İstanbul Üniv. Fen Fak. Mat. Dergisi 55 - 56 (1996 - 1997), 1-4

ON THE SERIES METHODS CONTAINING THE METHOD V_σ

Hüsamettin ÇOŞKUN

Abstract. In [7], Raimi has defined the regular sequence methods containing the method V_{α} and determined the necessary and sufficient conditions for a regular sequence method to contain the method V_{σ} . In this study we introduce the series methods containing the method V_{σ} and obtain the necessary and sufficient conditions for a regular series method to contain the method V_{σ} , and also prove that one of the dual summahility methods contains the method V_{σ} if and only if the other one contains the method V_{σ} .

1. Introduction

Let m, c and c_0 be the Banach spaces of real or complex bounded, convergent and null sequences $\mathbf{x} = (x_n)$ with the usual supremum norm. Let σ be a one-to-one mapping of the set of positive integers into itself. A continuous linear functional ϕ on m is said to be an invariant mean or a σ -mean if and only if (i) $\phi(\mathbf{x}) \ge 0$ when $x_n \ge 0$ for all n, (ii) $\phi(e) = 1$ where e = (1,1,1,...) and (iii) $\phi(\mathbf{Tx}) = \phi(\mathbf{x})$ for all $\mathbf{x} \in m$, where $\mathbf{T}: m \to m$ is a linear operator defined by $\mathbf{Tx} = x_{\sigma(n)}$.

Throughout this paper we consider that $\sigma^q(n) \neq n$ for all positive integers *n* and *q*, where $\sigma^q(n)$ is *q*th iterate of σ at *n*. Thus, a σ -mean extends the limit functional on *c*, in the sense that $\phi(x) = \lim x$ for all $x \in c$ [5]. Consequently, $c \subset V_{\sigma}$ where V_{σ} is the set of bounded sequences all of whose σ -means are equal.

In case $\sigma(n) = n+1$, the σ -means are the classical Banach limits on m and V_{σ} is the set of almost convergent sequences introduced by Lorentz [4].

It can be shown [7] that

$$V_{\sigma} = \left\{ \mathbf{x} \in m : \lim_{n \to \infty} t_{n}(\mathbf{x}) = L \text{ uniformly in } \mathbf{n}, L = \sigma - \lim_{n \to \infty} \mathbf{x} \right\} \qquad \dots (1)$$

...(2)

1

where, for $q \ge 0$, n > 0,

$$t_{an}(\mathbf{x}) \approx (\mathbf{x} + T\mathbf{x} + ... + T^{q}\mathbf{x})/(q+1)$$

The special case of (1) in which $\sigma(n) = n + 1$ was given by Lorentz [4].

If w is a subset of the space of real sequences, Then we write w^{\dagger} for the generalized Köthe-Toeplitz dual of w, i.e.,

I.**E.**,

$$w^{+} = \left\{ (a_{k}) : \sum_{k} a_{k} x_{k} \text{ converges for every } x \in w \right\}$$

It is well-known that $bs^+ = bv \cap c_0$ [2, p. 68]; where bs and bv are respectively the spaces of bounded sums and sequences of bounded variation.

Let A = (a_{nk}) be an infinite matrix of real or complex numbers a_{nk} (n, k=0,1,2...) and x = (x_k) be a real sequence such that the series

$$x = \sum_{k} a_{nk} x_{k}$$

exists for each *n*. Then the sequence $Ax = (A_n(x))$ is the called A-transform of x. Hence, the summability method A is a sequence method. Throughout the paper \sum_k will denote summation from k=0 to ∞ . A sequence x is said to be A-summable if $Ax \in c$.

A matrix A is called regular if $Ax \in c$ and $\lim Ax = \lim x$ for all $x \in c$. The regularity conditions of A are wellknown [1, p. 64]. A regular matrix A is called σ -invariant if $\lim A(T-1)x = 0$ for all $x \in m$; where I is the identity matrix. Raimi [7, Th. 23] proved that if a regular matrix A is σ -invariant, then

$$\lim_{n} \sum_{k} |a_{nk} - a_{n,\sigma(k)}| = 0.$$
 ...(3)

Conversely, if A is non negative, i.e. $a_{nk} \ge 0$ for all n, k, then the condition (3) is sufficient for σ -invariance of A.

2. The Dual Summability Methods

Let $A = (a_{nk})$ be a sequence method given by (2). Suppose that, for each *n*, the series

$$\sum_{k} a_{nk} \qquad \dots (4)$$

is convergent; this is a much weaker assumption than the regularity of A. Then we shall define the matrix $B = (b_{nk})$ as follows:

$$b_{nk} = \sum_{i=k}^{\infty} a_{ni}$$
 (n, k = 0, 1, 2...).

We also suppose that the sequence $s = (s_k)$ is formed by taking the partial sums of the series $\sum x_k$.

Let B denotes the summability method given by the series -to- sequence transformation (series method)

$$B_n(x) = \sum_{k} b_{nk} x_k \quad (n = 0, 1, 2...)$$

The methods A and B are called dual summability methods [3]. The method B is called regular if the sequence $Bx = (B_n(x)) \in c$ and $\lim Bx = \sum x_k$ for all $x \in cs$, the space of all convergent series. The regularity conditions of B are well-known[1, p. 68]. Moreover, it is also known that A is regular if and only if B is regular.

In the sequel, by A and B we mean the sequence and the series methods, respectively.

3. The Series Methods Containing The Method V_{σ}

2

We call the regular method A containing the method V_{σ} if the A-transform of x is convergent to the σ -limx for each $x \in V_{\sigma}$, i.e., $Ax \in c$ and $\lim Ax = \sigma - \lim x$ for each $x \in V_{\sigma}$. Raimi has characterized the class of the regular sequence methods containing the method V_{σ} as follows:

Theorem 3.1 ([7], Th. 24). A regular method A contains the method V_{σ} if and only if it is σ - invariant.

Similarly, we shall define the series methods containing the method V_{σ} and give the necessary and sufficient conditions for a regular method B to contain the method V_{σ} .

Definition 3.1. Let $\sum x_k$ be an infinite series such that its sequence of partial sums $s = (s_k) \in V_{\sigma}$ with $\sigma - \lim s = b$. If the method B sums every series $\sum x_k$ of this type, to the same value b then B is said to be contain the method V_{σ} .

Let

$$V_{\sigma}s = \left\{ \mathbf{x} = (x_k): (s_n) \in V_{\sigma}, \, s_n = \sum_{k=0}^n x_k \right\}.$$

If $\lim Bx = \sigma$ -lims for all $x \in V_{\sigma}s$, then we write $B \in (V_{\sigma}s, c)_{reg}$. Therefore B contains the method V_{σ} if and only if $B \in (V_{\sigma}s, c)_{reg}$.

Theorem 3.2. A regular method B contains the method V_{σ} if and only if

- (i) $\lim b_{nk} = 0$ for each n,
- (ii) $\lim_{n} \sum_{k} |\Delta(b_{nk} b_{n,\sigma(k)})| \approx 0$

where $\Delta(b_{nk} - b_{n,\sigma(k)}) = b_{nk} - b_{n,\sigma(k)} - b_{n,k+1} + b_{n,\sigma(k+1)}$.

P r **o** o f: Necessity- Suppose that the regular method B contains the method V_{σ} Since $V_{\sigma}s \subset bs$ and so $bs^+ \subset (V_{\sigma}s)^+$, the condition (i) must be satisfied, or else the series $\sum_k b_{nk} x_k$ diverges for at least one *n* which means that B-transform of $x \in V_{\sigma}s$ does not exist.

Now, by Abel's partial summation, we get that

$$\sum_{k=0}^{p} b_{nk} x_k = \sum_{k=0}^{p-1} (b_{nk} - b_{n,k+1}) s_k + b_{np} s_p \qquad \dots (5)$$

<u> 전 1988년 19</u>17 - 1989년 1989년 1987 - 1987년 1987 - 1987</u>

for each n, where $x \in V_{\sigma}s$ and (s_p) is the sequence of *p*th partial sums of the series $\sum x_k$. Since $(s_p) \in m$, we have from the condition (i) that $\lim_{p} b_{np} s_p = 0$. Hence, by letting $p \to \infty$ in (5), we obtain

$$\sum_{k=0}^{\infty} b_{nk} x_k = \sum_{k=0}^{\infty} (b_{nk} - b_{n,k+1}) s_k \approx \sum_{k=0}^{\infty} \Delta b_{nk} s_k \qquad \dots (6)$$

which implies from the assumption that the method $A = (a_{nk}) = (Ab_{nk})$ contains the method V_{σ} Therefore, the condition (ii) follows from Theorem 3.1 and (3).

Sufficiency- Suppose that the regular method B satisfies the conditions (i) and (ii). Let $x \in V_{\sigma}s$ with σ -lims = b. Then the regularity of B and (i) imply together that (6) holds. Since the method A defined as above is regular, it follows from the conditions (ii) that A is σ -invariant and so, by Theorem 3.1, A contains the method V_{σ} . Now, Letting $n \to \infty$ in (6), we get lim Bx = b which completes the proof.

We shall note that A must be non negative for the sufficiency part of the proof.

Theorem 3.3. Let A and B be two summability methods. Then A contains the method V_{σ} if and only if B contains the method V_{σ}

P r o o f: As it is well-known that A is regular if and only if B is regular. Moreover, since the series (4) is convergent for each n, (i) holds. On the other hand, A satisfies (3) if and only if B satisfies (ii).

Thus, the proof is completed.

Finally, we should declare that Theorem 3.2 and Theorem 3.3 are reduced to Theorem 2.1 and Theorem 2.2 of Öztürk [6] if $\sigma(n) = n + 1$.

3

References

1. COOKE, R. G., Infinite Matrices and Sequence Spaces. McMillan, 1950.

2. KAMTHAN, P.K and Gupta, M. : Sequence Spaces and Series, Marcel Decker Inc., 1981.

3. KUTTNER, B. On dual summability methods, Proc. Camb. Phil. Soc, 71 (1972), 67-73.

4. LORENTZ, G.G.: A contribution to the theory of divergent series, Acta Math., 80 (1948), 167-190.

5. MURSALEEN., On some new invariant matrix methods of summability. Quart. J. Math. Oxford (2), 34(1983) 77-86.

6. ÖZTÜRK, E., On strongly regular dual summability methods, Comm. Fac. Sci. Üniv. Ankara, Ser. A₁, 32(1983), 1-5.

7. RAIMI, R. A., Invariant means and invariant methods of summability. Duke Math. J. 30 (1963), 81-94.

İnönü Üniversitesi, Matematik Eğitimi Bölümü, 44100-Malatya / Türkiye e-mail : hcoskun@inonu.edu.tr

4