SEMI PSEUDO SYMMETRIC MANIFOLD

M. Tarafdar and A. Mayra

Abstract

In the present paper, the question whether a semi Pseudo Symmetric Manifold may be a P-Sasakian or nearly Sasakian manifold has been answered in the negative.

INTRODUCTION

In a recent paper [4] M. Tarafdar and Musa A. A. Jawarneh introduced semi Pseudo Symmetric Mânifold $(S P S)_{n}$ i.e. a non-flat n-dimensional Riemannian manifold $M^{n}(n>3)$ whose curvature tensor R satisfies the condition

1) $\quad\left(\nabla_{X} R_{\mathbf{2}}(Y, Z) W=2 \pi(X) R(Y, Z) \dot{W}+\pi(Y) R(X, Z) W+\pi(Z) R(Y, X) W+\pi(W) R(Y, Z) X\right.$ where π is a non-zero 1 -form.
2) $\quad g(X, P)=\pi(X)$
for every vector field X and ∇ denotes the operator of covariant diffrentiation with respect to the metric g. Such a manifold shall be called a semi Pseudo Symmetric Manifold and the 1 form π shall be called its associated 1 -form. An n-dimensional semi Pseudo Symmetric Manifold shall be denoted by $(S P S)_{n}$.

In the present paper the question whether a semi Pseudo Symmetric Manifold may be a PSasakian or nearly Sasakian manifold has been answered in the negative.

1. PRELIMINARIES

In this section we first consider some formulas which hold in a $(S P S)_{n}$. Let r denote the scalar curvature and L denote the symmetric endomorphism of the tangent space at each point of a Riemannian manifold (M^{n}, g) corresponding to the Ricci tensor S i.e.
1.1) $g(L X, Y)=S(X, Y)$
for any vector fields X, Y. From 1) we get
1.2) $\left(\nabla_{X} S\right)(Y, Z)=2 \pi(X) S(Y, Z)+\pi(Y) S(X, Z)+\pi(Z) S(Y, X)+\pi(R(X, Y) Z)$

Contracting 1.2) we get
1.3) $\quad d r(X)=2 \pi(X) r+3 \pi(L X)$ where r denotes the scalar curvature of M_{n} and L has the meaningalready defined by 1.1).

2. SEMI PSEUDO SYMMETRIC P-SASAKIAN MANIFOLD

In this section we suppose that an n-dimensional $(S P S)_{n}(n>3)$ is a P-Sasakian manifold.

Let $\left(M_{3} g\right)$ be an n-dimensional Riemannian manifold admitting a 1 -form η, a vector field ξ and an (1-1) tensor field ϕ which satisfy the following conditions
2.1) $\left(\nabla_{X} \eta\right) Y-\left(\nabla_{Y} \eta\right)(X)=0$
2.2) $\quad\left(\nabla_{X} \nabla_{Y} \eta\right)(Z)=-\ddot{-} g(X, Z) \eta(Y)-g(X, Y) \eta(Z)+2 \eta(X) \eta(Y) \eta(Z)$
2.3) $g(X, \xi)=\eta(X)$ for all vector fields X
2.4) $\eta(\xi)=1$
2.5) $\nabla_{X} \xi=\phi X$

44

Such a manifold is called a Para-Sasakian manifold or briefly a P-Sasakian manifold [3]. It is known that in a P-Sasakian manifold besides 2.1) - 2.5) the following relations hold
2.6) $\phi \xi=0$
2.7) $\quad R(\xi, X) Y=-g(X, Y) \xi+\mathrm{\eta}(Y) X$
2.8) $\quad S(X, \xi)=-(n-1) \eta(X)$
2.9) $g(\phi X, Y)=g(X, \phi Y)$
2.10) $S(\phi X, Y)=S(X, \phi Y)$
2.11) $\left(\nabla_{X} \eta\right) Y=g(\phi X, Y)$

Now*

$$
\left(\nabla_{X} S\right)(Y, \xi)=\nabla_{X} S(Y, \xi)-S\left(\nabla_{X} Y, \xi\right)-S\left(Y, \nabla_{X} \xi\right)
$$

Using 2.5), 2.8) and 2.11 the above equation reduces to
2.11) $\left(\nabla_{X} S\right)(Y, \xi)=-(n-1) g(\phi X, Y)-S(Y, \phi X)$

Taking $Z=\xi$ in 1.2) and using 2.8) we get
2.12) $\left(\nabla_{X} S\right)(Y, \xi)=-2(n-1) \pi(X) \eta(Y)-(n-1) \pi(Y) \eta(X)+\pi(\xi) S(Y, X)+\pi(R(X, Y) \xi)$

Again

$$
\pi(R(X, Y) \xi)=g(R(X, Y) \xi, P)=g(R(\xi, Y) X-R(\xi, X) Y, P)
$$

Using 2.7) we find
2.13) $\pi(R(X, Y) \xi)=\eta(X) \pi(Y)-\eta(Y) \pi(X)$

Thus 2.12) reduces to on using 2.13)
2.14) $\left(\nabla_{X} S\right)(Y, \xi)=(-2 n+1) \pi(X) \eta(Y)-(n-2) \pi(Y) \eta(X)+\tau_{\dagger}(P) S(X, Y)$

From 2.11) and 2.14) we get
$(-2 n+1) \pi(X) \eta(Y)-(n-2) \pi(Y) \eta(X)+\eta(P) S(X, Y)=-(n-1) g(\phi X, Y)-S(Y, \phi X)$

Taking $X=\xi$ and using 2.4) and 2.6) we find
2.15) $(-3 n+2) \eta(P) \eta(Y)-(n-2) \pi(Y)=0$.

Finally taking $Y=\xi$ in above we get

$$
\tau_{1}(P)=0 \text { as } n>3
$$

Hence from 2.15) we find

$$
\pi(Y)=0
$$

which is inadmissible by the definition of $(S P S)_{n}$. Thus we state

THEOREM 1 : $\AA(S P S)_{n}(n>3)$ cannot be a P-Sasakian Manifold.

3. SEMI PSEUDO SYMMETRIC NEARLY SASAKIAN MANIFOLD

In this section we suppose that an n-dimensional $(S P S)_{n} \quad(n>3)$ is a nearly Sasakian manifold. Let (M, g) be an n-dimensional differential manifold ($n=2 m+1, m>1$) with almost contact metric structure (ϕ, ξ, η, g). If in such a manifold the following relation hold
3.1) $\left(\nabla_{X} \phi\right)+\left(\nabla_{Y} \phi\right)=2 g(X, \eta) \xi-\eta(X) Y-\eta(Y) X$
then the manifold is said to be nearly Sasakian [1]. It is known that in a nearly Sasakian manifold the following relations hold [1] :
3.2) $\quad \varphi^{2}=0$
3.3) $\eta(\varepsilon)=1$
3.4) $\phi^{2} X=-X+\eta(X) \xi$
3.5) $\nabla_{X \xi}=-\phi X$
3.6) $S(X, \xi)=(n-1) \eta(X)$
3.7) $\left(\nabla_{\lambda \eta}\right) Y=g(\phi X, Y)$
3.8) $R(X, \xi) \xi=X-\eta(X) \xi$
3.9) $R(\xi, X) Y=g(X, Y) \xi-\eta(Y) X$

Using 3.5). 3.6) and 3.7) we find that
3.10) $\left(\nabla_{X} S\right)(Y, \xi)=(n-1) g(\phi X, Y)+S(Y, \phi X)$

Taking $Z=\xi$ in 1.2) and using 3.6) we get
3.11) $\left(\nabla_{X} S\right)(Y, \xi)=2(n-1) \pi(X) \eta(Y)+(n-1) \pi(Y) \eta(X)+\eta_{1}(P) S(X, Y)+\pi(R(X, Y) \xi)$

Again, on using 3.9) we find
3.12) $\pi(R(X, Y) \xi)=\eta(Y) \pi(X)-\eta(X) \pi(Y)$

Thus 3.11) reduces to
3.13) $\left(\nabla_{X} S\right)(Y, \xi)=(2 n-1) \pi(X) \eta\left(Y^{\prime}\right)+(n-2) \eta(X) \pi(X)+\eta(P) S(X, Y)$

From 3.10) and 3.13) we get
3.14) $(n-1) g(\phi X, Y) S(Y, \phi X)=(2 n-1) \pi(X) \eta(Y)+(n-2) \eta(X) \pi(Y)+\eta(P) S(X, Y)$

Taking $X=\xi$ in 3.14) and using 3.2) and 3.3) we find
3.15) $(3 n-2) \eta(P) \eta(Y)+(n-2) \pi(Y)=0$

Finally taking $Y=\xi$ in 3.15) we get

$$
\eta(P)=0 \text { as } n>3
$$

Hence from 3.15) we find

$$
\pi(Y)=0
$$

which is inadmissible by the definition of $(S P S)_{n}$. Thus we state

THEOREM 2 : A $(S P S)_{n}(n>3)$ cannot be a nearly Sasakian Manifold.

REFERENCES

[1] Blair, D.E.; Showers, D.K.; Yano, K. : Nearly Sasakian Structure, Kodai Math. Sem. Rep. 27 (1976), 175180.
[2] Chaki, M.C.
: On Pseudo Symmetrie Manifolds, Ann. St. Univ. "AI. I. CUZA." Iasi, XXXIII (1987), 54-58.
[3] Sato, I. and Matsumoto, K.
: On P-Sasakian Manifold Satisfying Certain Conditions, Tensor N.S., Vol. 33, 1979, 173-178.
[4] Tarafdar, M. and Jawarneh, A.A. : Semi Pseudo Symmetric Manifold, Musa Ann. St Univ. "AI. I. Cuza.", lasi Tomul XLI (1995), 145-152.

Department of Pure Mathematics

University of Calcutta
35, Ballygunge Circular Road
Calcutta 700019
INDIA
E-MAIL: manjusha@cubmb.ernet.in

