
İstanbul Üniv. Fen Fak. Mat. Dergisi 5 5 - 5 6 ( 1 9 9 6 - 1 9 9 7 ) , 5 1 - 5 9 

The present paper is concerned with the method of mechanical quadrature 

for the approximate solution of one - dimensional nonlinear singular 

integral equation in generalized Holder space. 

Introduction 

The theory of approximation methods and its applications for the 

solution of linear and nonlinear singular integral equations has been 

developed by many authors, e.g. Mikhlin, S.G. and Prossdorf, S. [5], Peter 

Junghanns, et. al. [7]; Gakhov, F.D. [2], Guseinov, A . I . and Mukhtarov, 

Kh. Sh. [4], and others. 

The purpose of this paper is to investigate the approximate solution 

of the following class of nonlinear singular integral equations (NSIE): 

in generalized Hplder spaces H^^m and ,[4,5,8]. 

1. The solution in the space m . 

Definition 1.1, a) Let m be a natural number, the function u{t) which is 

2TT - periodic in t and continuous belongs to the space m i f f 

co™ {5) = 0(</> (S)), 0 < t> < n . where co™{8) is the modulus of continuity 
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of order m of w and ^ is a positive non-decreasing function defined on 

(0 , TT] , for i > 0, such that l im <j> (t) = 0 . 

£0m (S) 
b) The formula || u II, = max I u (x) I + sup " defines 

11 H ' m xe\-*>*Y 1 o<s<* <l>{8) 
a norm in the space H$ t m . 

c) For u e H 4 m wcdcfme H^>m(M) = {u:\\u\\^m< M ,M>o\. 

d) We say that ^ belongs to the class O'" i f 

t{" <j> (t2 ) < c (m) f-2 <f> (ij ) , for 0 < tx < t2 < n . 

Also, we define H®m : J f V (0 ^ + Sm )rn,~ V (f) rff = 0 (<5))J . 

Lemma 1.2. Let the function F[u] defined on [-M, M] , (M> 0) and has 

(m - 1) derivatives and for arbitrary ul , u2 e [ - M , M] , the following 

condition is valid : 

F^[Ul]^F^[u2]\ <a(q)\ul-u2\,g = Q,...ym-l (1.1) 

then, a™ (S) < a (m) co™ (S) , where a(m) is a constant. 

Proof. For m = 1, the lemma is true. For m = 2, we have 

A}, F[w] = F [u (a + 2h)] - IF [u (tr + h)] + F [M ( C T ) ] . Hence, 

= \{F[u{a + 2h)]-F[ii(a + h)]}~{F[u{a + h)]-F[u(a)]}\ . 

Using Lagrange's formula, we have 
1 

jF^[u (<J + h) + Ô (u (a + 2h) — u (tr + A))] [u (a + 2h)-

AlF 

- u (a + /?)] ¿76» - J>J [ M (CT) + 0 (u ( cr + h) - u {a))] [u (a + h) -
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- u (a)] dû\ = \ \{F^ [u(a + h) + 0(u(a + 2h) -u(cr + h))] ~ 
o 

- F;\u (a) + 0{u{a + h-u (cr))]}[u(a + 2h)-u(a + h)] d6 + 
i 

+ \F;t [u (a) + 0(u(a + h)~u (a))] [u {a + 2h) - 2u (a + h) + 

+ « (c7)] d9 O<0<1. 

Applying condition (1.1), we get 

\F; [u(cr) + 0(u {cr + h) - U (<J))]\ < a (1) M + Q r 

where 

then, 

E {nt- )) '(0) 

A 2

A F I < a (1) ]pu (A) + © W

2 (/?)] o w ( A ) + (a (1) M + Qt) w~ (h) . 

Consequently, we have cy^ (S) < const. <yw (£) , then the lemma is true at 

m = 2 . By induction, we see that 
m- \ I \ I 

A™ F [ U ( o - ) ] = E ( V ) J A £ F ; [ H ( O - ) + 0 (w(cr + A) 
// = 0 o 

-w(c r ) ) ] Am

k~Mu(ix + fjh)d0 . 

The function FM ' [w(cr) + 6* (w(cr + h) - u(a))] has (jx - 1)- derivatives, 

// = 1 , . . . ,.m — 1 , and these derivatives satisfy condition (1.1), then we 

obtain ; A ' ; ; F [ W ( ( J ) ] < const, a* (S) m™ ~M (Ô) < const, m» (S) , that 

is, cop (S) < a (m) û)'" (S) . Thus the lemma is proved. 

Remark. From definition 1.1 and lemma 1.2, it is clear that i f 

u{o-)eH^ m then F[u(a)] e Hé m . 

Theorem 1.3 [6]. Let $eH<&m , then the operator 

1 l 7 t > - x 
(A u) (x) = u(x) = — J w(v) cot - dy , 

2lt r\ 2 
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transforms H^J},(M) into H^m{h4) where 

HO M =M C\ ('") | ^ - ^ d£ + c, (m) + c 2 (w) c (m) 

Theorem 1.4. I f the function F[it (a)] satisfy the condition (1.1), then 

for | X j < | X0 I ( X0 sufficiently small), equation (1) has a unique solution 

in H^ m ( M ) . This solution is uniformly convergent and can be obtained 

by the method of successive approximations . 

Proof. Let u e H^ m (M) , then by lemma 1.2 and theorem 1.3, the 

.2«-X • 
operator (A u) (s) - — J F [w(cr)] cot a S da maps m (M) into 

In 0 2 

H$tm ( | | £>) . Hence, i f ] X\D < M , the operator {An) maps / f y ^ (Af) 

into itself for som D > 0 . O n using Af- . Riesz's theorem [9], we have 

<T](P)\\ll\\ , \<P<<X> 

2k 1 O" 
where u (s) - ^— j u (a) cot •—^— c/ cr . 

o 

Now, J A ux - Au2 \\L 

a - s 

2.71 

1 ¿71 
\{Flux{<j)\-Fiu2{cj)-\\* 

x cot da 

MP 

ds\ <\A\rj(P) | F [ U , (o-)] - F[u2 (a)]\\, = 

(2f MP 

= \Ari{P)^\\F[u,{a)]~F[u2{a)}[ da^ < 

<\A\il{P)a{0)\u^ -u2\ . 

I f | X j ( P ) a (0) < 1 , then the operator iSa contraction mapping; 

rM 1 ] 
D ' 7j(P)a(0) 

54 



By completeness of H^ ^iM) in LP> 1 < P < co , shown below, 

the equation (1) has a unique solution H^, m{M) and it can be evaluated 

by successive approximations . 

Theorem 1.5. Let un . M G / / , „ (M) and Hm |j un ~u\ = 0 , then, 

lim li u„ - u I - 0 . 
II " lie 

ft ~* 00 
Proof. Let G gH^ m (M) can be written in the form 

G ( J ) = - \G(x)dx-- \[G(x)-G(s)]dx , 
h s h s 

^ s + h j s + /i 
then we have | C ? ( J ) | < — f I G(x)\dx + — f 1 G(x) ~ G(s)\dx . 

Using Holder inequality on the first term in the right part of the last 

inequality, we have 

(s + h 
\P , iMQ . 1 | G « | C < - j \G(x)\Pdx hUg+j- J l G ^ < 

±{hl-ilqY \ )\G{x)\rdx 

\]/p 

Putting G(s) - un(s) - u(s), h = Ju n - u | , 

we obtain || un -u \ c < | un -u + 2 M <ft ( | un - u |^ ] , 

then I un - u || —> 0 as n —> co , that is the successive approximations 

converges . 

2. The solution in the discrete space H^l 

Definition-2.1. Denote to H^N)

m , <p e O'" , be the 2N-dimensionaI space 

of vectors z ; 2 = ( z 0 , Z j , . . . , z2 N _ } ) , with the norm : 
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ÍI(A') j a>m ( z , h) 
z\ , - max< max , max •— 

Ar*m U = 0 , 1 , . . . 2 A ' - 1 h>Q 

Also, we define: 

< 2 ( « ) 4 £ ffH : 1 z C ^ ^ 1 . as a subspaoe of ffW . 

For singular integral 

1 2 ? r 

= — } u(a) c o t ^ — ¿ ( 7 , u(a)eN^ , 
2;r 5 2 

the quadrature formula at the node points sk

 =~j^~ takes the following 

form; [3], 

1 2N-\ 

•¿•N i = 0 
cot 

2 
(2.1) 

Applying the quadrature formula (2.1) to equation (1), we obtain 

X 2N~] 

- Y ^\u(s>,)\ i - ( - i r ' icot — 2 ^ * r 0 

where i i A , [F ] is the remainder term, y = 0 ,... ,2N - \ . Put u(sy) = zy , 

we get the following system of nonlinear algebraic equations (SNAE): 

X 2N-1 

¿ N k^O 
cot 

2 
(2.2) 

Theorem 2.2. Let the function F[u] satisfies condition (1.1), then, for 

arbitrary N >3 and sufficiently small | X | , the SNAE (2.2) , has unique 

solution in H*ft}a (M) and this solution can be found by successive 

approximations. 

Proof. Let z = (zk) e (M), H z = (F(zk)) , * = 0 , . . . , 2tf - 1 , 

and since the space H*fl (M) is a closed subspace of , and the 
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function F{z) satisfy the conditions of lemma 1.2 and theorem 1.4. Then 

we obtain Hz e HfJn (£>'). Let G{N)z = A A(N) Hz , 

where A™ z = (4"> z , A\"> z A^^z), and t (A ' ) , AN) „ (/V) 4 ( A O (A- ' ) 
<c{m) , 

(see [8]). Hence 
( A ' ) 

<\A\D' c{m). 

Since 

get 

G{N)z \ (N)<c(P)>l<P<oo , (see [8]). Using condition ( L I ) , we 

z0)_z(2) • (2-3) GmzV)_GWzV) II m<\x\c(P)a{0) 

Using the contraction mapping principle at 

M l A M 1 1 \ A < mm< , > , 
1 1 \D'c(m) c{P)a(0)j 

the SNAE (2.2) has a unique solution in H^l ( M ) , for arbitrary N > 3 , 

and theorem is proved . 

3. The rate of convergence of the approximate solution 

. f Af 1 ] 
lin -I f A < min- (3.1) I ~i , : ( , 

{D'c(m) c(P)a(0)\ 

then the equation (1) has a unique solution u (cr) G Î f y ) m (Af) and the 

system (2.2), for arbitrary N >3 , has a unique solution 

^(v' , ' 4 j ^ S w • 
The approximate solution of equation (1) takes the form 

7 2N-\ r 
. 2 s ~ 5 i i t — 5 

sin - cot — (3.2) 
k = o 

at s = sv (k - different from y simultaneously). 

Applying the quadrature formula (2.3) to equation (1) at node points sy , 

we obtain 
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X 2 A ' - l 

2N k% 
k*y 

F COX!LAjL + R N [ F ] ( 3 . 3 ) 

Put z^ = u and z^ = z* in (2.3) and from (3.1), we get 

-P 
n<\X\ lRN[F\\\ c(p)a(0)Y] (3.4) 

From [3], we get 

M k = Q 
-F sin" co t - 5 + 

+ | A \RN [F] . 

From [1] and condition (1.1), we get 

u (s)~u{N){s) < 2 U | a ( 0 ) ( i + 7r)(l + ln2A0max u(sY)-zY 

c r 
+ \X\\\RN[F)\\c . 

From [6]; 

(3.5) 

+ 

(3.6) 

max 
r 

u (sr)-zr < const. u - z 
4*> + N 

0<h< 
N 

2 (m +1) 
(3.7) 

and \\RN[F]\\c<c(m) <f> 

From (3.4)-(3.7), we get 

u*(s)-u(h'\s) < const. 
N (t-l)!P ,t> \ and 1 < P < co 
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