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T H E SPACE W${IR) AND SOME P R O P E R T I E S 

Mevlude Yazici and A. Turan Giirkanh 

A B S T R A C T 

Assume that w is Beurling's weight on the real numbers IR and 1 < p, q < <x>. In 

this paper, we defined a weighted space 

WP{lR)=\feWp{lR) feI&(lR)\ 

and endowed it with the sum norm 

We showed that W${lR) is a Segal algebra. We also discussed the inclusions between the 

spaces WP(IR) and the multipliers from L](lR) to W£(lR). 
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^INTRODUCTION 

Throughout this work, G denotes a locally compact Abelian (non-discrete, non-

compact) group with dual group G and dx, dx denotes Haar measure on G and G, 

respectively. We will denote the space of all continuous, complex-valued function on G 

with compact support by CC (G) and the bounded regular Borel measures on G by M(G) . 

The translation operators L X is given by Lxf(y) = f(y - x) and the multiplication 

operator M, is defined as M,f{)>) = {i,y)f(y) for x , v e G and teG. [B,\\\\B) is called 

strongly translation invariant i f one has LXB c B and for all / e B and 
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x e G . Let (i?J|J f l) be a Banach space. I f B is strongly translation invariant and the map 

x -» Lxf from G onto B is continuous, then we say that B is a Homogenous Banach 
space on G. Let B be subalgebra of L ] (G). I f B is a Homogenous Banach space, B is a 

respect to the norm j j . ^ , then B is a called to be a Segal algebra. The spaces Ll

/oc{G) 

consists of all measurable functions / on G such that fXK e I}(G) for any compact 

subset KaG, where % K is the characteristic function of K. A Banach function 

space(shortly BF-space) on G is a Banach space (-3, | | B ) of measurable functions 

embedded into L)OC{G) , i.e. for any compact subset K c G, there exists some constant 

eg > 0 with 

for all f e B. A Banach space is called a Banach module over a Banach algebra 

(^ , | . | | ^ ) , i f B is a module over A in the algebraic sense for some multiplication, and the 

inequality la.b\B < \\a\\A\\b\\B is satisfied. For a Beurling's weight w on G[6], i.e. a 

continuous function w satisfying w{x)>\ and w{x +y) < w(x).w(y) for all x,yeG,we 

set 

Banach algebra with the norm . . < JL and also B is everywhere dense in L }{G) with 

B 

L%(G)=\f fweL«(G) 

for 1 < q < co . It is a Banach space under the norm 

The Fourier transform / of a function f € l) (G) is defined by 

f(y)= \f(x){~x>y)dx , y e G . 
G 
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It is known that / is continuous and vanishes at infinity and also the inequality 

-If I] is satisfied[6]. Lastly a space Wp{lR"^j is defined to be 

WP\lRn\:= feL][]R" \\Zmflp < c o 

It is known that W p (iR) is a Banach algebra under convolution with the norm 

where Q is the cube { r e / i " x = ( x / ) " = i ^ x,- < fy\ and 1 < p < co [4]. I f B X and B 2 

are Banach A-modules, then a multipiier(or module homomorphism) from B \ to B 2 is a 

bounded linear operator T from B] to B 2 which commutes with module multiplication i.e. 

T{a.b) = aT(b) for all a e A, b e B } . We denote by HomA (BX, B 2 ) or M(B} , B 2 ) the space 

of multipliers from 5] to 5 2 . 

2.THE SPACES Wp(lR) 

Let w be weight function on IR and 1 < p, q < co. We define FF^ (iR) by 

Since the spaces Wp{lR) and Lq

w{lR) are vector spaces, then it is easily to see that 

Wp(lR) is also a vector space. It is also easily proved that Wp(lR.) is a subspace of 

WP(IR). 

T H E O R E M 2.1 Wp(lR) is a Banach algebra under convolution with the norm 

PROOF: Suppose that (fn)nsN is a Cauchy sequence in WP(IR). Clearly ( /„) and 

{fn)„mN

 a r e Cauchy sequences in Wp{lR) and Lq

w{lR), respectively. Since Wp(lR) and 
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Lxf(t):={xtt)f(t), one can obtain (lxf)' 

LxfeW£(lR) and 

= 1/1 for every x.telR. Therefore 
q,w 11 "q,w 

I I M I : = M W + fc/r 9 „ H S / I U + | / | î i W = i / r c -

PROPOSITION 2.3 The function x-> L J is continuous from /tf into Wp(lR) for 

every / G Wp(lR). 

PROOF: We known that the function x ~> lxf is continuous from IR into Wp(lR){A], 

A 

and the function x ->• Z^. / is continuous from /K into Lq

M,{lR) in [3] for all / e Pi7^f/7i). 

Let f^Wp(lR) and £• > 0 be given. Take any XQ G IR . Hence there are neighbourdhoos 

t / j and f/ 2 of x 0 such that J ^ / - ! ^ / ! < ^ and LJ~LXQf < Y2 for all 

q,w 

x & Ul and x -G-U2 . Then i ^ / - L x fl < £ for every x eU . 
i II u live 

PROPOSITION 2.4 ^ ( f f i ) is character invariant. 

PROOF: Let / e ^ ( / f l ) and f0 e / f i be given. We have 

M'o f \ w P ~ ™% £ Ike, K i|| = ™ S J | M i ( ) / ( x - / f dx 

VQn 

= max > •! j K * - M 0 ) / ( z - f ) | ' * 
Le, 

p 

= max > -i 
^ neZ 

Ï 1/ 

=^L¥Qjt\-\f\\ 
wp • (2.4.1) 

Then M , Q e WP{IR). Also because the equality Minf = L i n / . one obtains 
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L'l(}R) are'Barmen spaces, then there exist f eWp(lR) and g e L%(JR) such that 

\fn-f\wp
 U s i n g t h e i n e q u a l i t i e s H l - l i W ^ m d H l 9 - M 9 , w 

one obtains l / „ - / I , - » 0 , | / „ - g-| - » 0 . Then there exists a subsequence ( / M t ) of 

if ) which converges to g almost everywhere(a.e.). It follows from the inequality 

l l^~-^L -Wf"~fh'p
 THAT I I A - ^ L - * 0 - H E N C E H IS EASILY S H O W E D THAT 

l/« - / I I ~> 0 • Therefore / = g . Thus ||/„ - / F 0 and / e ^ (ffi). That means 

is a Banach space. Now, let f,ge Wp{lR) be given. Since Wp{lR) is a Banach 

algebra under convolution^], then / *geWp (iR.). I f one uses the inequality 

1/ 

f*g 
q,w UR 

A 

obtains f*geL% [iR). Thus / *geWp (iR.). Also using the inequalities 

we obtain 

V**&=\f**\wp + 

f*g m i 
q, w 

for all f,ge Wp(lR). Therefore W?(lR) is a Banach algebra. 

PROPOSITION 2.2 The space Wp(lR) is strongly translation invariant. 

PROOF: It is known that Wp (iR.) is strongly translation invariant[4]. Hence 

LxfsWp{lR) and \lxf\wp = \f\WP f o r a ! 1 / eWp(lR). On the other hand, using 
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(2.4.2) 

Therefore M, / e L%(lR). If one uses (2.4.1), (2,4.2) and the definition of the norm jjj ; 

finds that MlQfeWp(jR). 

PROPOSITION 2.5 is a Segal algebra. 

PROOF: It is easy to see that Wp(lR) is a subalgebra of l}(lR). Also Wp(lR) is 

everywhere dense in [}(lR)[4]. Then given any / e l}(lR)t there is s>0 a geWp(lR) 

such that 

\f-A<£A- (2-5-^ 
Also since Wp{lR) is a Segal algebra, then there exists v e Wp(lR) such that the Fourier 

transformation v of v has compact support and ||v * g _ gf P <A^' Hence using the 

inequality Uj i f - f ^ p , we obtain 

Thus we have v*g<=Wp(lR). We set suppv = K . Because the inequality 

v*g 

< SUPJv(x)g(^SU P|M<^ jdM(x)\ = | V # | L H L , A ' ^ ) 
xeK x^K 

we have v*ge L%(lR). Thus v* g e Wp{lR). Also using (2.5.1) and (2.5.2), we conclude 

that 

l | / - v * £ | l i + l k - v * 4
 <A*A = E 
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i.e. the space Wp(lR) is everywhere dense in L](jR). Consequently, i f one uses 

Proposition 2.1, Proposition 2.2 and Proposition 2.3 obtain that W? (IR) is a Segal algebra. 

PROPOSITION 2.6 The space W?(lR) is a BF-space on IR . 

PROOF: Let any compact subset K of IR and any / eW£(lR) be given. Using the 

inequality i f - f ^ p and the definition of norm, we write 

J / ( * } A < J / ( * ï < f e < I / [ : . 
K IR 

This completes the proof. 

L E M M A 2.7 Let w\ , w2 be two weights on IR and 1 < p. q < co. Then i f 

W£(lR)<zWP {IR), then there exists a constant a>0 such that | / | | £ 2

 5 ^ H l ^ for 

every / e (iR). 

PROOF: Suppose W^(IR)CZW^{IR). We define the norm ||/||| = | [ / | | ^ + \\f\\P,2 on 

W£ {IR) • First we proved that (Ff7^ (Zff), |||.|||) is a Banach space. Let (/„ be a Cauchy 

sequence in ( f i 7 ^ (iR.), . It is easy to see from the definition of that the sequence 

( / „ ) n e A , is also a Cauchy sequence in the spaces [w^ {lR\\\P

W] ) and [w^ (lR\\\P

Wi ) . 

Since {IR)WWX ) m & {Ww2 (IRUlw2 ) 8 1 6 B a n a c n s P a c e > e x i s t / 6 W l x (IR) 

and geW? (IR) such that | / „ -f\\^ -> 0 and | / n - g | £ - > 0 . Using the inequality 

111 -SilfKJ0 ' w e ° ^ t a m ~ / f t ^ m ^ Ifn ~ ~^ ® • Therefore, there exists a 

subsequence {f„k Jc (fn) such that f„k —J- / a.e. Also, there is a subsequence \fn^ ) of 

\f„k) such that fnk/ g a.e. So we have f = g • Consequently, we obtain 

jjj/jj —> 0 . So (ft7^ Jj|.|jjj is a Banach space. Now, let us define the unit function / 
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from (fP^ (IR), into {lR\\\^j. Since we have the inequality 

PifJlw - H I ' 1 is continuous. Hence / is a homeomorphism by the Banach 

Theorem[l]. That means the norms and | | ^ are equivalent. Then for every 

/ € Wp (IR) there exists a > 0 such that 

Ihvj 

I W ^ I I / I I ; - (2.7.1) 

Thus by using (2.7.1) and the definition of norm ||j we obtain 

\\f\\:2i i i / i i ^ i / i ; -
L E M M A 2.8 For any / eiYp({R), / * 0 there exists a constant c(f) > 0 such that 

c{f)V,(t)^M,f\l<W(t)\\fYv. 

Moreover, there is c > 0 such that 

PROOF: Let feWP(lR), / > 0 be given. Then f * L%(&) and there exists c(f)>0 

such that 

c ( / ) w ( 0 < | k / | <w(t)\\f\ 
V ' II »q,w II I «q,w 

by the Lemma 2.2 in [2]. Hence we write 

c[j)*M)<\f\Wp +c{f)w(t)<\\Mj\wP + L / I 

= \M>f\\wp-

On the other hand, one has 

\\MifZ=\Wtf\wP + 

MJ =WJ\\t. (2.8.1) 
q,w 

MJ 
\WP + M < 
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m^M')\\fl^A')\\f\\P

w- (28.2) 

I f one combines (2.8.1) and (2.8.2) obtains that 

e ( / ) w ( , ) < i M , / | ^ < w ( , ) | / [ ^ . 

T H E O R E M 2.9 Let wj . w2 be weight functions on IR and ]<p.q<co. Then 

WP (IR)<ZWP (IR) i f and oniy i f 

PROOF: Suppose that (IR) C Wp^ (iR). By the Lemma 2.8, there are constants c> 0 

and d > 0 sucb that 

c - ' W , ( / ) 5 1 ^ / 1 1 ^ <6-M^(/) (2.9.1) 

and 

d~] w2{i)<\\Mlf\\p^ <dw2{t) (2.9.2) 

for ail / e f f ^ (ffi) and f G IR . Moreover, since UJ e Wp^ (iR) for ail / e Wp^ (iR), 

then by the Lemrrja 2.7,- there exists constant a >"0 such that 

Thus using (2.9.1), (2.9.2) and (2.9.3), we obtain 

^ 2 ( r ) < | | W , / | | ^ <a\\Mtf\\p^ <acwx(t) . 

We set k = acd, then M'2(t)< (/) for all i e IR. That means w2 -< wj . 

Conversely, suppose that w2 < M\ . Then there exists a constant r > 0 such that 

w2{t)<rwi(t) for every / e IR . Let / e * T £ (iR.) be given. Then we have feWp(lR) 

and / e i 9 , ( /#). Thus 
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Hence, we find f&Lq(jR). Since feWP(lR), then we write fzW^(jR). 

Consequently, we have (iR) c W? (iR). 

3 .MULTIPLIERS FROM L1 (iR) TO W£{lR) 

It is known that l}{lR) has an bounded approximate identity [ua) such that 

Ijw L̂ =1 and ua has a compact support for every a. We define the set M P is the 

following way: 

u w , =^M(M)\\h*4p
w<

cv} 

where is a constant only depend on ¡4 . Define the norm by 

\\u\\., = lim||w„ * u\p. 
" II' 

Since W${lR) is a Segal algebra by the Theorem 2.5, then the space of multipliers 

M[I}(IR),WP(1R)) is the space M P by the Theorem 1.6 in [5]. 
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