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THE SPACE WJ (IR} AND SOME PROPERTIES

Mevliide Yazien and A, Turan Giirkanh

ABSTRACT

Assume that w is Beurling’s weight on the real numbers IR and 1< p,g <. In

this paper, we defined a weighted space
wE(IR) = {f e WP (IR) | fe L%(]R)}
and endowed it with the sum norm

R T

We showed that #,7 (IR) is a Segal algebra. We also discussed the inclusions between the

spaces W,F (IR) and the multipliers from I (IR) to w.F (IR).
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LINTRODUCTION

Throughout this work, G denotes a locally compact Abelian (non-discrete, non-

compact) group with dual group G and dx, dt denotes Haar measure on G and G,
respectively. We will denote the space of all continuous, complex-valued function on G

with compact support by C,(G) and the bounded regular Borel measures on G by M (G).
The translation operators L, is given by L_f (y) = f (y— x) and the multiplication
operator M, is defined as M, f(y) = (I,y)f(y) for x,yeG and t e G. (B,|[.|]B) is called

strongly translation invariant if one has L, Bc B and NLI f !! = " 7l g forall 7 eB and
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xeG. Let (B,H 3) be a Banach space. If B is strongly translation invariant and the map
x— L. f from G onto B is continuous, then we say that B is a Homogenous Banach
space on G . Let B be subalgebra of L (G). If B is a Homogenous Banach space, B is a
Banach algebra with the norm |, <], and also B is everywhere dense in £NG) with

respect to the norm [, then B is a called to be a Segal algebra. The spaces L, (G)

consists of all measurable functions f/ on G such that [, P I! (G) for any compact
subset K G, where y, is the characteristic function of K. A Banach function
space(shortly BF-space) on G is a Banach space (B,H" 3) of measurable functions
embedded into L) _(G), i.e. for any compact subset K < G, there exists some constant
cg >0 with

"f'XA’ "; scg iJf"B

B) is called a Banach module over a Banach algebra

for all f e B. A Banach space (B,”I
(A,"E} A), if B is a module over 4 in the algebraic sense for some muitiplication, and the
inequality |a.bi, <llall ,Ibl, is satisfied. For a Beurling’s weight w on G[6], ie. a
continuous function w satisfying w{x} > 1 and w(x + y) < w(x).w(y) forall x,y eG, we
sct

19.(G)= {f | fweld (G)}

for 1 £ g <. It is a Banach space under the norm

7], , =4 Jrewle)?as
G

The Fourier transform f of a function £ e 1! (G) is defined by

SB)= [rX-xy)d yeb.
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- PROOF; Suppose that (f,,)

It is known that f is continuous and vanishes at infinity and also the inequality

“f "oo <[ f], is satisfied[6]. Lastly a space "7 (IR”) is defined to be

WP(JR”}:: feL](]R”) 2 lznsl, <o

meZ"

It is known that W #{IR) is a Banach algebra under convolution with the norm

Wy = max 3w,

mez
where Q is the cube {re IR”’x = (xi)?:p_y <z < %} and 1< p<eo[4}. If B; and B,

are Banach A-modules, then a multiplier(or module homomorphism) from B to By is a
bounded linear operator T from By to By which commutes with module multiplication i.e.
T{ab)=aT(b) fSr all ae A.be By. We denote by Hom 4{(B;, B,) or M(B,,B;) the space

of multipliers from B; to Bs.
2.THE SPACES W/ (IR)
Let w be weight function on IR and 1< p,g <o, We define W/ (]R) by
Wl (IR)= {/ e W (IR) * fe L?,,(IR)}.

Since the spaces # P (IR) and 19 (IR) are vector spaces, then it is easily to see that
WJ(IR) is also a vector space. It is also easily proved that W2 (IR) is a subspace of
WP (IR).

THEOREM 2.1 W[F(/R) is a Banach algebra under convolution with the norm

AL =1 <[, remiim)

is a Cauchy sequence in WP (IR). Clearly (fn) and

nelN neN

(fn )HEN are Cauchy sequences in W P (IR} and L9,(IR), respectively. Since WP(IR) and
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fo(r) = (_J;—)f(!), one can oblain |(Ixf)A”q e Nf"q y for every x,1 e IR. Therefore

L./ e WF(IR) and

(L. s) 717

/

=ﬂf"WP +

q,w

lx A1 =1Eer Ty v +|

g% B |
PROPOSITION 2.3 The function x —> L,f is continuous from /R into W,F{IR) for
every f e W (IR).

PROOF: We known that the function x —» L,/ is continuous from IR into W P(JR)[4],

FaY

and the function x — L is continuous from /R into LY,(JR) in [3] for all f e W.2(IR).

Let /WP {IR) and £>0 be given, Take any x € /R . Hence there are neighbourdhoos

< % for all

7w

bU; and U, of xy such that ”fo——LxOfnwp <% and L;f-Lx;f

x ‘EU, and x-eUz.Then “fo—LxOf“p <& forevery x el .
: w

PROPOSITION 2.4 W2 (]R) is character invartant.

PROOEF: Let f el w (]R) and to c IR be given. We have
y
P

maxz J‘|Mt0f(x—f1pdx =
On

J‘GQr.-eZ
A
=max2 .ﬂ(x—t,ro)f(x—t)fpdx =

reg neZ Op

NMfof“Wp :?;an Z"zgn (M,O )I" =
- neZ p

= max Z ﬂf}(l}pdl =I};35 Z

o, il =Wy 4D
fEQ e Z Qn ez Q I“p le

o

Then M,, € W P(IR). Also because the equality M [ = Lrofr, one obtains
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L19.(IR) are Banaeh spaces, then there exist f e #(IR) and geL%(IR) such that

I7e = we >0, Fa wg“q s 0. Using the inequalities {J, <|{, » and ﬂ"q < ".“q‘w

one obtains ﬂfn —f“l -0, |f» —vg“q — 0. Then there exists a subseguence (fnk) of

(fn) N which converges to g almost everywhere(a.e.). It follows from the inequality

]fn—fn <lfo-flyp that ||fn~fl|m—>0. Hence it is easily showed that

nfnk —f'H ~> 0. Therefore f =g . Thus |7 —f|!f; —0 and [ e®P(IR). That means
" oG
w2 (IR) is a Banach space. Now, let f,g e WP (IR) be given. Since W7 (IR) is a Banach

algebra under convolution[4], then [ *g e W P (IR.). If one uses the inequality

1

Y
{ [l Gt dx} <[7], tet,

IR

S*g

N
obtains f*g e LL(IR). Thus f*ge W.F (IR). Also using the inequalities
1f*elyr <1/l e el o -

17 <k <l s

we obtain

/el =/ +alye +|r %2

<l o lely o 17518, <V BNl

g, W

for all f,g € WP (IR). Therefore W,F (IR) is a Banach algebra.
PROPOSITION 2.2 The space #,7 (IR) is strongly translation invariant.
PROOF: It is known that W7 (IR) is strongly translation invariant{4]. Hence

Ly feWP(IR) and |1, flpp =|/|pp for all £ e WP(IR). On the other hand, using




FM; f

| = “LIU f'“q,w < w(r(,)”_f"g,w. (2.4.2)
-

Therefore M, f L9.(IR). If one uses (2.4.1), (2.4.2) and the definition of the norm ||“f
finds that M,/ e W,f (JR).

PROPOSITION 2.5 (W“{’ (R j is a Segal algebra.

PROOF: It is easy to see that W,P(IR) is a subalgebra of L'(IR). Also WP(IR) is

everywhere dense in 1! (IR)[4}. Then given any f e 1! (IR), thereis £ >0 a geW?* (IR)

such that

I7-gl, <5 2.5.1)
Also since W7 (IR) is a Segal algebra, then there exists v e # 7 (IR) such that the Fourier
transformation ¥ of v has compact support and |v* g - g"w p < % [6]. Hence using the

inequality [, <|}|,, » » we obtain
Iv*e—gl, <55 (2.5.2)

Thus we have v* g e ¥ ¥ (IR). We set suppy = K . Because the inequality

i

. 1/ z
{ floe 2 et dx} { [s)etemte)’ dx} <

R

A

v*g

< sup’|ﬁ(x)§(xx sup}|w(x]{ Idy(x)} 7 — [} g”m "w"m,K u(K)
xekK xeK K

N

we have v+ g e L9, (IR). Thus v* g e WP (IR). Also using (2.5.1) and (2.5.2), we conclude

that

| =vesly <7 -gly +le-veel, <5+ %=«
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ie. the space W.J(IR) is everywhere dense in L (/R). Consequently, if one uses
Proposition 2.1, Proposition 2.2 and Proposition 2.3 obtain that 7. (ZR) is a Segal algebra.
PROPOSITION 2.6 The space W7 (IR) is a BF-space on IR .

PROOF: Let any compact subset X of /R and any feW} (IR) be given. Using the

inequality |le < u"W » and the definition of norm, we write

flrteas < flrGehae AL,

IR
This completes the proof. N
LEMMA 2.7 Let w;, wy be two weights on /R and 1< pg<cw. Then if

W;’l (IR)c W“‘?Z (ZR), then there exists a constant a.> 0 such that ||£]? LS al 1% | for
every fie W‘fl (IR).

PROOF: Suppose W“‘?] (IR)CW;Z (IR). We define the norm “If"l:"f”i! +"f,|[f,2 on
]

WP (IR). First we proved that (Wfl (IR), “H“} is a Banach space. Let ( T )REN be a Cauchy

W

sequence in (WM‘[,"'1 (IR), ||i|”) It is casy to see from the definition of m"l that the sequence

P
wy J

Since [Wu{’l (IR)14 ﬁ | ) and (W ‘f , (IR),""f} 2) are Banach space, there exist f e W “‘: (IR)

( f,,)neN is aléo a Cauchy sequence in the spaces [WM‘?] (IR)||||£ , ) and [Wuf'z. (Ir)l]

and g EWM‘?2 (ZR) such that “f,, —f,"i] — 0 and ||f,1 *8"52 -» (. Using the inequality
||||1 S”,HWp , we obtain ufn —f"l — 0 and “fn _8"1 — 0. Therefore, there exists a
subsequence (f"k )c (f,,) such that fnk — f ae. Also, there is a subsequence Lf,,kf ) of

(fnkJ such that “f”ki ->g ae, So we have f=g. Consequently, we obtain

mf,, - f !” -0.5%0 (ﬁ"£ (Ir), } ||J is 2 Banach space. Now, let us define the unit function /
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from (W:; (1R), HH”) into (W ‘f’] (IR} ||f | ) Since we have the inequality
(1{¥4 ][f T LA = m f m, I is continuous. Hence / is a homeomorphism by the Banach

Theorem[i]. That means the norms ||]||| and H"f , are equivalent. Then for every

fe Wfl (IR} there exists a >0 such that

Itk =< al 715, @7.1)

Thus by using (2.7.1) and the definition ofinorm “H” we obtain
12, <hrl<elts,.
LEMMA 2.8 Forany f e W, (IR}, /=0 there exists a constant c( f )> 0 such that
{7ty s a1, I,
Moreover, there is ¢ > 0 such that

ewlt)< |, |2 < wle) .

PROOF: Let f e WP(IR), f#0 be given. Then f e L7(IR) and there exists c(f)>0

such that
A <ledl,, <l
by the Lemma 2.2 in [2]. Hence we write

c(f)w’(f) b "f"W rt c(f)w(f) < ||Mr f"WP +“L’f"q,w )

Ml =M AL (2.8.1)
a.w

=M Sy +

On the other hand, one has

M./

M A =M1 Fly v + =Ir

wo *l ], <
g q.w
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SWMP+MMMLw$mHmm (28.2)

If one combines (2.8.1) and (2.8.2) obtains that

ol pwte) < pa 115, < A1
THEOREM 2.9 Tet w; . wy be welght functions on IR and 1< p.g <o, Then
W‘f; (IR) W“','; (7R) if and only if wy <y,
PROOF: Suppose that #] (IR)c# ) (IR). By the Lemma 2.8, there are constants ¢ >0
and 4 > 0 suchb that

¢! wl(t)s"M‘f"i,l <cw f) S (29.1)
and

d w1 <M, AL, <dw ) (2.9.2)

for all fe W“'?] (IR) and t< IR. Moreover, since M, f e W“{’l (IR) for all fe Wy{f’1 (IR),
then by the Lemmya 2.7, there exists constant @ >0 such that
.1k, = alpe 17 - (293)
Thus using (2.9.1), (2.9.2) and (2.9.3), we obtain
d wy ()< M A <alM ] saew () .
Weset k=acd , then wy (1)< w (1) forall 1 € IR . That means wy < wy.

Conversely, suppose that wy <w,. Then there exists a constant r >0 such that

wo(t) <rwi(r) for every re IR. Let f e W?” (IR) be given. Then we have f e W P(IR
2 1 Wiy f

and [ e 1.?4,1 (ZR). Thus

|

l/ i

A Ja
Vi s{ ﬂ_f(r)wl (r){q d!} i r”]’|
iR

< o7,
q.w|

- ={ ﬂjr(t)wz(rf a'r}
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Hence, we find .fELi.q (IR). Since feWF(IR), then we write fe W‘fz (IR).
Consequently, we have W“‘?] (IR) = w7 ) (IR).
3.MULTIPLIERS FROM L/(IR) TO W.f(IR)

It is known that Ll(IR) has an bounded approximate identity (f,) such that

[ue|, =1 and @, has a compact support for every a. We define the set M o i the

W

fqllowing way:
My, = {y e M(IR)| Jug * 4 < cﬂ}

where ¢, is a constant only depend on g . Define the norm by

o

=lim P,
I

w

Since W[ (IR) is a Segal algebra by the Theorem 2.5, then the space of multipliers

M(L‘ (R W} (JR)) is the space A, by the Theorem 1.6 in [S].

w
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