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ON THE STABILITY AND THE BOUNDEDNESS PROPERTIES OF
SOLUTIONS OF CERTAIN FOURTE ORDER DIFNERENTIAL
FEQUATIONS

Cemil TUNC
University of Yiiziincit Yil, Faculty of Education, 65080, Van-TURKEY

Summary : The main purpose of this paper is to study the asymp-
totic stability in the large of the zero solution for Eq. (1.1} with p=0 and
. the boundedness of solutions for Eq. (1.1} with p==0.

4. MERTEBEDEN RELIRLI DIFERANSIYEL DENKLEMLERIN
STABILITE VE SINIRLILIK GZELIKLER] HAEKINDA

Ozet : Bu calymann ana amaci, p= 0 halinde (1.1} denkleminin
sifir ¢bziimiiniin asimtotik stabilitesini ve p==0 halinde (1.1} in ¢cBzitm-
Terinin sinerliligme incelemeltir.

1. Imiroduction and statement of the resulis
We consider the equatlon

X9 A @ (x, X, %, X)X + £ (6 %)+ g0 %) + A =p(t, x, % %% (L1)

in which the functions ¢, f, g, # and p depend at most on the arguments
shown explicitly and the dots denote differentiation with respect to ¢ Further, it
will be assumed that the functions o, f, g, # and p are continuous for all values
of their respective arguments and that the derivatives

-ggwm(x, ¥, z, 1), — y" tp(x, ¥,z 1), — tp(x ¥, Z, u),——-f(y Z), g(x, »,

ig(x, y) and A’ (x) exist and are continuous for all x,y,z and w All
ay :
functions and solutions are supposed to be real. Moreover, the existence and

the uniqueness of the solutions of (1.1) will be assumed.

Key words : Nonlinear differential equations of the fourth order, V-function, Stability,
Boundedness.
AMS Classification numbers : 34C11, 34D05.
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It wifl be convenient in what follows to use the equivalent system:

x.':yaj):z:z.:u:
. (1.2)
u=~¢(x;J’szau)u_f(ysz)_g(xhy)_h(x)+p(t:x1yaz$u))

which is obtained from (1.1) by setting y = x,z=x and u = X.

The boundedness and stability properties of solutions for various equations
of the fourth order differential equations have been considered by many authors.
Many of these results are summarized in [12].

Ezeilo [4] investigated the stability and boundedness of the solutions of the
equation

X9+ FE) X+ 0, X + 8 (X) + oy x =p(r).
Harrow ([6], [7], [8]) studied the problem for the simple variant of (1.1} given by

X9 4 ax + () +g@ + () =p ).
In [9], Lalli and Skrapek obtained a similar result for the equation

Abou-El-Ela [1] investigated the boundedness of the solutions of the eguation

X9 (%, X) x o, X+ g () + oy x = p o).
Also recently, in [3], Bereketoglu dealt with the equation of the form

XD e %, X) x A+ f, G x) 4 g () + h(x) = p (2). (1.3}
e presented sufficient conditions for the asymptotic stability in the large of the
trivial solution of (1.3) with p (#)=0 and the boundedness of solutions of (1.3)
with p () # Q.

In the case p(t, x,y,z, u) = 0 we have

Theorem 1. Suppose the following conditions are satisfied:

@) f00) =g, 0 =hr{0)=0.

(iiy There are positive constants o, , o, ,0,,0, and A, such that

g(x,7)

O, 0, ¢y — Oy — o, 0, 9(x, 2 0) = A, for all x,z and y 0.

(iii} @(x,y,z,u) = ¢, > 0 for all x,y,z and u,

Mz%for ali y,z # 0,
z

NSnrraal
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gix, )
y
h(x)

>a, for all x,y#0,

> B for all x -+ 0, where B is a positive constant.

v) (a‘ - E‘—é&) < i (%) < u, for all x,
4o,

o) (—a~g(x, » - M) < 5, for all x,y+ 0, where 8, is a positive
ay y
‘o 20, Ay
constant satisfying &; < ——-.
o, o

{vi) (L)fcp (x, 9,50 ds —¢(x,y,2z 0<8, for all x,y and z+0, where
z

24,

2
o, 0a,

8, is a positive constant such that §, <C
. O ad 0
'(V”) *f(ya Z) < O,Y“*'—(P(x, Wz, 0) = Osz'—(p(xa Yy 2, 0) < 0!
Jy ax ax '
¥y ic:p(x,y,z, ) <0 and z—a—q;(x,y,z, 0) < 0 for all x,y and z.
ay ay

3
(viil) M -0, < % for all p, z=0, where g, is a positive constant
, z

2
{ix) —a—g x, | = for all x and y,
ax 16

a,
such that

£0<5Smin[i.’gi, Aﬁ ? a3 ('2&_%2—5), &
o, o, 4do,0,D, 4da,D,\ 0 0; (L.4) :
oy (2N g
4D, \ of o, : :
with Dy =0, a,+ B2
% |
ay Ay (e — &)

>
andeig(x,s)dss Oy(8 — 8 for all x, y = 0.
yJ ax .4
0




164 Cemil TUNC
d d '
® z-—olnyz,u)t+dy —a— o(x,¥.z,u) =0 for all x, y, z and r, where
du u ’
d,= "% te | (1.5
Oy
Then every solution of (1.1) satisfies
x(#) =0, x(t) = 0, x(1) = 0, x(t) > 0 as t - oo, (1.6)
In the case p(f, x,¥, z, #1) # 0 we have
Theorem 2, Suppose that the conditions of Theorem 1 hold and further-
more, the function p(t, x, y, z, u) satisfies

lpt,x,y,zu)| <A+ |y|+]z|+|u|)g@), for all 4,x,y,z and u, (1.7)

where ¢(7) is a nonnegative and continuous function of ¢, and satisfies

!
fq (s)ds < A< o0,
[+]

for all #>0, with a positive constant. 4. Then for any given finite x,,y,.2,,%,,
there exists a constant D=D(x,, y,, 2z, , i), such that the unique solution x(z)
of (1.1) is determined by the initial conditions

‘ x(0) = xy, % (0) = »y, x(0) = z, , x(0) =, (1.8)
and it satisfies for all ¢ > 0,
|x(0)] < D;|x(@)| < D,| x(®) | < D,{x(®)| < D. (1.9)

h(x) =0, x then equation (1.1) reduces to the linear differential equation
with constant coefficients and conditions ()-(x) of Theorem 1 reduce to the
corresponding of Routh-Hurwitz criterion, :

Remark 2. When we take o (x, .X;, )'c-, x) =1 ();, 3&, x ), g (x, J.C) =1 (.J.C) and
finally p (¢, x, x, x, X ) = p (#), then conditions of Theorem 1 and Theorem 2 are
reduced to theose of Bereketoglu [3]. When ¢ (x, X, x,x) and g(x, 3c) depend
only on x and x, respectively, and fx, x) = o, x, h(x) =0, x and

O px A% =p@), |
then conditions of Theorem 1 and Theorem 2 are reduced completely to those of

Ezeilo [4]. Moreover, conditions of Theorem 1 and Theorem 2 reduce to the
conditions of the relevant theorems by Lalli and Skrapek [9] and Harrow [6],
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up to very small differences. These differences are due to the fact that the
Lyapunov function is not identical.

2. 'The Fuonetion V(x,y, z, LQ)

., The main tool, in the proof of the theorems, is the function V=V(x, y,z,u)
defined by:

X ¥y ’ z
2W=2d, [ h(s) dsd-[d, ay—d, @] 242 j' g(x, 5) ds+-2 f [dl ) s] ds+
] ’ o 1]

12 f 59 (%, 9, 5, 0) ds+2 d, f o (x, 3, 5, 0) ds+d, 12+2ph (x)- 2.1
0 0
+2d, zh (x)}-2d, z g (x, y)+2d. yu1-2zu,
where
d =~ e @2
T .

d, being the constant defined by (1.5).
First discuss some important inequalities.

Let @, be the function defined by

Z

i .
(Dl (x, ¥, %, OJ — (;‘)fq) (-xa Y, 5 0) dS, z 0 (2.3)
] . .

@(x,»0,0),z=0,

Using (iii) and (vi) we obtain

@, (x, 3 20) >d, >0 for all x,y and z, (2.4)
@220 —9lyz0 <8, for all x,y and z (2.5)
Further we define '
g5y p£0
o, (0=, 7 - ' (26)
e L0,y =0,
57 gx, 0,y
We have from (iif) and (v)
@, (x, ) = a, for all x and y, 2.7

aig G, ¥) — @, (x, ») < 8, for all x and yp. (2.8)
y
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From (2.2} and (1.5) we have

g(x,p)

a, — d

1 \ ,
=( ) [ﬂ: 0, 030, 8 Z)-*al o, 0z 0)]~a [M+¢(x, 2, 0)} .
(11 (13 ¥ ¥y

—d, p(x,»,2,0 =

But also (ii) and (iii} imply that

X, o, o
8 y)<a1a2,tp(x,y,z,0)<——2 .
Y Oy

Thus it follows that

o,—d, g (JJC; y)—d2 @lx, y, 2z 0> (GA; __aDO) for all x,z and y£0, (2.9)
1*3

by using (i) and (vii).

Since ®, (x, 7,2, 0) = ¢(x,7,2,0),z =0z,0 <0 < |, then

o, — dlg(x,y) —d,®,(x, ¥, 2, 0)2—}"—“5190. (2.10)
Y Oy Oy

The following two lemmas are to prove that the function V(x, y,z,u}is a
Lyapunov function of the system (1.2).
Temmna 1. Suppose that the conditions of Theorem 1 hold. Then there
is a positive constant D, such that
V> D [xF 4 2 4 22 4 uf] .10
for all x, y, z and w.

Proof. ¥ (0,0,0,0) =0, since f(0,0) =g (0,0} =h{0) =0. Rewrite the
function 2¥ (x, », z, #) as follows:

1
2V(xa Y, 2, t[) =- . [H+Z (I)g (X, Ysz, 0)+d2 ¥y (I)l (xx Y, 2z, 0)]2+
®, (x, y, 2, 0) 2.12)

1.
T {h (’Y)+)’ (D:g (x, y)+d1 Z(Dg (x» y)]2+ V;+ Vz+ V3+ Vq. 3
D, (x, »)

where

¥
V, = [d, a, — d, o, — d3 ©, (x, ¥, z, 0)] y-2+2fg(x,S)dS~~y“I>3(x,y),
]
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V,=2d, [ [£(3,5) — sl ds + [y 0, — dy— d} @, (e, 9] 2 +
o .

+ 2 fS!]J(x,y, S O)dk‘ - 22®1 (x,y, z, 0)’
o

) 1 [ k) r
V.=2d, | his)ds — ——— | "} %2,
3 26/‘ ) @3(%}}) [ . x

Ve=id — : u .
‘DJ(X,)’, z, 0)

From (1.5), {(2.2), (iii) and (2.10) we obtain

2 O f Ay
dyo, —d o, —da®, (x, 9,20 > . (31“-3 eD,].

y y
Since yg (x, ) = [g(x,m)dn + [ng (x, n) dn, then
L] ]

¥y
2fg<x, n)dn — 3 0, (,3) > (— %) #.,by @9).
0

Therefore we get

I [ 2a4A, 204D
2

v, >

1 [ 20, A
£ — 51} N >?[ﬁ — 81} ¥, by (1.4).
13

2
Qo o 0,
By similar estimation, using condition (iii), (1.5), (2.2) and (2.9) we get
dia, —dy—dr®, (x, ) =

=d1 [az“‘”dj (Dl (x,y) - 2‘?(xnyiz:0)] +d2 [d1 ‘p(xrysz: 0) - 1] >

> d; [a,_—dld%(x,y)—-dm(x,y,z,o)]>(3_)[ A —eD,,]. (2.13)

0y oy 0y
From the identity

z z

[s00ips0ds=z [ o(x3,50) ds — [ 50,0,3,50) ds
H 0 0

we get
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Zfscp(x,y,s,())a’.s‘ﬁz3tf()l (x,»,2,0) =
o

= [f{rp(x, 7,5 0) —® (x,,5 0)}}“13 > — (%) Z*, by (2.5).
]

Also from (iii) we obtain

r

f [f_fyﬂ _ %J sds > 0.
5

o
Theréfore

V, = {L( b aDo) — 22} 2 > —]( 2A, .82) z3, by (1.4),

2
o, \ oo, 4\ aja,

For the component ¥, from (i), (iii), (iv} and (1.5) it follows that

0y

Viz 2@k +o, o) [ h(s)ds — 1[.’1(_)»‘)]1 ® = (ef) X2 +
. X
0

X

A () [ o, ., :’ 2
42 T = B (s) s ds = (8P) 4P
/

s o, a,

By using (2.2) and {2.4) we obtain V, > eu?.
Combining the estimates for ¥, , ¥, , ¥, and ¥, with (2.12) we have

1] 20,A L 2A
2V = (ef) 3 4 — |1 — 8 |+ — ([ — 8] 22 F e,
41 a0 ) 4\ 0 aq,
noting that all the four coefficients of the above expression are nonnegative.
Then there exists a positive constant D, such that

V=D x4+ ¥+ 2]

Thus the proof is now complete.

lemmma 2. Suppose that the conditions of Theorem 1 hold. Then there
is a positive constant D, such that whenever (x, y, z, ») is any solution of (1.2)
with p(f, x, », z, u) = 0, then
d

VE? V(x9y5 z 1{) = — Dz(yz +Zz +u2,)‘ (214)
{4
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Proof. A straightforward calculation using the identity

LN L LA LA
dt - au 8z ay . ox

yields

I;',=#diuch(x,y,z,u)—dzyf(y,Z)—dzyg(x:y)—lf@,z)+H2+

+¢ififmﬂﬁ+%ﬁfa«wmwﬁwwﬂf&i¢@%&®¢+
; ay - ; ax ay
. Q

z

!+ dzyzfaiycp(x,y,s,O) dS—|—dzzfq>(x,y,s,0)ds[d2a2-dia4]yz+
0

1]

, |
a2 g+ dr g+ [ -Lgx ) ds 4 2 b () +
ax 3y J ax

0

+d yzh' (X)—[o (x, ¥, z, u)— (x, , 2, 0)] zu—d, [p (x,¥, z, ) —q (x, y, z, O] yu+

+ny"a—fp(x,y,s, 0) ds.
gx

4]
Since
2 d 3
2 f,)ds<0,y | s—0x,050d <0,z | s—q(x,70ds=<0,
: ay s ax ay

1]

[
z |y

oy
0

then we obtain

0 (x,7,50 ds<0 and f—fﬁ p(x, 7,50 ds<0, by (vii),
X
: .

V< — [a2~ dlig(x,y) - d, @, (x,y,z,O)]zz-
ay (2.15)

—detuyz,u) — 1] —V,— V=V, — Vy,

‘where
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Ve=f(2)z+df(r,2)y — 0,22 —a,d, yz,
Ve=1lop (x: Y, 2, H)“‘P (x,,2,0)] Zu—|—d2 le (x, 7, 2, Lt)—(p (x»z 0] yu,

¥y
v, = [d, g059) a,,]yz —d 22 g (%) —yfig(x, sds,  (216)
y 0x ; dx

Vi=(o,— () y*+d e, — K (x)]yz.
By the same way as in (2.13), it follows that

Gy—d, (5, 0)—d, B, (5 y,z,O)z( A, —sDu)> o by 4. @17)
ay @, O 1 O3
By using (iii) and (2.2) we find
[de(x,pzu)—1]=zea,. (2.18)

The function ¥ is the same as in [3]. The estimates for ¥ as in [3] give that
V= —(ggay) 2. (2.19)
Also, from (x) we obtain for u = 0
Vi=1[z0,(x, 52,84 - d, yp,(x,»,2,00)] 4 20,0< 0 < |
but ¥, =0 when u = 0. Hence
Ve =0 for all x,y,z and wu. (2.20)
Combining (2.16) and (2.19) we obtain

»
Vit V1z—(eoa3)f+[dzM—a4] y—dy vz g (x, ) —y f 9 e, 5)ds
y ax : ax

pJ
2(s—so)asﬁ—dlyzig(x,y)—yfig(x,s)a!s'
dax ax

1+

¥
1
= (& — gy a, )* —d yzig(x,y) — [—fig(x,ﬂ ds]y‘
ax y0 ax

3
> ) et —dyz-2 g (%)
4 ax
1 1 4d 3 :
=—(e—¢ 2+ —(e—¢g — 1 yz—g(x, P}
2( o) Oy ¥ 4( o)ﬂs[y’ (E_Eo)asyzaxg(xy)]
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2_1_(_ ) 2__qili ( )]zzz
2 E 80 u’.‘!y (8—39)0.3 axg X )

1
> — (& — g oy y* — A, z2, (2.21)
2 4o, o,

by using (i), (1.5), (ix), (2.2) and (1.4).
Now

2

V3 = (0'4 - k’ (JC)) (yz + d; yz) 2 - ((14 i ]‘1" (x)) —6% zz

2
T P e @2)
16 o, \ o

by using (iv), (2.2) and (1.4).
On gathering the estimates (2.17)-(2.22) into (2.15) we deduce that

V< —(—A—"—)zz—%(e—so)asyz—(eal)uzg — D, (2 + 22+ uh),

4o, o,

. / 1
- where D, = min &, —(e—g)u,, s} .
do,0, 2

3. Proof of Theorem 1

By Lemma i
V(x,p,2,u) =0, at x2 4 y* + 22+ =0,
Vi pzw) >0, if X2 32+ 22 Lt £ 0
V(x,p,2,u) ~> e, as x* + 32 + 22 + 12 o> o

Also, let (x (£), y(2), z (¢}, u () be any solution of (1.2) with p (¢, x, », 2z, u) = 0,
such that x(0) = x,, y(0) =y,, 2(0) = z,, u(0) =u,. Consider the function
V()= Vx@), (), z(t), u(t)) corresponding to this solution. By Lemma 2,
we have

Vi) < V(0) for t = 0.

Thus, the remainder of the proof of Theorem 1 is the same as the one given by
Ezeilo [4] and hence is omitted.

4. Proof of Theorem 2

The proof here is based essentially on the method devised by Antosiewicz
[2]. Let (x{®), y(2), z(2), u(t)) be the solution of (1.2) satisfying the initial
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conditions (1.8) and consider the function V(t)=V(x(t), »(), z(2), u(?)), where
V(x, y, z, u) is the function ¥ used in the proof of Theorem 1. Using this func-
tion, we have that, for the system (1.2),

V< —D,(A+2+u) |t (dy+ztdwpl,xy,zu, |
so that
Ve DIyl )zl + el p Xy 2,
where D, =max {d,,1,4d,}.
It follows from (1.7) and the obvious inequalities
¥l < V422 lzl s 1+ 22 Jul < L +42, 2] pz] < )7 + 22,
[yu| < ¥+ w2, |zut < 22 + u?,
that
V< D3 +407 + 2+ @) 4 ().
By (2.11) we have
V=D D422+,

4D, ,
Putting D, =3D,, D, = —le we obtain
1

V—D,q() V<D, gt).

Therefore we obtain the resuit

v < 1,)(V(0)+D4qu(s)x(s)ds),

x(t

f
where x (¢) = exp (— Dsf‘f (s) ds). Since x(1) < 1 for 1 = 0,

4]
V() < (V©O) + D, A) ebsd,

where V{(0) = V(x (0), y (0), z (0), # (0)). The proof of Theorem 2 is complete.
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