İstanbul Üniv. Fen Fak. Mat. Dergisi 55 - 56 (1996 - 1997), 23-33

THE SPACE $W_{w}^{p}(IR)$ AND SOME PROPERTIES

Mevlüde Yazıcı and A. Turan Gürkanlı

ABSTRACT

Assume that w is Beurling's weight on the real numbers IR and $1 \le p, q < \infty$. In this paper, we defined a weighted space

$$W^{p}_{w}(IR) = \left\{ f \in W^{p}(IR) \mid \hat{f} \in L^{q}_{w}(IR) \right\}$$

and endowed it with the sum norm

$$\left\|f\right\|_{\mathcal{W}}^{p} = \left\|f\right\|_{\mathcal{W}^{p}} + \left\|\hat{f}\right\|_{q, w}$$

We showed that $W_w^p(IR)$ is a Segal algebra. We also discussed the inclusions between the spaces $W_w^p(IR)$ and the multipliers from $L^1(IR)$ to $W_w^p(IR)$.

1991 AMS Subject Classification codes 43

Key Words: Banach algebra, Banach module, Multipliers, Banach Function space, Segal algebra.

1.INTRODUCTION

Throughout this work, G denotes a locally compact Abelian (non-discrete, noncompact) group with dual group \hat{G} and dx, $d\hat{x}$ denotes Haar measure on G and \hat{G} , respectively. We will denote the space of all continuous, complex-valued function on Gwith compact support by $C_c(G)$ and the bounded regular Borel measures on G by M(G). The translation operators L_x is given by $L_x f(y) = f(y-x)$ and the multiplication operator M_t is defined as $M_t f(y) = \langle t, y \rangle f(y)$ for $x, y \in G$ and $t \in \hat{G}$. $(B, \|\cdot\|_B)$ is called strongly translation invariant if one has $L_x B \subseteq B$ and $\|L_x f\|_B = \|f\|_B$ for all $f \in B$ and 23 $x \in G$. Let $(B, \|\|_B)$ be a Banach space. If *B* is strongly translation invariant and the map $x \to L_x f$ from *G* onto *B* is continuous, then we say that *B* is a Homogenous Banach space on *G*. Let *B* be subalgebra of $L^1(G)$. If *B* is a Homogenous Banach space, *B* is a Banach algebra with the norm $\|\|_1 \leq \|\|_B$ and also *B* is everywhere dense in $L^1(G)$ with respect to the norm $\|\|_1$, then *B* is a called to be a Segal algebra. The spaces $L^1_{loc}(G)$ consists of all measurable functions f on *G* such that $f_{\chi_K} \in L^1(G)$ for any compact subset $K \subset G$, where χ_K is the characteristic function of *K*. A Banach function space(shortly BF-space) on *G* is a Banach space $(B,\|\|_B)$ of measurable functions embedded into $L^1_{loc}(G)$, i.e. for any compact subset $K \subset G$, there exists some constant $c_K > 0$ with

$$\left\|f.\chi_{K}\right\|_{1} \leq c_{K}\left\|f\right\|_{B}$$

for all $f \in B$. A Banach space $(B, \|\|_B)$ is called a Banach module over a Banach algebra $(A, \|\|_A)$, if B is a module over A in the algebraic sense for some multiplication, and the inequality $\|a.b\|_B \leq \|a\|_A \|b\|_B$ is satisfied. For a Beurling's weight w on G[6], i.e. a continuous function w satisfying $w(x) \geq 1$ and $w(x+y) \leq w(x).w(y)$ for all $x, y \in G$, we set

$$L^{q}_{w}(G) = \left\{ f \mid f w \in L^{q}(G) \right\}$$

for $1 \le q < \infty$. It is a Banach space under the norm

$$\left\|f\right\|_{q,w} = \left\{ \iint_{G} \left[f(x)w(x)\right]^{q} dx \right\}^{\frac{1}{q}}$$

The Fourier transform \hat{f} of a function $f \in L^1(G)$ is defined by

$$f(y) = \int_G f(x) \langle -x, y \rangle dx \quad , y \in \hat{G} .$$

It is known that \hat{f} is continuous and vanishes at infinity and also the inequality $\|\hat{f}\|_{\infty} \leq \|f\|_{1}$ is satisfied[6]. Lastly a space $W^{p}(IR^{n})$ is defined to be

$$W^{p}(IR^{n}) \coloneqq \left\{ f \in L^{1}(IR^{n}) \middle| \sum_{m \in \mathbb{Z}^{n}} \left\| \chi_{m} f \right\|_{p} < \infty \right\}.$$

It is known that $W^{p}(IR)$ is a Banach algebra under convolution with the norm

$$\|f\|_{\mathcal{W}^p} \coloneqq \max_{t \in \mathcal{Q}} \sum_{m \in \mathbb{Z}} \|\chi_m f_t\|_p,$$

where Q is the cube $\left| x \in IR^n \right| x = (x_i)_{i=1}^n, -\frac{1}{2} \le x_i \le \frac{1}{2} \right|$ and $1 [4]. If <math>B_1$ and B_2

are Banach A-modules, then a multiplier (or module homomorphism) from B_1 to B_2 is a bounded linear operator T from B_1 to B_2 which commutes with module multiplication i.e. T(ab) = aT(b) for all $a \in A, b \in B_1$. We denote by $Hom_A(B_1, B_2)$ or $M(B_1, B_2)$ the space of multipliers from B_1 to B_2 .

2. THE SPACES $W^{p}_{W}(IR)$

Let w be weight function on IR and $1 \le p, q < \infty$. We define $W_w^p(IR)$ by

 $W^{p}_{w}(IR) = \left\{ f \in W^{p}(IR) \mid \hat{f} \in L^{q}_{w}(IR) \right\}.$

Since the spaces $W^{p}(IR)$ and $L^{q}_{w}(IR)$ are vector spaces, then it is easily to see that $W^{p}_{w}(IR)$ is also a vector space. It is also easily proved that $W^{p}_{w}(IR)$ is a subspace of $W^{p}(IR)$.

THEOREM 2.1 $W_w^p(IR)$ is a Banach algebra under convolution with the norm $\|f\|_w^p = \|f\|_{W^p} + \|\hat{f}\|_{q,w} , f \in W_w^p(IR).$

PROOF: Suppose that $(f_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in $W_w^p(IR)$. Clearly $(f_n)_{n \in \mathbb{N}}$ and $(\hat{f}_n)_{n \in \mathbb{N}}$ are Cauchy sequences in $W^p(IR)$ and $L_w^q(IR)$, respectively. Since $W^p(IR)$ and

 $L_x \hat{f}(t) := \overline{\langle x, t \rangle} \hat{f}(t), \text{ one can obtain } \left\| (I_x f)^{\wedge} \right\|_{q, w} = \left\| \hat{f} \right\|_{q, w} \text{ for every } x, t \in IR. \text{ Therefore}$ $L_x f \in W_w^p(IR) \text{ and}$

$$\|L_{x}f\|_{W}^{p} = \|L_{x}f\|_{W^{p}} + \|(L_{x}f)^{\wedge}\|_{q,w} = \|f\|_{W^{p}} + \|\hat{f}\|_{q,w} = \|f\|_{W}^{p}.$$

PROPOSITION 2.3 The function $x \to L_x f$ is continuous from IR into $W_w^p(IR)$ for every $f \in W_w^p(IR)$.

PROOF: We known that the function $x \to L_x f$ is continuous from *IR* into $W^p(IR)[4]$, and the function $x \to L_x f$ is continuous from *IR* into $L_w^q(IR)$ in [3] for all $f \in W_w^p(IR)$. Let $f \in W_w^p(IR)$ and $\varepsilon > 0$ be given. Take any $x_0 \in IR$. Hence there are neighbourdhoos U_1 and U_2 of x_0 such that $\left\|L_x f - L_{x_0} f\right\|_{W^p} < \frac{\varepsilon}{2}$ and $\left\|L_x f - L_{x_0} f\right\|_{q,w} < \frac{\varepsilon}{2}$ for all $x \in U_1$ and $x \in U_2$. Then $\left\|L_x f - L_{x_0} f\right\|_w^p < \varepsilon$ for every $x \in U$. **PROPOSITION 2.4** $W_w^p(IR)$ is character invariant.

PROOF: Let $f \in W^{p}_{w}(IR)$ and $t_0 \in IR$ be given. We have

$$\begin{split} \left\| M_{t_0} f \right\|_{W^p} &= \max_{t \in \mathcal{Q}} \sum_{n \in \mathbb{Z}} \left\| \chi_{\mathcal{Q}_n} (M_{t_0})_t \right\|_p = \max_{t \in \mathcal{Q}} \sum_{n \in \mathbb{Z}} \left\{ \int_{\mathcal{Q}_n} \left| M_{t_0} f (x - t) \right|^p dx \right\}^{\frac{1}{p}} = \\ &= \max_{t \in \mathcal{Q}} \sum_{n \in \mathbb{Z}} \left\{ \int_{\mathcal{Q}_n} \left| (x - t, t_0) f (x - t) \right|^p dx \right\}^{\frac{1}{p}} = \\ &= \max_{t \in \mathcal{Q}} \sum_{n \in \mathbb{Z}} \left\{ \int_{\mathcal{Q}_n} \left| f_t (x) \right|^p dx \right\}^{\frac{1}{p}} = \max_{t \in \mathcal{Q}} \sum_{n \in \mathbb{Z}} \left\| \chi_{\mathcal{Q}_n} f_t \right\|_p = \| f \|_{W^p} . \quad (2.4.1) \end{split}$$

Then $M_{t_0} \in W^p(IR)$. Also because the equality $M_{t_0} f = L_{t_0} \hat{f}$, one obtains

 $L_{w}^{q}(IR)$ are Banach spaces, then there exist $f \in W^{p}(IR)$ and $g \in L_{w}^{q}(IR)$ such that $\|f_{n} - f\|_{W^{p}} \to 0$, $\|\hat{f}_{n} - g\|_{q,w} \to 0$. Using the inequalities $\|\|_{1} \leq \|\|_{W^{p}}$ and $\|\|_{q} \leq \|\|_{q,w}$ one obtains $\|f_{n} - f\|_{1} \to 0$, $\|\hat{f}_{n} - g\|_{q} \to 0$. Then there exists a subsequence $(\hat{f}_{n_{k}})$ of $(\hat{f}_{n})_{n \in \mathbb{N}}$ which converges to g almost everywhere(a.e.). It follows from the inequality $\|\hat{f}_{n} - \hat{f}\|_{\infty} \leq \|f_{n} - f\|_{W^{p}}$ that $\|\hat{f}_{n} - \hat{f}\|_{\infty} \to 0$. Hence it is easily showed that $\|\hat{f}_{n_{k}} - \hat{f}\|_{\infty} \to 0$. Therefore $\hat{f} = g$. Thus $\|f_{n} - f\|_{w}^{p} \to 0$ and $f \in W_{w}^{p}(IR)$. That means $W_{w}^{p}(IR)$ is a Banach space. Now, let $f, g \in W_{w}^{p}(IR)$ be given. Since $W^{p}(IR)$ is a Banach algebra under convolution[4], then $f * g \in W^{p}(IR)$. If one uses the inequality

$$\left\| f \ast g \right\|_{q,w} = \left\{ \int_{IR} \left| (f \ast g)^{\wedge}(x)w(x) \right|^{q} dx \right\}^{\frac{1}{q}} \leq \left\| f \right\|_{\infty} \left\| g \right\|_{q,w}$$

obtains $f \ast g \in L^q_w(IR)$. Thus $f \ast g \in W^p_w(IR)$. Also using the inequalities

$$\begin{split} \left\| f * g \right\|_{W^{p}} &\leq \left\| f \right\|_{W^{p}} \left\| g \right\|_{W^{p}}, \\ \left\| \hat{f} \right\|_{\infty} &\leq \left\| f \right\|_{1} \leq \left\| f \right\|_{W^{p}}, \end{split}$$

we obtain

$$\|f * g\|_{W}^{P} = \|f * g\|_{W^{P}} + \|f * g\|_{q,W} \le \|f\|_{W^{P}} \|g\|_{W^{P}} + \|f\|_{1} \|\hat{g}\|_{q,W} \le \|f\|_{W}^{P} \|g\|_{q,W}$$

for all $f, g \in W_w^p(IR)$. Therefore $W_w^p(IR)$ is a Banach algebra.

PROPOSITION 2.2 The space $W_w^p(IR)$ is strongly translation invariant.

PROOF: It is known that $W^p(IR)$ is strongly translation invariant[4]. Hence $L_x f \in W^p(IR)$ and $||L_x f||_{W^p} = ||f||_{W^p}$ for all $f \in W^p(IR)$. On the other hand, using

27

$$\left\| M_{t_0}^{\wedge} f \right\|_{q,w} = \left\| L_{t_0} \hat{f} \right\|_{q,w} \le w(t_0) \left\| \hat{f} \right\|_{q,w}.$$
(2.4.2)

Therefore $M_{I_0} f \in L^q_w(IR)$. If one uses (2.4.1), (2.4.2) and the definition of the norm $\|\cdot\|_w^p$ finds that $M_{I_0} f \in W^p_w(IR)$.

PROPOSITION 2.5
$$\left(\mathcal{W}_{w}^{p}(IR), \|\|_{w}^{p} \right)$$
 is a Segal algebra.

PROOF: It is easy to see that $W_w^p(IR)$ is a subalgebra of $L^1(IR)$. Also $W^p(IR)$ is everywhere dense in $L^1(IR)[4]$. Then given any $f \in L^1(IR)$, there is $\varepsilon > 0$ a $g \in W^p(IR)$ such that

$$\left\| f - g \right\|_{1} < \frac{\varepsilon}{2} \,. \tag{2.5.1}$$

Also since $W^{p}(IR)$ is a Segal algebra, then there exists $v \in W^{p}(IR)$ such that the Fourier transformation \hat{v} of v has compact support and $\|v * g - g\|_{W^{p}} < \frac{\varepsilon}{2}$ [6]. Hence using the inequality $\|.\|_{1} \leq \|.\|_{W^{p}}$, we obtain

$$\|v * g - g\|_1 < \frac{\varepsilon}{2}.$$
 (2.5.2)

Thus we have $v * g \in W^{p}(IR)$. We set $supp \hat{v} = K$. Because the inequality

$$\left\| v * g \right\|_{q,w} = \left\{ \iint_{R} (v * g)^{\wedge}(x) w(x) \right\|^{q} dx \right\}^{\frac{1}{q}} = \left\{ \iint_{K} (v \cdot g)^{g}(x) w(x) \|^{q} dx \right\}^{\frac{1}{q}} \le \\ \le \sup_{x \in K} |v(x)g(x)| \sup_{x \in K} |w(x)| \left\{ \iint_{K} d\mu(x) \right\}^{\frac{1}{q}} = \left\| v g \right\|_{\infty} \|w\|_{\infty,K} \mu(K)$$

we have $v * g \in L^q_w(IR)$. Thus $v * g \in W^p_w(IR)$. Also using (2.5.1) and (2.5.2), we conclude that

$$\left\|f - v * g\right\|_{1} \le \left\|f - g\right\|_{1} + \left\|g - v * g\right\|_{1} < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

i.e. the space $W_w^p(IR)$ is everywhere dense in $L^1(IR)$. Consequently, if one uses Proposition 2.1, Proposition 2.2 and Proposition 2.3 obtain that $W_w^p(IR)$ is a Segal algebra. **PROPOSITION 2.6** The space $W_w^p(IR)$ is a BF-space on IR.

PROOF: Let any compact subset K of IR and any $f \in W_w^p(IR)$ be given. Using the inequality $\| \cdot \|_1 \leq \| \cdot \|_{W^p}$ and the definition of norm, we write

$$\iint_{K} |f(x)| dx \leq \iint_{IR} |f(x)| dx \leq ||f||_{\mathcal{W}}^{p}.$$

This completes the proof.

LEMMA 2.7 Let w_1 , w_2 be two weights on IR and $1 \le p, q < \infty$. Then if $W_{w_1}^p(IR) \subset W_{w_2}^p(IR)$, then there exists a constant a > 0 such that $||f||_{w_2}^p \le a ||f||_{w_1}^p$ for every $f^{\mathbf{A}} \in W_{w_1}^p(IR)$.

PROOF: Suppose $W_{w_1}^p(IR) \subset W_{w_2}^p(IR)$. We define the norm $|||f||| = ||f||_{w_1}^p + ||f||_{w_2}^p$ on $W_{w_1}^p(IR)$. First we proved that $\langle W_{w_1}^p(IR), ||||| \rangle$ is a Banach space. Let $(f_n)_{n \in N}$ be a Cauchy sequence in $\langle W_{w_1}^p(IR), ||||| \rangle$. It is easy to see from the definition of |||| that the sequence $(f_n)_{n \in N}$ is also a Cauchy sequence in the spaces $\langle W_{w_1}^p(IR), |||||_{w_1}^p \rangle$ and $\langle W_{w_2}^p(IR), |||||_{w_2}^p \rangle$. Since $\langle W_{w_1}^p(IR), |||||_{w_1}^p \rangle$ and $\langle W_{w_2}^p(IR), |||||_{w_2}^p \rangle$ are Banach space, there exist $f \in W_{w_1}^p(IR)$ and $g \in W_{w_2}^p(IR)$ such that $||f_n - f||_{w_1}^p \to 0$ and $||f_n - g||_{w_2}^p \to 0$. Using the inequality $||||_1 \leq |||_{W^p}$, we obtain $||f_n - f||_1 \to 0$ and $||f_n - g||_1 \to 0$. Therefore, there exists a subsequence $(f_{n_k}) \subset (f_n)$ such that $f_{n_k} \to f$ a.e. Also, there is a subsequence $|f_{n_{k_l}} \to g$ a.e., So we have $f_i = g$. Consequently, we obtain $||f_n - f||_{w_1} \to 0$. So $\langle W_{w_1}^p(IR), ||||| \rangle$ is a Banach space. Now, let us define the unit function I

-29

from $\left(W_{w_{1}}^{p}(IR), \|\|\cdot\|\right)$ into $\left(W_{w_{1}}^{p}(IR), \|\|\cdot\|_{w_{1}}^{p}\right)$. Since we have the inequality $\|I(f)\|_{w_{1}}^{p} = \|f\|_{w_{1}}^{p} \le \|\|f\|$, I is continuous. Hence I is a homeomorphism by the Banach Theorem[1]. That means the norms $\|\|\cdot\|$ and $\|\cdot\|_{w_{1}}^{p}$ are equivalent. Then for every $f \in W_{w_{1}}^{p}(IR)$ there exists a > 0 such that

$$\|f\| \le a \|f\|_{w_1}^p.$$
(2.7.1)

Thus by using (2.7.1) and the definition of norm ... we obtain

$$\|f\|_{w_2}^p \le \|f\| \le a \|f\|_{w_1}^p$$
.

LEMMA 2.8 For any $f \in W_w^p(IR)$, $f \neq 0$ there exists a constant $c(\hat{f}) > 0$ such that

$$c(\hat{f})w(t) \le ||M_t f||_{w}^p \le w(t)||f||_{w}^p$$
.

Moreover, there is c > 0 such that

$$c w(t) \leq \|M_t\|_w^p \leq w(t) .$$

PROOF: Let $f \in W_w^p(IR)$, $f \neq 0$ be given. Then $\hat{f} \in L_w^q(IR)$ and there exists $c(\hat{f}) > 0$ such that

$$c(\hat{f})w(t) \leq \left\|L_t \hat{f}\right\|_{q,w} \leq w(t)\left\|\hat{f}\right\|_{q,w}$$

by the Lemma 2.2 in [2]. Hence we write

$$c(\hat{f})w(t) \leq \|f\|_{W^{p}} + c(\hat{f})w(t) \leq \|M_{I}f\|_{W^{p}} + \|L_{t}\hat{f}\|_{q,w} = \|M_{t}f\|_{W^{p}} + \|\hat{M}_{t}f\|_{q,w} = \|M_{t}f\|_{w}^{p}.$$
(2.8.1)

On the other hand, one has

$$\|M_{t}f\|_{W}^{p} = \|M_{t}f\|_{W^{p}} + \|M_{t}^{n}f\|_{q,w} = \|f\|_{W^{p}} + \|L_{t}\hat{f}\|_{q,w} \leq$$

$$\leq \|f\|_{\mathcal{H}^{P}} + w(t) \|\hat{f}\|_{q,w} \leq w(t) \|f\|_{w}^{P}.$$
(2.8.2)

If one combines (2.8.1) and (2.8.2) obtains that

$$c(\hat{f})w(t) \leq \|M_t f\|_w^p \leq w(t)\|f\|_w^p.$$

THEOREM 2.9 Let w_1 . w_2 be weight functions on IR and $1 \le p, q < \infty$. Then $W_{w_1}^P(IR) \subset W_{w_2}^P(IR)$ if and only if $w_2 \prec w_1$.

PROOF: Suppose that $W_{w_1}^p(IR) \subset W_{w_2}^p(IR)$. By the Lemma 2.8, there are constants c > 0 and d > 0 such that

$$c^{-1} w_{1}(t) \leq \left\| M_{t} f \right\|_{w_{1}}^{p} \leq c w_{1}(t)$$
(2.9.1)

and

$$d^{-1} w_2(t) \le \|M_t f\|_{w_2}^p \le d w_2(t)$$
(2.9.2)

for all $f \in W_{w_1}^p(IR)$ and $t \in IR$. Moreover, since $M_t f \in W_{w_1}^p(IR)$ for all $f \in W_{w_1}^p(IR)$, then by the Lemma 2.7, there exists constant a > 0 such that

$$\|M_t f\|_{w_2}^p \le a \|M_t f\|_{w_1}^p.$$
(2.9.3)

Thus using (2.9.1), (2.9.2) and (2.9.3), we obtain

$$d^{-1} w_2(t) \le \|M_t f\|_{w_2}^p \le a \|M_t f\|_{w_1}^p \le a c w_1(t) .$$

We set k = a c d, then $w_2(t) \le w_1(t)$ for all $t \in IR$. That means $w_2 \prec w_1$.

Conversely, suppose that $w_2 \prec w_1$. Then there exists a constant r > 0 such that $w_2(t) \le r w_1(t)$ for every $t \in IR$. Let $f \in W^p_{w_1}(IR)$ be given. Then we have $f \in W^p(IR)$ and $\hat{f} \in I^q_{w_1}(IR)$. Thus

$$\left\|\hat{f}\right\|_{q,w_{2}} = \left\{ \iint_{IR} \hat{f}(t)w_{2}(t)\right|^{q} dt \right\}^{\frac{1}{q}} \leq \left\{ \iint_{IR} \hat{f}(t)w_{1}(t)\right|^{q} dt \right\}^{\frac{1}{q}} = r \left\|\hat{f}\right\|_{q,w_{1}} < \infty$$

Hence, we find $\hat{f} \in L^{q}_{w_{2}}(IR)$. Since $f \in W^{p}(IR)$, then we write $f \in W^{p}_{w_{2}}(IR)$. Consequently, we have $W^{p}_{w_{1}}(IR) \subset W^{p}_{w_{2}}(IR)$.

3.MULTIPLIERS FROM $L^{I}(IR)$ TO $W_{w}^{p}(IR)$

It is known that $L^{1}(IR)$ has an bounded approximate identity (\hat{u}_{α}) such that $||u_{\alpha}||_{I} = 1$ and \hat{u}_{α} has a compact support for every α . We define the set $M_{W_{w}^{p}}$ is the following way:

$$M_{W_w^p} = \left\{ \mu \in M(IR) \middle| \left\| u_\alpha * \mu \right\|_w^p < c_\mu \right\}$$

where c_{μ} is a constant only depend on μ . Define the norm by

$$\left\|\mu\right\|_{\mathcal{M}_{W_{w}^{p}}} = \overline{\lim_{\alpha}} \left\|u_{\alpha} * \mu\right\|_{w}^{p}.$$

Since $W_w^p(IR)$ is a Segal algebra by the Theorem 2.5, then the space of multipliers $M(L^1(IR), W_w^p(IR))$ is the space $M_{W_w^p}$ by the Theorem 1.6 in [5].

REFERENCES

[I] CARTAN, H., Differential Calculus. Hermann, Paris, France, (1967)

[2] FEICHTINGER, H.G.-GÜRKANLI, A.T., On a family of weighted convolution algebras. Internat. J. Math. And Math. Sci. Vol. 13, No.3, (1990) 517-526

[3] FISCHER, R.H.-GÜRKANLI, A.T.-LIU, T.S., On a family of weighted spaces. Mathematica Slovaca, 46 No:1 (1996) 71-82

[4] KROGSTAD, H.E., Multipliers of Segal algebras, Math. Scand. 38, (1976), 285-303

[5] QUYANG, G., Multipliers of Segal algebras, Proceedings of the Analysis Conference,

Singapore (1986), Elsevier Science Publishers B:V: (North-Holland) (1988), 203-217

[6] REITHER,H., Classical Harmonic Analysis and Locally Compact Groups. Oxford at the Clarendon Press (1968)

ARŞ. GÖR. MEVLÜDE YAZICI

Ondokuz Mayıs University Faculty of Art and Sciences Department of Mathematics 55139 Kurupelit/ SAMSUN

PROF. DR. A. TURAN GÜRKANLI

Ondokuz Mayıs University Faculty of Art and Sciences Department of Mathematics 55139 Kurupelit/ SAMSUN

e-mail gurkanli @ SAMSUN. Omu.edu.tr