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ON A POWER SERIES SOLUTION OF A
SPECIAL TYPE SINGULAR CAUCHY PROBLEM

Nege Dernek

ABSTRACT
In this paper, the singular Cauchy problem for Euler Poisson Darboux equation

has been cxtended to a generalized FEuler Poisson Darboux equation in which the real
parameter & is replaced by a function as follows:

, b
Au = uy + {(at* + E)uf (a>0,6>—-1,t>0)

w2 0) = flag,we, o xn ) w (@, L2, 0) = 0.

The solution of this singular Cauchy problem is given by an absolutely and uniformly
convergent power series,

AMS classification: 35L25 Keywords: Hyperbolic equations,initial boundary value

problems

1. INTRODUCTION

Let 2 = (23,22, .-, %, ) be a poiut in B™, & a real parameter and t the time variable.

A is the Laplace operator in R"™ and f(z)} is an initial function which is infinitely

differentiable. Singular Cauchy problem for the Euler—Poisson-Da.rBoux (abbreviated
EPD) Equation is known

A = uy + %u, {t>0) (1)

(g, oy ey 0) = flay, e, bt (2,22, .., 2 0) = 0, (2)

BEquation {1} for special values of & and n occurs in many important and classical

problems since the time of Euler [8]. It is proved that the Cauchy problem (abbreviated
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C'P) {1),(2) does not have a unigue solution when & < 0 and (1 — k)th partial derivatives
of the solutions with respect to t has logarithmic singularities when & = —{2n + 1},
n & N. It was also proved that these solutioné are depended on the paramocter k. A
unified solution of (1), (2} for all real values of k was given by Weinstein [11], Diaz and
Weinberger [7] and Blum [2]. For analytical initial function f(x), (l),(2) singular C'P was
solved by Walter [9] who has given the solution in term of an absolutely and uniformly
convergent power series. Special methods were utilized in solving various different cases.
All of these solutions were given by quite very complicated formulas. Dernek [6] has used
finite transformation method to solve the non homogenous singular EPD equation. The
solution has ben obtaineq in a much simpler manner then by other methods mentioned
above, Another initial value problem for EPD equation is the regular C'P. Regular CFP
was solved by Davis [4]. Copson [3] gave an alternative solution of this problem in any
space of even number of dimensions. A solution of the series form was given by Asial
[1] for regular C'P. The real parameter k is replaced by a function in the C'P (1),(2)
k = (1), where 9(i) is a regular function on the neighborhood of t = 0 or in all R-space.
This is a generalization of C'F (1),{2). Thus we obtain the follow.ing C'P:

t
Au = uy + wit)

Uy

wlry, o, oyan; 0) = ey, o, oy, w0, 20, 0) =00
The main reason for doing this generalization of EPD equation is due to a work of
Weinberger and Protter [9]. They have given a solution of an initial boundary value
problem for equation (1) where they have chosen n = 1,1(1) = 2¢%. A solution of the
series form for #(t} = at® is given by Dernek in [5]. In this paper we shall consider
another generalization of singular CP (1},(2) as follows:

5, b
Au — e + (atz + E)’U,[ (t > 0) (3)

wloy, 22,0y n; 0,0,0) = flegag, o), w1, 22, o0, 203 0,0,0) =0 (4

where the initial function f(x) is infinitely differentiable and the sequence (|A"f]) is

- majorized by a suitably chosen sequence which has positive terms. We shall pive a

solution which is an absolutely and uniformly convergent power series for a > 0,0 > —1.




Let us seck a special solution of the CFP (3),(4) in the form

e o]

wle,t,0.0) = wa(l,a,b)A" () (5)

1=0

where wg(t.a,b) = Land AYf = AR = A(A" ) (n=1,2,...). We can consider

(5) as a power series with respect to Af. Let us consider (5) as a formal solution of

(33,(4). Substituting w(x,t,a.b) and its devivatives with respect to £ into (3), we obtain
the following recurrence relations which are ordinary differential equations:

)

d ., bod
. Eun(t,a, 0) + (at® + E)Eun(t,a, b)) =u,(t,a.b) (6)
The function w, (¢, a,b) satisfies the following initial conditions:

uni0,a,0) =0, %‘u“((), a,b) =0 (neN). (7

The Canchy Problem {6},(7) is now CP(n). We can solve the ordinary differential

equations (6) with the Mathematical lnduction Principle.
2. SOLUTION OF THE CP(6),(7)

Theorem 1. The CP(n) has a solution of the form:

o
wnlt, a,b) = Z,i,,l_\;i.,.t:"‘“”, wo(t,a.b) =1 (8)

=l

The coefficients 4,, 3, are given by

' N Wi gr .
Aﬂ,w‘:(_”r&r 2 a>thb> -1 9
3 (3r+2n)(b+ 1) 5, 45,-3 ( | v

and s, 3, arve given by

d 1 A 1 . 1
Frdr = 32220331 +2n -2 Z s, + 2 -4 Z 38,_2+ 2

s2=0 S =0

r R

i b+ 3n — 2+ 3k, 10 DA 30 —54 3k =2 bd g3k,
b+2?171+3k1k b4+2n — 343k 0b+3+3k,,_,1

2=5y By =

k=8

where (b+ 1)g, =0+ 1) +4) ... (0+1+3r).




Proof. Let us seek a formal solution to the C'P(1) in the following series form:
e
ty(t, e, b) = Zf‘h‘,.t"*g.
+=0

When 1; and its derivatives with respect to ¢ are written into C'P{1)

1 .
A = — A = Ao = Ay =-a—— —
YTy 0,412 =0, Aia s+ )b+ D (b>-1)
(r+2)(r+b+ 14y, = —alr—1)A 3 (r=3,6,...,3n). (11)

is obtained.lf we write the recurrence relations (11) for ¥ = 3,8, ..., 3n and multiply them
we obtain
1 ' 1
- - N TR
(3n+ 20+ 1) 200+ 1)

(3n)

Az = {—1)"a" (> —1).

Thus the solution of C'P(1) can be written as follows

I (=) argrt?
wuy(t, a,b) = - - (a>0,6>—1). .
; (3r +2)(b+ 1)y,

Let us seek a formal solution for C'P{2) as follows
>0
ws{t,a,b) = D Ap g t*H, (12)
r=0

We assume that As 3, hias the following form:

DT 2,3
Agar = (1) : (a@>0,6>-1). 13
(3 +4)(b+ 1) 5,44 ) )

When the values of us and its derivatives with respect to t are written into CP{2), the
following relations are obtained

i

Ao = m (b>-1)
(3r+4)3r +3+0)Adas +aldr+ 1A 5, 3 = Ay, {r> 1) {14)

then |
T br3+ STQOQ,;;.,. — P2 a3 = ! {a >0,b>-1). (15)

b+4+3r

3r+2

J—




Froni {13} we have

P20 L(b+4)
Arp = 00— a0 =
4+ b+ 4) 2(b+3)
The solution of (15) is
N .
1 b+443k
T -=1,2,...;0> —1). 16
P 3z033+2k11b+3+3k r=Lz..; ) (16)

and the solution of C'P(2) can be given by {12} where A 3, is given by (13} and @23,
is given by (16). Let

o -
PR (_'I) lalkﬁn—l a3r
Uy t,(J.,b — ‘_4.'7_ ‘ ,t'i’Jrz” 2 . 4 e = :
w14 ) J'E:O 1= 1.3 n—1.3 (3r + 2n — 2}(b+ 1)(3?__{__3”_6)

be a solution of the series form of CP{n — 1) where

v 8§ Sn—4

1 - i - 1
Fn1de = 23314-2?1—4& 0352+2nw6“' 2—' 350+ 2
-

51=0 Sn—2=0
I"Ib+3n75+3k| ﬁb+3n—8+3k2 T b+ 4+ 3k, s
b+ 2n— 3+ 3k; b4+ 22n—543k b+ 3+ 3k,
ki1=s)1 ko=41s ki _9=0
Let us assume -
u,(,a,b) = Z ‘4:1‘3?‘323?‘1.-3" (17)
=0

is a formal solution of C'P({n}, where A, 3, has the form (9). This is a consequence
of Mathematical Induction Principle. We will find an explicit form for ¢, 4,. If we
substitute the values of u,, and its derivatives with respect to ¢ into C'P(n} we obtain

the following relations:

1

Ana = 2end(b+ 1{b+ 3)..(b+ 2r — 1}

(b>—1) (18}

(3r+2n)B3r+2n— 1L+ 0)A4,0. +al3r+2n — 34, 40z = Ay 30 (r>1).

Hence we have the following difference equation:

b + 2“- —_ 1 + 37' (pugl,:},’.
b+3n—-2+3r

Pn3e — Pudr—3 = m .

|‘
|
|




From {9) Ao = ?n(h-;-pll)ﬁ and from (18) we have

1 b+4b+7 b4+3n-—2
2n=lin — 1) b+3b+5""b+2n—1

Yo = (a>0b6> —1). {20)

The numbers @, (1 > 2) are well defined, since if @ = () is used in the the equation
(3) the EPD Equation is obtained. The functions wu,{t,a,b) {n € N) are continuous with
respect to @. This will be prove in the next section. If we consider {20) and the solution
of (19) we obtain (10). Then CP(n) has a solution which is given by (17), where the
coeflicients @, 3 ave given by (10) and A, 3» by (9). The coefficients @y, 3, increase with

the indices r for cach n & N.
3. CONVERGENCE OF THE SERIES wu,{t.a.b)

Lemma 1. The coefficients y,, 3, and A, 3, satisfy the following relations:

Whay = O({?J.!)Z'PJH) and  |Apgeis/Ang] =00 (n=2,3,..5r=0,1,...).

Proof. It is clear that {4y 3.03/4) 3] = O(@~"). Let us consider us{t,a,b) and the
numbers 3.3, which are given by (12) and (16) respectively.lt is easily seen that

b+4+3k 1

T ek T pragan <2 (0>oL k>0

then

”
N 1 LT+l .
0< ,,<2'§ <2 =27y 4 1),
S @rae S 53023(33+2) = 2 {r+1)

We have 7 < 27 (r =0,1,...), then

P2 30 < 2,‘—1(7' + 1)
—_ 221—|—1 - 22'|'+1

1
< -
-2

Hence @, 3, = O(277!) and we obtain {As3,43/423, = O{r~!). Now let us the coeffi-
cient s 3. These coefficients can be written as follows:

bl "

1 bt T+ 3k
Par = 233+4£{sb+5+ gk ¥

s=0
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The coefficients @23, {s =0,1,2,...,7) monotonously increase with s fromn the follow-

ing inagualities,

r+ 1 b+ 7+ 3k
3r+i " ob454+ 3k

we can write

1 3"
0 <3, <3 2—3—_4_-“.;) —L“ + L)y g,
and then 0 < 5T < 55. Hence we obtain @33, = = 031"} and

|4y 3043/4s53, = O ).
Lot us assuine
Pp—1.97 = O(((” - l)!):{’._'_r)
and
|41—1J|+3/{n IJrI* 1)

We consider the coetficients i, 3. which are expressable as follows:

»

] b+ 3n - 2+ 3k,
P, = ;39 on = 2}1;[',[) Y on—11 3]\4 Pn—1,3s.

Where the numbers ¢,1 3. increase with ¢,(s = 0,1,...,r) and from the following

inequalities

b+ 3n—24+ 3k 71— 1
=14+ <n

I 1 r41
b+ 2n—1+ 3k bt 2n— L+ 3k , rH+l<n

we have
1 <t
“ns(3s + 2n — 2)%:_"3’J =T gn — g Pt

0 <wp ar <nz

and thus
W, g 1
0< = < .
- (7‘1.!)')"+1 - 2”_1(71 - 1)

Hence we obtain

onar = O and  |Apsera/Ana] = 0@,

11
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Theorem 2. The radius of convergence of u,(t,a,0).n € N. is infinite for every
t € B when a > 0,0 > —1. The series u,(f,a,b), {n € N) is absolutely and uniformly

convergent for every f.

Corollary. u,(t.a,0), (n € N} are continuous functions of the parameter o and the

variable 4. Then the function u,{i.a,d) can be differentiated infinitely.

4. THE UPPER BOUNDS

Lemuma 2. The series (8) have the following integral transformations for = £, n =

1.2....

t
w,(t, a,b) = [ ( )" G (6 a,0)dpdl ,  wg(t,a,b) =1, (21)
Ja J0 :

Proof. We may transform the C'P{n) to an integral equation system. To this end

we may write the equations (6) for t = £ as follows

i

Je a6, b4 (067 4 D) T 0 = w60 D) wal€eah) = L (22

Multiplying {22) with E‘[’(’“‘Eﬂ/ﬂ and integrating both sides with respect to € on (G, p),

and using the initial conditions (7), we obtain

d

Ll 0,6) = bl / €06t Ry (5,6, 0, b)dE. (23)
i

Integrating both sides of (23) which respect to g on (0,f) and using (7) we obtain the

integral equations {21).Thus the integral representation for solutions of C'P(n) can be

expressed by (21).

Lemma 3. Let us define the domain B by the points (0,0), (¢,0), ({,¢) and the line

£ = p. Introducing the new variables
T: p=" =63, r=¢/p

(21) is transformed to the following integrals

L E el 1.
y (t, a, b) lim / / - 1(3p) 1/3 r(1 *‘I':J’)Ml/s,a,b)( 'f drdp
A=z

e1.60—0

3p}/dean(] — .,.n3)2/3
(24)
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uglt,a,b) = 1.

Proof. The functional determinant of this transformation is

D 3 —L/s 3y
;Tﬁ% =37 P =)t £1),

The proof is trivial.

Theorem 3. The functions w, (¢, a,b) have the upper bounds

fdn {(m

0 < uplt,a.b) < ol

(ne N, d>1) {(25)

Proof. First we proof the following inequality:
tG‘n
= 2unlb+ )b+ 7). (b-F B — 5)

0 < unlt,a,b) < (n € N} (26)

Let us n =1, From (24)

3

l—cy ps ) Y
0 < (tab) < lim / / P38 — oy 3) T pe= P dy dp

cp.ea—{l Jp=n J,'):ﬁg
tl‘i o Bl 8 1/3
= —— lim 1+ asle **dr
37/3 5140_/r:0 ( [ ) ]

4/3
%)

where s = £*(1 — 13)/3. From {1 — <land1—e 9 —ase ™ < (as)’/2,a8 > 0

we have

ts ol —ey b tﬁ
0<wu(t,a,b) < — 1 Cdr < —
<yt a,b) < 5 f'llgl{)_/r:(] rdr < 26+ 1)

For n = 2 and from the above inequality we obtain

/l —€1 pS S)Tbl—ﬁ 3 —ap d?‘dp

0 < uy(t,a,b) Ii
(e /m(zgum_, R TORS)

E] e =3}

¢t e r 343 3
—————— 1 gt b ~-(Lpl .l
= 37/32(b—i— 1) q,mao‘/, /Mez o4 ( Yy pte” drdp

12

1—ey 046
< WIW / Lb:t..ﬁ{l_il_as__azsz__ﬂ‘isi}e (rq}d,
2(6+1) n—)O —p atst 2 6
Wao have .
s Fn—p—) e 210
i m

l—e ™ - < o= as > (). 27

; T —p = @y >0) (27)
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Henece we can write

tlZ l—eg b tiZ
<t ab) € ——— i LN L —
0 <m(tad) < 5oy t-fglo,/,,.:n TSR D)+ T

If we use (27) and Mathematical Induction Principle we obtain (26). On the other hand
we have the following inequality
dAk(k+1). . (k+n—-1)>nt (k>0 d>1 nelN).

Setting k = b+ 1 in the above inequality we have

b+ DO+ T)O+13) ... (b+6n —5) = k(k + 6)(k -+ 12) ... (k + 6n — 6)

|
>k(k+1)(k+2)---(k+ﬂ-”>%-

Henee
1:6 n fdn tG n dn tb‘n

Sl N+ 7)... (061 —5) ~ Tl © (2n)!

(n € N).

From (26) gt

(2n)!

0 <up(t,e,b) < (neN)

s obtained.
5. THE SOLUTION OF THE SINGULAR CP (3),(4)

Lemina 4. Let us assume that the function f(z,zs,...,z,) is infinitely differen-

tiable. -
ntﬁn
iz, t,d)y = ) [AYfL (d > 1)
n=_0 Ea

is absolutely and uniformly convergent on the whole space E*zH or on a subspace of

R"¢ R which contains the plane t = ( respectively when
(Al = o((2n)) (n € N). (30)

A" f| = O((2r)!) (n € N). (31)
Movre then v(x,t,d) is a majorant for the series (5).

14




From the above theorems and Lemmas the following theorem is casly proved.

Theorem 4. Under the conditions of Lemma 4 the power series (5) is a solution of
(*P {3).{4). This solution is absolutcly and uniformly convergent on the whale space
RB*x:R, when [ satisfies (30) or it is absolutely and uniformly convergent on a subspace

of B"2R which contains the plane t = 0 when f satisfics (31).
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