İstanbul Üniv. Fen Fak. Mat. Dergisi 55 - 56 (1996 - 1997), 17-21

SOME NEW SEQUENCE SPACES DEFINED BY.A MODULUS FUNCTION

AYHAN ESİ

Abstract

In this paper we introduce and examine some properties of new sequence spaces defined using a modulus function.

Introduction

By s denote the set of all complex sequences $x=(x_k)$. Let $|_{\infty}$, c and c_0 be the Banach spaces of bounded, convergent and null sequences $x=(x_k)$ normed, a usual, by $||x|| = \sup_k x_k < \infty$.

In the present note we introduce some new sequence spaces by using a modulus function f and examine some properties of these sequence spaces.

Main Results

Definition 1. A function $f: [0, \infty) \rightarrow [0, \infty)$ is called a modulus if

(i) f(x) = 0 if and only if x = 0,

(ii) $f(x+y) \le f(x) + f(y)$,

(iii) f is increasing and

(iv) f is continuous from the right at 0.

Let $p=(p_k)$ be a sequence of real numbers such that $p_k>0$ for all k and $\sup_k p_k = H < \infty$. This assumption is made throughout the rest of this paper.

Definition 2. Let f be a modulus. We define

 $l_{\infty}(\mathbf{p},\mathbf{f},\mathbf{s}) = \{ x \in s : \sup_{k} k^{-s} [f(|x_{k}|)]^{p_{k}} < \infty , s \ge 0 \},$

 $C_{e}(p,f,s) = \{ x \in s : k^{-s} [f(|x_{k}|)]^{p_{k}} \rightarrow 0 \ (k \rightarrow \infty), s \ge 0 \},$

 $C(p,f,s) = \{ x \in s : k^{-s} \left[f(|x_k - L|) \right]^{p_k} \to 0 \ (k \to \infty) , s \ge 0, \text{ for some } L \}.$

1980 Mathematics Subject Classification : 40A05,40C05,40D05 Key Words: Sequence Spaces, Modulus Function, Paranorm.

17

If s=0 and f(x)=x, we have the following sequence spaces which were defined by Maddox [4]

$$\begin{split} & I_{\infty}(\mathbf{p}) = \{ x \in s : \sup_{k} |x_{k}|^{p_{k}} < \infty . \}, \\ & C_{o}(\mathbf{p}) = \{ x \in s : |x_{k}|^{p_{k}} \to 0 \ (k \to \infty) \}, \\ & C(\mathbf{p}) = \{ x \in s : |x_{k} - L|^{p_{k}} \to 0 \ (k \to \infty) , \text{ for some L} \}. \end{split}$$

If f(x)=x, we have the following sequence spaces which were defined by Başarır [6].

$$|_{\alpha}(\mathbf{p},\mathbf{s}) = \{ x \in s : \sup_{k} k^{-s} | x_{k} |^{p_{k}} < \infty , s \ge 0 \},$$

$$C_{o}(p,s) = \{ x \in s : k^{-s} | x_{k} |^{p_{k}} \to 0 \ (k \to \infty), s \ge 0 \},\$$

$$C(p,s) = \{ x \in s : |k^{-s}| x_k - L|^{p_k} \to 0 \ (k \to \infty), s \ge 0, \text{ for some } L \}.$$

If s=0, f(x)=x, and $p_k=1$ for all k, we have I_{∞} , C_0 , C.

Theorem 1. (i) $C_0(p,f,s)$, C(p,f,s) and $l_{\infty}(p,f,s)$ are linear spaces over the complex field

(ii) Let f be any modulus. Then $C_0(p,f,s) \subset C(p,f,s) \subset I_{\infty}(p,f,s)$.

Proof:(i) We consider only $C_0(p,f,s)$. Others can be treated similarly. We have $|a_k + b_k|^{p_k} \le C(|a_k|^{p_k} + |b_k|^{p_k})$ (1)

where $C = max (1, 2^{H-1})$.

С.

Let $x, y \in C_o(p, f, s)$. For $\lambda, \mu \in \mathbb{C}$, there exists M and N integer such that $|\lambda| \leq M$ and $|\mu| \leq N$. From (1), we have

$$k^{-s} [f(|\lambda x_{k} + \mu y_{k}|)]^{p_{k}} \leq C.M^{H} k^{-s} [f(|x_{k}|)]^{p_{k}} + C.N^{H} k^{-s} [f(|y_{k}|)]^{p_{k}}$$

This implies that $\lambda x + \mu y \in C_0(p,f,s)$. and completes the proof of (i).

(ii) Clearly $C_0(p,f,s)$. $\subset C(p,f,s)$. Let $x \in C(p,f,s)$. Then there is some L such that $k^{-s}[f(|x_k - L|)]^{p_k} \to 0 \ (k \to \infty), s \ge 0$.

Now by inequality (1), we have

$$k^{-s} [f(|x_k|)]^{p_k} = k^{-s} [f(|x_k - L + L|)]^{p_k}$$

$$\leq C.k^{-s} \left[f\left(\left| x_k - L \right| \right) \right]^{p_k} + C.k^{-s} \left[f\left(\left| L \right| \right) \right]^{p_k}$$

There exists an integer K such that $|L| \le K$. Hence we have

$$k^{-s} \left[f\left(\left| x_{k} \right| \right) \right]^{p_{k}} \leq C \cdot k^{-s} \left[f\left(\left| x_{k} - L \right| \right) \right]^{p_{k}} + C \cdot k^{-s} \left[K f\left(1 \right) \right]^{H}$$

Since $x \in C(p,f,s)$, we get $x \in I_{\alpha}(p,f,s)$.

If X is a linear space over the field \mathbf{C} , then a paranorm on X is a function g:

 $g(\theta) = 0, where \theta = (0,0,...), g(-x) = g(x), g(x+y) \le g(x) + g(y) \text{ and } |\lambda - \lambda_0| \to 0$

imply $g(\lambda x - \lambda_0 x_0) \rightarrow 0$, where $\lambda, \lambda_0 \in \mathbb{C}$, $x, x_0 \in X$. A paranormed space is a linear space X with a paranorm g and is written (X,g).

Using the properties of modulus function, it is easy to verify that $C_0(p,f,s)$ is a linear topological space paranormed by g defined

$$g(\mathbf{x}) = \sup_{\mathbf{k}} \mathbf{k}^{-s} \left[f(|\mathbf{x}_k|) \right]^{p_k} / M$$

where $M=\max(1, H=\sup_{k} p_{k})$. C (p,f,s) and $|_{\infty}(p,f,s)$ are paranormed by g if inf $p_{k}>0$. Morever $C_{\sigma}(p,f,s)$, C (p,f,s) and $|_{\infty}(p,f,s)$ are complete in their paranorm topologies.

Theorem 2: Let $\inf p_k = h > 0$. (i) $x_k \to L$ implies $x_k \to L[C(p,f,s)]$, (ii) $x_k \to L[C(p,s)]$ implies $x_k \to L[C(p,f,s)]$, (iii) $\beta = \lim_{t \to \infty} \frac{f(t)}{t} > 0$ implies C(p,s) = [C(p,f,s)].

Proof:(i) Suppose that $x_k \to L$ $(k \to \infty)$. Since f modulus, then

 $\lim_{k \to \infty} \left[f(|x_k - L|) \right] = f\left[\lim_{k \to \infty} \left(|x_k - L| \right) \right] = 0.$

Since $\inf p_k = h > 0$ then,

 $\lim_{k \to \infty} \left[f(|x_k - L|) \right]^h = 0,$ so, for $0 < \varepsilon < 1$, $\exists k_0 \Rightarrow$ for all $k > k_0$.

$$\left[f\left(|x_{k}-L|\right)\right]^{h} < \varepsilon < 1$$

and since $p_k \ge h$ for all k,

$$\left[f\left(|x_{k}-L|\right)\right]^{p_{k}} \leq \left[f\left(|x_{k}-L|\right)\right]^{h} < \varepsilon$$

then we get,

 $\lim_{k\to\infty} \left[f(|x_k - L|) \right]^{p_k} = 0.$ Since (k⁻⁵) is bounded, we write

 $\lim_{k\to\infty} k^{-s} \left[f(|x_k - L|) \right]^{p_k} = 0.$

Therefore $x \in C(p, f, s)$.

(ii) Let $x \in C(p, f, s)$, so that

$$S_{k} = k^{s} [|x_{k} - L|]^{p_{k}} \to 0 \ (k \to \infty).$$

Let $\varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f(t) < \varepsilon$ for $0 \le t \le \delta$. Now we write

 $I_1 = \{ k \in N : |x_k - L| \le \delta \},$

$$I_2 = \{ k \in N : |x_k - L| > \delta \}.$$

For $|x_k - L| > \delta$,

$$|x_k - L| < |x_k - L|\delta^{-1} < 1 + |x_k - L|\delta^{-1}|.$$

where $k \in I_2$ and [u] denotes the integer part of u. By definition 1(iii) and (ii) we have for $|x_k - L| > \delta$,

$$f(|x_k - L|) \le (1 + ||x_k - L|\delta^{-1}|) \cdot f(1) \le 2f(1) ||x_k - L|\delta^{-1}|$$

For $|x_k - L| \leq \delta$,

$$f(|x_k - L|) < \varepsilon$$

where $k \in I_1$. Hence

$$k^{-s} \left[f(|x_k - L|) \right]^{p_k} = k^{-s} \left[f(|x_k - L|) \right]^{p_k} + k^{-s} \left[f(|x_k - L|) \right]^{p_k}$$
the first term over $k \in I$, and the second over $k \in I$. Then

where the first term over $k \in I_1$ and the second over $k \in I_2$. Then,

$$k^{-s} \left[f(|x_k - L|) \right]^{p_k} \le k^{-s} \varepsilon^H + \left[2f(1)\delta^{-1} \right]^H S_k \to 0 \quad (k \to \infty)$$

Since $x \in C(p,s)$, we get $x \in C(p,f,s)$.

(ii) In (ii), it was shown that $C(p,s) \subset C(p,f,s)$. We must show that $C(p,f,s) \subset C(p,s)$. For any modulus function, the existence of positive limit given with β in Maddox [5, Proposition 1]. Now $\beta > 0$ and let $x \in C(p,f,s)$. Since $\beta > 0$, for every t > 0, we write $f(t) \ge \beta t$. From this inequality, it is easy to see that $x \in C(p,s)$. This completes the proof. $\begin{array}{l} \text{Theorem 3: Let } f \text{ and } g \text{ be two modulus } \text{ and } s, s_1, s_2 \geq 0.\\ (i) \ c(p,f,s) \cap c(p,g,s) \subset c(p,f+g,s),\\ (ii) \ s_1 \leq s_2 \ \text{ implies } c(p,f,s_1) \subset c(p,f,s_2). \end{array}$

Proof: (i) Let $x=(x_k) \in c(p,f,s) \cap c(p,g,s)$. From (1), we have

$$[(f+g)(|x_k - L|)]^{P_k} = [f(|x_k - L|) + g(|x_k - L|)]^{P_k}$$

$$\leq C\{[f(|x_k - L|)]^{P_k} + [g(|x_k - L|)]^{P_k}\}.$$

Since (k^{-s}) is bounded, we write

$$k^{-s} \left[\left(f + g \right) \left[x_k - L \right] \right]^{p_k} \le Ck^{-s} \left[f \left(x_k - L \right] \right]^{p_k} + Ck^{-s} \left[g \left(x_k - L \right] \right]^{p_k}.$$

Since $x=(x_k) \in c(p,f,s) \cap c(p,g,s)$, we get $x=(x_k) \in c(p,f+gs)$.

(ii) Let $s_1 \le s_2$. Then $k^{-s_2} \le k^{-s_1}$ for all $k \in \mathbb{N}$. Since

$$k^{-s_2} \left[f(|x_k - L|) \right]^{p_k} \le k^{-s_1} \left[f(|x_k - L|) \right]^{p_k},$$

this inequality implies that $c(p,f,s_1) \subset c(p,f,s_2)$.

Theorem 4: Let f be a modulus, then (i) $l_{\infty} \subset l_{\infty}(p,f,s)$, (ii) If f is bounded then $l_{\infty}(p,f,s)=s$.

Proof: (i) $x=(x_k) \in I_{\infty}$. Since (x_k) is bounded, $(f(x_k))$ is also bounded, so that

$$k^{-s} \left[f\left(\left[x_k \right] \right) \right]^{p_k} \le k^{-s} \left[Kf(1) \right]^{p_k} \le k^{-s} \left[Kf(1) \right]^{n} < \infty$$

Therefore $x=(x_k) \in I_{\alpha}$ (p.f.s).

(ii) If f is bounded then, for any $x=(x_k) \in s$

$$k^{-s}\left[f\left(\left[x_{k}\right]\right)\right]^{p_{k}} \leq k^{-s} L^{p_{k}} \leq k^{-s} L^{H} < \infty,$$

so that $I_{\infty}(p,f,s)=s$.

REFERENCES

- I.J.Maddox, "Spaces of Strongly Summable Sequences", Quaterly J. Math.Oxford (2),18, (1967),345-355.
- I.J.Maddox, "Some Properties of Paranormed Sequence Spaces", J.London Math.Soc., (2), 1, (1969), 316-322.
- 3. I.J.Maddox, "Paranormed Sequence Spaces Generated By Infinite Matrices", Proc.Camb.Philos Soc., 64, (1968), 335-340.
- 4. I.J.Maddox, "Sequence Spaces Defined By A Modulus", Math. Proc. Camb. Philos. Soc., 100, (1986), 161-166.
- 5. I.J.Maddox, "Inclusion Between FK Spaces and Kuttner's Theorem", Math.Proc.Camb.Philos Soc., 101,(1987),523-527.
- 6. M.Başarır, "Some New Sequence Spaces and Related Matrix Transformations" 100.Year University Press, No:6, (1990), 32-38.

Dr.Ayhan ESİ Fırat University Department of Mathematics 23119, Elazığ-TURKEY E-Mail:aesi23@hotmail.com a de la colo de la defensión de la colo de la constante de la colo d