PRIMITIVE IDEMPOTENTS OF THE GROUP $\mbox{ALGEBRA CSL}(2,\!q)$

NEŞE YELKENKAYA

Abstract

In this paper a full system of primitive idempotents of the group algebra CSL(2,q) has been found using normed Gaussian sums over the finite field $F_q = GF(q)$ and a result of G.J. Janusz.

INTRODUCTION

Let p be an odd prime number and $F_q = GF(q)$ be a finite field of order $q=p^s$ for some $s \in \mathbb{N}$. Then $F_q = F(\theta)$ with $f(\theta)=0$, where $F=F_p$ and

$$f(x) = Irr(\theta, x, F) = x^{s} - a_{s} x^{s-1} - ... - a_{2}x - a_{1} \in F[x]$$

is the minimal polynomial of θ over F. Thus

$$F_q = F \oplus F \theta \oplus ... \oplus F \theta^{s-1}$$

becomes an additive elementary abelian group. On the other hand $F_q^*=F_q\setminus\{0\}$ the multiplicative group of the field F_q , is cyclic of order q-1 and $F_q^*=<\rho>$ for some generator ρ . Let $K:=<p^2>$ then

$$F_{\alpha}^{*} \approx K \cup \rho K$$
 (disjoint)

Let $\Psi = \Psi_{h_1,...,h_s}$ be a nontrivial irreducible additive character of the additive group F_q such that $0 \le h_1,...,h_s \le p-1$; $(h_1,...,h_s) \ne (0,...,0)$ and

$$\Psi(\beta) = \varepsilon^{k_1 h_1 + \dots + k_s h_s},$$

where $\beta = k_1 \cdot l_F + k_2 \theta + ... + k_s \theta^{s-1}$; $0 \le k_i \le p-1$, i=1,...,s;

 ε =cos(2 π /p)+i sin(2 π /p) and by abuse of notation we may also write $k_1,...,k_s \in F$. Let ζ be the irreducible multiplicative character of the multiplicative group F_q^* with

$$\zeta(\rho^i) = (-1)^i$$
 for any $i \in \mathbb{Z}$.

Now define

and write $\tau_{(s)}$; $x_{(s)}$; $y_{(s)}$ instead of $\tau_{(s)}(\zeta; \Psi)$; $x_{(s)}(\Psi)$; $y_{(s)}(\Psi)$ for $\Psi = \Psi_{1,0,\dots,0}$ and we call $\tau_{(s)}$ the normed Gaussian sum over the finite field F_q .

Let G = GL(2,q) denote the group of all non-singular 2x2 matrices over F_q and S = SL(2,q) denote the group of 2x2 matrices over F_q with determinant unity. S is a normal subgroup of G.

In this paper we will use the following properties to obtain the primitive idempotents of CSL(2,q) which correspond to the irreducible CSL(2,q) characters.

Property 1 ([6]). 1. $F_q = F(\rho) = F(\rho^2)$; i.e. ρ and ρ^2 are primitive elements of F_q over F, namely, θ can be chosen as ρ and ρ^2 for any $s \in \mathbb{N}$.

- 2.a) If s=2n+1, $n \in \mathbb{N} \cup \{0\}$ then $\tau_{(s)}$, $x_{(s)}$ and $y_{(s)}$ are independent of the choice of the primitive element θ .
 - b) If s=2n, $n \in \mathbb{N}$, then

$$\tau_{(s)} = -\sqrt{q}; \ x_{(s)} = -\frac{1}{2}(1+\sqrt{q}); \ y_{(s)} = -\frac{1}{2}(1-\sqrt{q})$$

for any primitive element $\theta \in \rho K$.

c) For any $s \in \mathbb{N}$ and for any primitive element $\theta \in <\rho^2>=K$ we always have

$$\tau_{(s)} = \eta \sqrt{q}; \ x_{(s)} = -\frac{1}{2}(1 - \eta \sqrt{q}); \ y_{(s)} = -\frac{1}{2}(1 + \eta \sqrt{q}),$$

where

$$\eta = \begin{cases}
+1, & \text{if } q \equiv 1 \pmod{4} \\
+i, & \text{if } q \equiv 3 \pmod{4}
\end{cases}$$

$$; i = \sqrt{-1}$$

Property 2. G be a finite group of order n and K be an algebraically closed field with characteristic not dividing n. If χ is an irreducible KG-character affording the central idempotent e_{χ} of KG, then

$$e_{\chi} = \chi(1) n^{-1} \sum_{g \in G} \chi(g^{-1}) g$$

where $\chi(1)$ is the degree χ .

Property 3 ([2], [3]). Let H be a subgroup of G, ψ be an irreducible KH-character of degree 1 and η an irreducible KG-character. Assume that the multiplicity of η in the induced KG-character ψ^G is one. If η and ψ afford the central idempotents e_{η} and e_{ψ} respectively, then $e_{\eta}e_{\psi}$ is a primitive idempotent of KG which corresponds to η .

Method and Results

Let θ be a primitive element of F_q ; i.e. $F_q = F(\theta)$. Consider the following elements of S = SL(2,q):

$$\mathbf{a}_{i} = \begin{pmatrix} 1 & 0 \\ \theta^{i-1} & 1 \end{pmatrix}; \quad \mathbf{a}_{i}^{p} = \mathbf{I}; \quad i=1,...,s.$$

Then S has the elementary abelian subgroup

$$H = \langle a_1 \rangle_{X...X} \langle a_s \rangle$$
.

The order of H is q. Since $|S| = q(q^2-1)$, then H is a Sylow p-subgroup of S and

$$H = \left\{ \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix} \middle| \quad \beta \in F_{\mathfrak{q}} \right\}$$

All the characters of <a> are linear and with the form

$$\varphi_h(\mathbf{a}_i) = \varepsilon^{h_i}$$
,

where $\varepsilon = \cos(2\pi/p) + i\sin(2\pi/p)$; $0 \le h_i \le p-1$; i=1,...,s.

Thus all the characters of H are linear and with the form

$$(\phi_{h_i} ... \phi_{h_s}) (a_i) = \varepsilon^{h_i}$$
 $(0 \le h_i \le p-1; i=1,...,s).$

Let us denote them by the symbol $\varphi_{h_1...h_r}$.

If
$$x = \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix}$$
, $\beta = k_1 + k_2 \theta + ... + k_s \theta^{s-1}$, $(0 \le k_i \le p-1; (k_1, ... k_s) \ne (0, ..., 0))$

is an element of H, then

$$\phi_{h_1,\dots h_s}(x) = \varepsilon^{k_1h_1+\dots \dots + k_sh_s} = \Psi_{h_1,\dots h_s}(\beta) = \Psi(\beta) \; .$$

Thus we have all irreducible CH-characters which are given by table 1.

Irreducible CH-characters

$\beta = k_1 + k_2\theta + + k_s\theta^{s-1}$, $;k_i=0,1,,p-1;$					
$(k_1,,k_s)\neq(0,,0),h_i=0,1,,p-1; i=1,,s; \epsilon^p=1, \epsilon\neq 1$					
Element	Number of Conjugacy Classes	Number of elements in the conj. class	ϕ_{h_1,h_s}		
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	1	1	1		
$ \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix} $	q-1	1	$arepsilon^{k_1\!h_1++k_s\!h_s}$		

Table 1

The irreducible CG-characters are given by table II in [5] and are as follows:

Irreducible CG-Characters	Degree	Frequency		
$\mathcal{X}_{1}^{^{(n)}}$	1	q -1		
$\chi_{_{q}}^{^{(n)}}$	q	q-1		
$\chi_{q+1}^{(m,n)}$	q+1	$\frac{1}{2}(q-1)(q-2)$		
$\chi_{q-1}^{(n)}$	q-1	$\frac{1}{2}q(q-1)$		

Table 2

All the elements of $H-\{1\}$ are conjugate in G and each of them are similar to the matrix

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
.

We thus have the values of irreducible CG-characters on H. They are shown in Table 3.

Elements	$z^{(n)}$	$z_q^{(n)}$	$\chi_{q+1}^{(m,n)}$	$\chi_{q-1}^{(n)}$	
	1	q	q+1	q-I	
$\begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix}$	1	0	1	-1	

Table 3

If $\phi = \phi_{h_1,\dots,h_s}$ is a nontrivial irreducible character of H, we have

$$\sum_{x \in H-|y|} \varphi(x) = -1 \tag{1}$$

If $\chi \neq \chi_{\perp}^{(n)}$ is an irreducible **C**G-character, by

Table 1, Table 3 and (1)

$$(\varphi, \chi_{\rm H}) = 1, \tag{2}$$

where χ_H is the restriction of $\chi\,$ to $\,H$. By Frobenius Theorem

$$(\varphi^{G}, \chi)_{G} = (\varphi, \chi_{H})_{H} = 1.$$
 (3)

Let S=SL(2,q). The conjugacy classes and character table of S is given in [1]. The irreducible CS-characters are as follows:

Irreducible CS-charac.	Degree	Frequency	
15	1	1	
ф	q	1	
χι	q+1	1/2(q-3)	
θ	q-1	$\frac{1}{2}(q-1)$	
ξι	1 2(q+1)	1	
ξ,	1/2(q+1)	1	
ηι	1/2(q-1)	1	
η,	1/2(q-1)	1	

Table 4

Let
$$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $c = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $d = \begin{pmatrix} 1 & 0 \\ \rho & 1 \end{pmatrix}$.

For any $x \in S$, let (x) denote the conjugacy class of S containing x.

$$\begin{array}{ll} \text{If} & \beta \! \in \! K \text{ then } \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix} \! \in \! (c); \text{ if } \beta \! \in \! \rho K \text{ then } \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix} \! \in \! (d). \end{array}$$

Thus we have the values of the irreducible CS-characters on H. They are shown in Table 5.

The values of irreducible CS-characters on H.

	ls	¢	χi	$\theta_{\rm j}$	ξ,	ξ2	ηι	η_2
1	1	q	q+1	q-1	$\frac{1}{2}(q+1)$	$\frac{1}{2}(q+1)$	$\frac{1}{2}(q-1)$	$\frac{1}{2}(q-1)$
e	I	0	1	- }	$\frac{1}{2}(1+\eta\sqrt{q})$	$\frac{1}{2}(1-\eta\sqrt{q})$	$\frac{1}{2}(-1+\eta\sqrt{q})$	$\frac{1}{2}(-1-\eta\sqrt{q})$
d	1	0	1	-1	$\frac{1}{2}(1-\eta\sqrt{q})$	$\frac{1}{2}(1+\eta\sqrt{q})$	$\frac{1}{2}(-1-\eta\sqrt{q})$	$\frac{1}{2}(-1+\eta\sqrt{q})$

Table 5

If $q \equiv 1 \pmod 4$, the element (-1) is a square in F_q^* . If $q \equiv 3 \pmod 4$, the element (-1) is not a square in F_q^* , so that c^{-1} and c are not conjugate and d^{-1} and d are not conjugate in S, forcing $c^{-1} \in (d)$, $d^{-1} \in (c)$. Thus we have the following Lemma:

Lemma. 1. For $q \equiv 1 \pmod{4}$: Every element of H is conjugate to its inverse in S.

2. For
$$q \equiv 3 \pmod{4}$$
: $c^{-1} \in (d)$, $d^{-1} \in (c)$.

Let $\,\phi\!=\!\!\phi_{h_1,\ldots,h_s}$ be a nontrivial irreducible character of H. By Frobenius Theorem

$$(\phi^S)^G = \phi^G \text{ and } ((\phi^S)^G, \chi)_O = (\phi^S, \chi_S)_S \ .$$

Thus we have by (3)

$$(\phi^{S}, \chi_{S})_{S} = (\phi^{G}, \chi)_{G} = 1$$

and by [4]

$$(\chi_S, \chi_S) = 1$$
 or 2

Then it is easy to see that

$$(\varphi^{S}, \phi)_{S} = 1, (\varphi^{S}, \chi_{i})_{S} = 1, (\varphi^{S}, \theta_{j})_{S} = 1,$$
 (4)

where $1 \le i \le (q-3)/2$; $1 \le j \le (q-1)/2$.

1) If $q \equiv 1 \pmod{4}$: Then $\eta = +1$ and

104

$$(\varphi^{S}, \xi_{j})_{S} = (\varphi, \xi_{j|H})_{H} =$$

$$= q^{-1} \left\{ \frac{1}{2} (q+1) + \left(\sum_{\beta \in K} \Psi(\beta) \right) \frac{1}{2} (1 + (-1)^{j-1} \sqrt{q}) + \left(\sum_{\beta \in \rho K} \Psi(\beta) \right) \frac{1}{2} (1 + (-1)^{j} \sqrt{q}) \right\}$$

$$= 1 \text{ or } 0.$$

$$(\varphi^{S}, \eta_{j})_{S} = (\varphi, \eta_{j|H})_{H} =$$

$$= q^{-1} \left\{ \frac{1}{2} (q-1) + \left(\sum_{\beta \in K} \Psi(\beta) \right) \frac{1}{2} (-1 + (-1)^{j-1} \sqrt{q}) + \left(\sum_{\beta \in \rho K} \Psi(\beta) \right) \frac{1}{2} (-1 + (-1)^{j} \sqrt{q}) \right\}$$

$$= 1 \text{ or } 0.$$
2) If $q = 3 \pmod{4}$: Then $p = +i$ and

2) If
$$q \equiv 3 \pmod{4}$$
: Then $\eta = +i$ and

$$\begin{split} &(\phi^{S},\,\xi_{j})_{S} \,=\, (\phi,\xi_{j|H})_{H} = \\ &=\, q^{-1} \Bigg\{ \frac{1}{2} (q+1) + \Bigg(\sum_{\beta \in K} \Psi(\beta) \Bigg) \frac{1}{2} (1 + (-1)^{j} \, i \sqrt{q}) + \Bigg(\sum_{\beta \in \rho K} \Psi(\beta) \Bigg) \, \frac{1}{2} (1 + (-1)^{j \cdot i} \, i \sqrt{q}) \Bigg\} \\ &=\, 1 \quad \text{or} \quad 0, \end{split} \tag{6}$$

$$\begin{split} &(\phi^S,\,\eta_j)_S \;=\; (\phi,\eta_{jjH})_H = \\ &= q^{-l} \left\{ \frac{1}{2} (q-1) + \left(\sum_{\beta \in \mathcal{K}} \Psi(\beta) \right) \frac{1}{2} (-1 + (-1)^j \; \mathbf{i} \sqrt{q}) + \left(\sum_{\beta \in \rho \mathcal{K}} \Psi(\beta) \right) \; \frac{1}{2} (-1 + (-1)^{j-i} \; \mathbf{i} \; \sqrt{q}) \right\} \end{split}$$

$$= 1 \text{ or } 0,$$

where
$$j=1,2;$$
 $\beta=k_1+k_2\theta+...+k_s\theta^{s-1},;$ $\phi=\phi_{h_1,...,h_s};$ $\Psi(\beta)=\varepsilon^{k_1h_1+.....+k_sh_s};$ $\varepsilon^p=1,\ \varepsilon\neq 1;\ 0\leq k_i\leq p-1;\ 0\leq h_i\leq p-1,\ i=1,...,s\ ;\ (h_1,...,h_s)\neq (0,...,0)$ and $i=\sqrt{-1}$. If $(\phi^S,\xi_1)_S=1$ then $(\phi^S,\xi_2)_S=0$ and $(\phi^S,\eta_1)_S=1,\ (\phi^S,\eta_2)_S=0.$ (7)

If
$$(\phi^S, \xi_1)_S = 0$$
 then $(\phi^S, \xi_2)_S = 1$ and $(\phi^S, \eta_1)_S = 0$, $(\phi^S, \eta_2)_S = 1$.

Since
$$x_{(s)}(\Psi) = \sum_{\beta \in K} \psi(\beta)$$
, $y_{(s)}(\psi) = \sum_{\beta \in \rho K} \Psi(\beta)$, using (5), (6), (7)

from the solution of a simple system of linear equations, we obtain the following result which we have already shown in [6] by another way.

Lemma 2.
$$\left\{ x_{(s)}(\Psi), y_{(s)}(\Psi) \right\} = \left\{ -\frac{1}{2} (1 - \eta \sqrt{q}), -\frac{1}{2} (1 + \eta \sqrt{q}) \right\}$$

where $\eta = \begin{cases} +1 & \text{for } q = 1 \pmod{4} \\ +i & \text{for } q = 3 \pmod{4} \end{cases}$; $i = \sqrt{-1}$.

Proposition. 1) For any nontrivial irreducible character $\varphi = \varphi_{h_1,\dots,h_r}$ of H,

$$(\phi^{S}, \phi)_{S}=1, (\phi^{S}, \chi_{i})_{S}=1, (\phi^{S}, \theta_{i})_{S}=1$$

where $1 \le i \le (q-3)/2$; $1 \le j \le (q-1)/2$.

2) Let $\theta \in \rho K$ and $\theta^{s} = a_1 + a_2 + 0 + \dots + a_s \theta^{s-1}$, $a_1 \neq 0$. $q = p^{s}$.

a) If
$$s=2n+1$$
, $n \in \mathbb{N} \cup \{0\}$ then for $\varphi = \varphi_{1,0,\dots,0}$

$$(\varphi^{S}, \xi_{1})_{S}=1, (\varphi^{S}, \xi_{2})_{S}=0, (\varphi^{S}, \eta_{1})_{S}=1, (\varphi^{S}, \eta_{2})_{S}=0$$

and for $\varphi = \varphi_{0,\dots,0,a}$,

$$(\phi^S,\xi_1)_S{=}0,\ (\phi^S,\xi_2)_S{=}1,\ (\phi^S,\eta_1)_S{=}0, (\phi^S,\eta_2)_S{=}1.$$

b) If s=2n, $n \in \mathbb{N}$ then for $\phi = \phi_{1,0,\dots,0}$

$$(\varphi^{S}, \xi_{1})_{S}=0, (\varphi^{S}, \xi_{2})_{S}=1, (\varphi^{S}, \eta_{1})_{S}=0, (\varphi^{S}, \eta_{2})_{S}=1$$

and for $\phi = \phi_{0,...,0,a_1}$

$$(\phi^S,\xi_1)_S=1,\ (\phi^S,\xi_2)_S=0,\ (\phi^S,\eta_1)_S=1,\ (\phi^S,\eta_2)_S=0.$$

3) Let $\theta \in K$ and $\varphi = \varphi_{1,0,...0}$ then for any $s \in \mathbb{N}$ $(q = p^s)$ $(\varphi^s, \xi_1)_s = 1, (\varphi^s, \xi_2)_s = 0, (\varphi^s, \eta_1)_s = 1, (\varphi^s, \eta_2)_s = 0.$

Proof. 1) See (4).

2) Since $\theta \in \rho K$ then by property 1

$$x_{\omega} = \begin{cases} -\frac{1}{2}(1 - \eta \sqrt{q}) \text{ for } s = 2n + 1, \, n \in \mathbb{N} \cup \{0\} \\ -\frac{1}{2}(1 + \sqrt{q}) \text{ for } s = 2n, \, n \in \mathbb{N} \end{cases} \text{ and } y_{\omega} = \begin{cases} -\frac{1}{2}(1 + \eta \sqrt{q}) \text{ for } s = 2n + 1, \, n \in \mathbb{N} \cup \{0\} \\ -\frac{1}{2}(1 - \sqrt{q}) \text{ for } s = 2n, \, n \in \mathbb{N} \end{cases}$$

where

$$\eta = \begin{cases} \text{+1.q=1 (mod4)} \\ \text{+i.q=3 (mod4)} \end{cases} ; \quad i = \sqrt{-1} .$$

- a) If s=2n+1, $n \in \mathbb{N} \cup \{0\}$:
- i) $q=1 \pmod{4}$: $\eta=+1$ and if $\varphi=\varphi_{1,0,...,0}$ then

$$\sum_{\beta \in \mathcal{K}} \Psi(\beta) = x_{(s)}; \quad \sum_{\beta \in \rho \mathcal{K}} \Psi(\beta) = y_{(s)}. \tag{8}$$

Thus by (5) we have

$$(\phi^{S}, \xi_{1})_{S}=1, \ (\phi^{S}, \xi_{2})_{S}=0, \ (\phi^{S}, \eta_{1})_{S}=1, \ (\phi^{S}, \eta_{2})_{S}=0.$$
If $\theta^{s}=a_{1}+a_{2}\theta+...+a_{s}\theta^{s-1}, a_{1}\neq 0$ and $\beta=k_{1}+k_{2}\theta+...+k_{s}\theta^{s-1}$

then $\theta \beta = a_1 k_s + k_2 \theta + ... + k_s \theta^{s-1}$. Since $\theta \in \rho K$, if $\beta \in K$ then $\theta \beta \in \rho K$ and if $\beta \in \rho K$ then $\theta \beta \in K$. Thus we obtain

$$\sum_{\beta \in K} \varepsilon^{a_i k_i} = \sum_{\beta \in \rho K} \varepsilon^{k_i} = y_{(s)}; \quad \sum_{\beta \in \rho K} \varepsilon^{a_i k_s} = \sum_{\beta \in K} \varepsilon^{k_i} = X_{(s)}. \tag{9}$$

Let $\varphi = \varphi_{0,\dots,0,a_1}$ then by (5) and (9) we have

$$(\varphi^{S}, \xi_{j})_{S} = q^{-1} \left\{ \frac{1}{2} (q+1) + y_{(s)} \frac{1}{2} (1 + (-1)^{j-1} \sqrt{q}) + x_{(s)} \frac{1}{2} (1 + (-1)^{j} \sqrt{q}) \right\}$$

$$(\varphi^{S}, \eta_{j})_{S} = q^{-1} \left\{ \frac{1}{2} (q-1) + y_{(s)} \frac{1}{2} (-1 + (-1)^{j-1} \sqrt{q}) + x_{(s)} \frac{1}{2} (-1 + (-1)^{j} \sqrt{q}) \right\}$$

$$(10)$$

and by (10)

$$(\phi^S, \xi_1)_S = 0$$
, $(\phi^S, \xi_2)_S = 1$, $(\phi^S, \eta_1)_S = 0$, $(\phi^S, \eta_2)_S = 1$

i = 1.2

ii) $q=3 \pmod{4}$: $\eta=+i$ and if $\varphi=\varphi_{1,0,...,0}$ then by (8) and (6) we have $(\varphi^S, \xi_1)_S=1$, $(\varphi^S, \xi_2)_S=0$, $(\varphi^S, \eta_1)_S=1$, $(\varphi^S, \eta_2)_S=0$.

If $\varphi = \varphi_{0,\dots,0,a_1}$ then by (6) and (9) we have

$$(\varphi^{S}, \xi_{j})_{S} = q^{-1} \left\{ \frac{1}{2} (q+1) + y_{(s)} \frac{1}{2} (1 + (-1)^{j} \mathbf{i} \sqrt{q}) + x_{(s)} \frac{1}{2} (1 + (-1)^{j-1} \mathbf{i} \sqrt{q}) \right\}$$
(11)

$$(\varphi^{S}, \eta_{j})_{S} = q^{-1} \left\{ \frac{1}{2} (q-1) + y_{(s)} \frac{1}{2} (-1 + (-1)^{j} i \sqrt{q}) + x_{(s)} \frac{1}{2} (-1 + (-1)^{j-1} i \sqrt{q}) \right\}$$

$$j = 1, 2$$

and by (11)

$$(\phi^S,\,\xi_1)_S = 0, \ (\phi^S,\,\xi_2)_S = 1, \ (\phi^S,\,\eta_1)_S = 0, \ (\phi^S,\,\eta_2)_S = 1.$$

b) If s=2n, $n \in \mathbb{N}$: Then $q \equiv 1 \pmod{4}$ and if

 $\phi = \phi_{1,0,\dots,0}$ by (5) and (8) we have

$$(\phi^{S}, \xi_{1})_{S}=0, (\phi^{S}, \xi_{2})_{S}=1, (\phi^{S}, \eta_{1})_{S}=0, (\phi^{S}, \eta_{2})_{S}=1.$$

If $\varphi = \varphi_{0,...,0,n_1}$ by (10)

$$(\phi^S, \xi_1)_S = 1, \quad (\phi^S, \xi_2)_S = 0, \quad (\phi^S, \eta_1)_S = 1, \quad (\phi^S, \eta_2)_S = 0.$$

3) If $\theta \in K$ by property 1 for any $s \in \mathbb{N}$

$$\mathbf{x}_{\text{us}} = \begin{cases} -\frac{1}{2}(\mathbf{1} - \sqrt{q}) & \text{for } q \equiv \mathbf{1} \pmod{4} \\ -\frac{1}{2}(\mathbf{1} - \mathbf{i}\sqrt{q}) & \text{for } q \equiv \mathbf{3} \pmod{4} \end{cases} ; \quad \mathbf{y}_{\text{us}} = \begin{cases} -\frac{1}{2}(\mathbf{1} + \sqrt{q}) & \text{for } q \equiv \mathbf{1} \pmod{4} \\ -\frac{1}{2}(\mathbf{1} + \mathbf{i}\sqrt{q}) & \text{for } q \equiv \mathbf{3} \pmod{4} \end{cases}$$

If $\varphi = \varphi_{1,0,...,0}$:

i) $q=1 \pmod 4$: Then by (5) and (8) we have $(\phi^S, \xi_1)_S=1, \quad (\phi^S, \xi_2)_S=0, \quad (\phi^S, \eta_1)_S=1, \quad (\phi^S, \eta_2)_S=0.$

ii) $q\equiv 3 \pmod{4}$: Then by (6) and (8) we have

$$(\phi^S,\xi_1)_S=1, \ \ (\phi^S,\xi_2)_S=0, \ \ (\phi^S,\eta_1)_S=1, \ \ (\phi^S,\eta_2)_S=0.$$

Finally using the above proposition and property 3, we have the following theorem:

Theorem. If e_{ϕ} , $e_{\chi_{i}}$, $e_{\theta_{j}}$, $e_{\xi_{1}}$, $e_{\xi_{2}}$, $e_{\eta_{1}}$, $e_{n_{2}}$, are the central idempotents afforded by the irreducible CSL(2,q)-characters ϕ , χ_{i} , θ_{j} , ξ_{1} , ξ_{2} , η_{1} , η_{2} respectively and $e_{h_{1},\dots,h_{r}}$ is the central idempotent afforded by the irreducible CH-character $\phi_{h_{1},\dots,h_{r}}$ then:

1) The primitive idempotents of the group algebra CSL(2,q) which correspond to ϕ , χ_i , θ_j are as follows:

$$e_{\phi} e_{h_1,\dots,h_s}$$
; $e_{\chi_i} e_{h_1,\dots,h_s}$; $e_{\theta_i} e_{h_1,\dots,h_s}$ respectively,

where
$$1 \le i \le (q-3)/2$$
; $1 \le j \le (q-1)/2$, $1 \le h_i \le p-1$, $i=1,...,s$; $(h_1,...,h_s) \ne (0,...0)$.

2) If $\theta \in pK$ and $\theta^s = a_1 + a_2\theta + ... + a_s \theta^{s-1}$, $a_1 \neq 0$, then the primitive idempotents of the group algebra CSL(2,q) which correspond to ξ_1 , ξ_2 , η_1 , η_2 are as follows:

a-) If
$$s=2n+1$$
, $n \in \mathbb{N} \cup \{0\}$

$$e_{\xi_1} e_{1,0,\dots 0}; \ e_{\xi_2} e_{0,\dots,0,a_1}; \ e_{\eta_1} e_{1,0,\dots,0}; \ e_{\eta_2} e_{0,\dots,0,a_1}$$

, respectively.

b-) If
$$s=2n, n \in \mathbb{N}$$

$$e_{\xi_1}e_{0,\dots,0,a_1}$$
; $e_{\xi_2}e_{1,0,\dots,0}$; $e_{\eta_1}e_{0,\dots,0,a_1}$; $e_{\eta_2}e_{1,0,\dots,0}$

, respectively.

108

3-) If $\theta \in K$ and $u = \begin{pmatrix} 1 & 0 \\ 0 & \rho \end{pmatrix}$ then for any $s \in N$, the primitive idempotents of the group algebra CSL(2,q) which correspond to $\xi_1, \, \xi_2, \, \eta_1, \, \eta_2$ are as follows:

$$e_{\xi_1}e_{1,0,\dots,0}; ue_{\xi_1}e_{1,0,\dots,0}u^{-1}; e_{\eta_1}e_{1,0,\dots,0}; ue_{\eta_1}e_{1,0,\dots,0}u^{-1}.$$

REFERENCES

- [1] DORNHOFF, L.: Group Representation Theory, Dekker, New York, 1971.
- [2] GÜZEL, E.: Primitive Idempotents of the Group Algebra CSL(3,q),
 Math. Scand., 70 (1992), 177-185.
- [3] JANUSZ, C.J.: Primitive Idempotents in Group Algebra, Proc. Amer.

 Math. Soc., 17 (1996), 520-523.
- [4] SIMPSON, W.A.
 and FRAME, J.S.: The character tables for SL(3,q), SU(3,q²), PSL (3,q),
 PSU(3,q²), Can. J. Math., 25 (1973), 486-494.
- [5] STEINBERG, R.: The Representations of GL(3,q), GL(4,q), PGL(3,q) and PGL(4,q), Can. J. Math., 3(1951), 225-235.
- [6] YELKENKAYA, N.: On Gauss Sums over Finite Fields, (to appear in İst. Üniv. Fen Fak. Mat. Der.).

Neșe YELKENKAYA

Department of Mathematics

Faculty of Science

University of Istanbul

Vezneciler 34459, Istanbul, Turkey