2}}-\delta_{1}\right] y^{2}+\frac{1}{4}\left(\frac{2 \Delta_{0}}{\alpha_{1}^{2} \alpha_{3}}-\delta_{2}\right) z^{2}+\varepsilon u^{2},
$$

noting that all the four coeficicients of the above expression are nonnegative. Then there exists a positive constant D_{1} such that

$$
V \geq D_{1}\left[x^{2}+y^{2}+z^{2}+u^{2}\right]
$$

Thus the proof is now complete.
Lcmma 2. Suppose that the conditions of Theorem 1 hold. Then there is a positive constant D_{2} such that whenever (x, y, z, u) is any solution of (1.2) with $p(t, x, y, z, u)=0$, then

$$
\begin{equation*}
\dot{V} \equiv \frac{d}{d t} V(x, y, z, u) \leq-D_{2}\left(y^{2}+z^{2}+u^{2}\right) . \tag{2.14}
\end{equation*}
$$

Proof. A straightforward calculation using the identity

$$
\frac{d}{d t} \mathscr{V}=\frac{\partial V}{\partial u} \dot{u}+\frac{\partial V}{\partial z} u+\frac{\partial V}{\partial y} z+\frac{\partial V}{\partial x} y
$$

yields

$$
\begin{aligned}
\dot{V} & =-d_{1} u^{2} \varphi(x, y, z, u)-d_{2} y f(y, z)-d_{2} y g(x, y)-z f(y, z)+u^{2}+ \\
& +d_{1} z \int_{0}^{z} \frac{\partial}{\partial y} f(y, s) d s+d_{2} y^{2} \int_{0}^{z} \frac{\partial}{\partial x} \varphi(x, y, s, 0) d s+z \int_{0}^{z} s \frac{\partial}{\partial y} \varphi(x, y, s, 0) d s+ \\
& +d_{2} y z \int_{0}^{z} \frac{\partial}{\partial y} \varphi(x, y, s, 0) d s+d_{2} z \int_{0}^{z} \varphi(x, y, s, 0) d s\left[d_{2} \alpha_{2}-d_{1} \alpha_{4}\right] y z+ \\
& +d_{1} y z \frac{\partial}{\partial x} g(x, y)+d_{1} z^{2} \frac{\partial}{\partial y} g(x, y)+y \int_{0}^{y} \frac{\partial}{\partial x} g(x, s) d s+y^{2} h^{\prime}(x)+ \\
& +d_{1} y z h^{\prime}(x)-[\varphi(x, y, z, u)-\varphi(x, y, z, 0)] z u-d_{2}[\varphi(x, y, z, u)-\varphi(x, y, z, 0)] y u+ \\
& +y \int_{0}^{z} s \frac{\partial}{\partial x} \varphi(x, y, s, 0) d s .
\end{aligned}
$$

Since

$$
\begin{aligned}
& z \int_{0}^{z} \frac{\partial}{\partial y} f(y, s) d s \leq 0, y \int_{0}^{x} s \frac{\partial}{\partial x} \varphi(x, y, s, 0) d s \leq 0, z \int_{0}^{z} s \frac{\partial}{\partial y} \varphi(x, y, s, 0) d s \leq 0 \\
& z \int_{0}^{z} y \frac{\partial}{\partial y} \varphi(x, y, s, 0) d s \leq 0 \text { and } \int_{0}^{z} \frac{\partial}{\partial x} \varphi(x, y, s, 0) d s \leq 0, \text { by (vii), }
\end{aligned}
$$

then we obtain

$$
\begin{align*}
\dot{V} \leq & \leq\left[\alpha_{2}-d_{1} \frac{\partial}{\partial y} g(x, y)-d_{2} \Phi_{1}(x, y, z, 0)\right] z^{2}- \tag{2.15}\\
& -\left[d_{1} \varphi(x, y, z, u)-1\right] u^{2}-V_{5}-V_{\sigma}-V_{7}-V_{8}
\end{align*}
$$

where

$$
\begin{aligned}
& V_{5}=f(y, z) z+d_{2} f(y, z) y-\alpha_{2} z^{2}-\alpha_{2} d_{2} y z \\
& V_{6}=[\varphi(x, y, z, u)-\varphi(x, y, z, 0)] z u+d_{2}[\varphi(x, y, z, u)-\varphi(x, y, z, 0)] y u \\
& V_{7}=\left[d_{2} \frac{g(x, y)}{y}-\alpha_{4}\right] y^{2}-d_{1} y z \frac{\partial}{\partial x} g(x, y)-y \int_{0}^{y} \frac{\partial}{\partial x} g(x, s) d s, \\
& V_{8}=\left(\alpha_{4}-h^{\prime}(x)\right) y^{2}+d_{1}\left[\alpha_{4}-h^{\prime}(x)\right] y z
\end{aligned}
$$

By the same way as in (2.13), it follows that

$$
\begin{equation*}
\alpha_{2}-d_{1} \frac{\partial}{\partial y} g(x, y)-d_{2} \Phi_{1}(x, y, z, 0) \geq\left(\frac{\Delta_{0}}{\alpha_{1} \alpha_{3}}-\varepsilon D_{0}\right)>\frac{3 \Delta_{0}}{4 \alpha_{1} \alpha_{3}}, \text { by (1.4). } \tag{2.17}
\end{equation*}
$$

By using (iii) and (2.2) we find

$$
\begin{equation*}
\left[d_{1} \varphi(x, y, z, u)-1\right] \geq \varepsilon \alpha_{1} \tag{2.18}
\end{equation*}
$$

The function V_{5} is the same as in [3]. The estimates for V_{3} as in [3] give that

$$
\begin{equation*}
V_{5} \geq-\left(\varepsilon_{0} \alpha_{3}\right) y^{2} \tag{2.19}
\end{equation*}
$$

Also, from (x) we obtain for $u \neq 0$

$$
V_{6}=\left[z \varphi_{u}(x, y, z, \theta u)+d_{2} y \varphi_{u}(x, y, z, \theta u)\right] u^{2} \geq 0,0 \leq \theta \leq 1
$$

but $V_{6}=0$ when $u=0$. Hence

$$
\begin{equation*}
V_{6} \geq 0 \text { for all } x, y, z \text { and } u . \tag{2.20}
\end{equation*}
$$

Combining (2.16) and (2.19) we obtain

$$
\begin{aligned}
V_{5}+V_{7} & \geq-\left(\varepsilon_{0} \alpha_{3}\right) y^{2}+\left[d_{2} \frac{g(x, y)}{y}-\alpha_{4}\right] y^{2}-d_{1} y z \frac{\partial}{\partial x} g(x, y)-y \int_{0}^{y} \frac{\partial}{\partial x} g(x, s) d s \\
& \geq\left(\varepsilon-\varepsilon_{0}\right) \alpha_{3} y^{2}-d_{1} y z \frac{\partial}{\partial x} g(x, y)-y \int_{0}^{y} \frac{\partial}{\partial x} g(x, s) d s \\
& \geq\left(\varepsilon-\varepsilon_{0}\right) \alpha_{1} y^{2}-d_{1} y z \frac{\partial}{\partial x} g(x, y)-\left[\frac{1}{y} \int_{0}^{y} \frac{\partial}{\partial x} g(x, s) d s\right] y^{2} \\
& \geq \frac{3}{4}\left(\varepsilon-\varepsilon_{0}\right) \alpha_{3} y^{2}-d_{1} y z \frac{\partial}{\partial x} g(x, y) \\
& =\frac{1}{2}\left(\varepsilon-\varepsilon_{0}\right) \alpha_{3} y^{2}+\frac{1}{4}\left(\varepsilon-\varepsilon_{0}\right) \alpha_{3}\left[y^{2}-\frac{4 d_{1}}{\left(\varepsilon-\varepsilon_{0}\right) \alpha_{3}} y z \frac{\partial}{\partial x} g(x, y)\right]
\end{aligned}
$$

$$
\begin{align*}
& \geq \frac{1}{2}\left(\varepsilon-\varepsilon_{0}\right) \alpha_{3} y^{2}-\frac{d_{1}^{2}}{\left(\varepsilon-\varepsilon_{0}\right) \alpha_{3}}\left[\frac{\partial}{\partial x} g(x, y)\right]^{2} z^{2} \\
& \geq \frac{1}{2}\left(\varepsilon-\varepsilon_{0}\right) \alpha_{3} y^{2}-\frac{\Delta_{0}}{4 \alpha_{1} \alpha_{3}} z^{2} \tag{2.21}
\end{align*}
$$

by using (iii), (1.5), (ix), (2.2) and (1.4).
Now

$$
\begin{align*}
V_{8} & =\left(\alpha_{4}-h^{\prime}(x)\right)\left(y^{2}+d_{1} y z\right) \geq-\left(\alpha_{4}-h^{\prime}(x)\right) \frac{d_{1}^{2}}{4} z^{2} \\
& >-\frac{\alpha_{1} \Delta_{0}}{16 \alpha_{3}}\left(\frac{1}{\alpha_{1}}+\varepsilon\right)^{2} z^{2}>-\frac{\Delta_{0}}{4 \alpha_{1} \alpha_{3}} z^{2}, \tag{2.22}
\end{align*}
$$

by using (iv), (2.2) and (1.4).
On gathering the estimates (2.17)-(2.22) into (2.15) we deduce that

$$
\dot{V} \leq-\left(\frac{\Delta_{0}}{4 \alpha_{1} \alpha_{3}}\right) z^{2}-\frac{1}{2}\left(\varepsilon-\varepsilon_{0}\right) \alpha_{3} y^{2}-\left(\varepsilon \alpha_{1}\right) u^{2} \leq-D_{2}\left(y^{2}+z^{2}+u^{2}\right)
$$

where $D_{2}=\min \left\{\frac{\Lambda_{0}}{4 \alpha_{1} \alpha_{3}}, \frac{1}{2}\left(\varepsilon-\varepsilon_{0}\right) \alpha_{3}, \varepsilon \alpha_{1}\right\}$.

3. Proof of Theorem 1

By Lemma 1

$$
\begin{aligned}
& V(x, y, z, u)=0, \text { at } x^{2}+y^{2}+z^{2}+u^{2}=0, \\
& V(x, y, z, u)>0, \text { if } x^{2}+y^{2}+z^{2}+u^{2} \neq 0 \\
& V(x, y, z, u) \rightarrow \infty, \text { as } x^{2}+y^{2}+z^{2}+u^{2} \rightarrow \infty
\end{aligned}
$$

Also, let $(x(t), y(t), z(t), u(t))$ be any solution of (1.2) with $p(t, x, y, z, u)=0$, such that $x(0)=x_{0}, y(0)=y_{0}, z(0)=z_{0}, u(0)=u_{0}$. Consider the function $V(t) \equiv V(x(t), y(t), z(t), u(t))$ corresponding to this solution. By Lemma 2, we have

$$
V(t) \leq V(0) \text { for } t \geq 0
$$

Thus, the remainder of the proof of Theorem 1 is the same as the one given by Ezeilo [4] and hence is omitted.

4. Proof of Theorem 2

The proof here is based essentially on the method devised by Antosiewicz [2]. Let $(x(t), y(t), z(t), u(t))$ be the solution of (1.2) satisfying the initial
conditions (1.8) and consider the function $V(t) \equiv V(x(t), y(t), z(t), u(t))$, where $V(x, y, z, u)$ is the function V used in the proof of Theorem 1. Using this function, we have that, for the system (1.2),

$$
\dot{V} \leq-D_{2}\left(y^{2}+z^{2}+u^{2}\right)+\left(d_{2} y+z+d_{1} u\right) p(t, x, y, z, u)
$$

so that

$$
\dot{V} \leq D_{3}(|y|+|z|+|u|)|p(t, x, y, z, u)|,
$$

where $D_{3}=\max \left\{d_{2}, 1, d_{1}\right\}$.
It follows from (1.7) and the obvious inequalities

$$
\begin{aligned}
& |y| \leq 1+y^{2},|z| \leq 1+z^{2},|u| \leq 1+u^{2}, 2|y z| \leq y^{2}+z^{2} \\
& |y u| \leq y^{2}+u^{2},|z u| \leq z^{2}+u^{2}
\end{aligned}
$$

that

$$
\dot{V} \leq D_{3}\left[3+4\left(y^{2}+z^{2}+u^{2}\right)\right] q(t) .
$$

By (2.11) we have

$$
V \geq D_{1}\left[y^{2}+z^{2}+u^{2}\right]
$$

Putting $D_{4}=3 D_{3}, D_{5}=\frac{4 D_{3}}{D_{1}}$ we obtain

$$
\dot{V}-D_{5} q(t) V \leq D_{4} q(t)
$$

Therefore we obtain the result

$$
V(t) \leq \frac{1}{x(t)}\left(V(0)+D_{4} \int_{0}^{t} q(s) x(s) d s\right),
$$

where $x(t)=\exp \left(-D_{5} \int_{0}^{t} q(s) d s\right)$. Since $x(t) \leq 1$ for $t \geq 0$,

$$
V(t) \leq\left(V(0)+D_{4} A\right) e^{D_{i} A},
$$

where $V(0)=V(x(0), y(0), z(0), u(0))$. The proof of Theorem 2 is complete.

REFERENCES

[1] ABOU-EL-ELA, A.M.A. : A boundedness theorem for the solutions of a certain
[2] ANTOSIEWICZ, H.A. : On non-linear differential equations of the second order with integrable forcing term, J. London Math. Soc., 30 (1955), 64-67.
[3] BEREKETOĞLU, H. : On the boundedness and the stability of some differential equations of the fourth order, Analele Stiintifice ale Universitâtii "Al. I. Cuza", Matematicâ, 36 (1990), f. 4, 371-378.
[4] EZEILO, J.O.C.
[5] EZEILO, J.O.C.
[6] HARROW, M.
[7] HARROW, M.
[8] HARROW, M.
[9] LALLI, B.S. and SKRAPEK, W.S.
[10] LA SALLE, J. and LEFSCHETZ, S.
[11] RAMA MOHANA RAO, M. : Ordinary Differential Equations, Affiliated East-West Private Limited, Lonzon, 1980.
(12] REISSING, R., : Nonlinear Differential Equations of Higher Order, SANSONE, G. and CONTI, R.
: On the boundedness and the stability of solutions of some differential equations of the fourth order, \mathbf{J}. Math. Anal. Appl., 5 (1962), 136-146.
: A stability result for solutions of a certain fourth order differential equation, J. London Math. Soc., 37 (1962), 28-32.
: Further results on the boundedness and the stability of solutions of some differential equations of the fourth order, SIAM J. Math. Anal., 1 (1970), 189-194.
: On the stability and the boundedness of the solutions of some differential equatios of the fourth order, SIAM J. Math. Anal., 1 (1970), 28-32.
: A stability result for solutions of certain fourth order homogeneous differential equations, J. London Math. Soc., 42 (1967), 51-56.
: On the boundedness and the stability of some dif. ferential equations of the fourth order, SIAM J. Math. Anal., 2 (1971), 221-225.
: Stability by Liapunov's Direct Method, Academic Press, New York, 1961. Noordhoff International Publishing, 1974.

