PRIMITIVE IDEMPOTENTS OF THE GROUP

ALGEBRA CSL $(2, q)$
 NESE YELKENKAYA

Abstract

In this paper a full system of primitive idempotents of the group algebra $\operatorname{CSL}(2, q)$ has been found using normed Gaussian sums over the finite field $\mathrm{F}_{\mathrm{q}}=\mathrm{GF}(q)$ and a result of G.J. Janusz.

INTRODUCTION

Let p be an odd prime number and $\mathrm{F}_{\mathrm{q}}=\mathrm{GF}(\mathrm{q})$ be a finite field of order $\mathrm{q}=\mathrm{p}^{\mathrm{s}}$ for some $\mathrm{s} \in \mathbf{N}$. Then $\mathrm{F}_{\mathrm{q}}=\mathrm{F}(\theta)$ with $\mathrm{f}(\theta)=0$, where $\mathrm{F}=\mathrm{F}_{\mathrm{p}}$ and

$$
f(x)=\operatorname{Irr}(\theta, x, F)=x^{s}-a_{s} x^{s-1}-\ldots-a_{2} x-a_{1} \in F[x]
$$

is the minimal polynomial of θ over F . Thus

$$
\mathrm{F}_{\mathrm{q}}=\mathrm{F} \oplus \mathrm{~F} \theta \oplus \ldots \oplus \mathrm{~F} \theta^{s-1}
$$

becomes an additive elementary abelian group. On the other hand $\mathrm{F}_{\mathrm{q}}^{*}=\mathrm{F}_{\mathrm{q}} \backslash\{0\}$ the multiplicative group of the field F_{q}, is cyclic of order $q-1$ and $F_{q}^{*}=\langle p>$ for some generator ρ. Let $K:=\left\langle p^{2}\right\rangle$ then

$$
\mathrm{F}_{\mathrm{q}}^{*}=\mathrm{K} \cup \rho \mathrm{~K} \quad \text { (disjoint) }
$$

Let $\Psi=\Psi_{\mathrm{h}_{1}, \ldots, h_{1}}$, be a nontrivial irreducible additive character of the additive group F_{q} such that $0 \leq \mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{s}} \leq \mathrm{p}-1 ;\left(\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{s}}\right) \neq(0, \ldots, 0)$ and

$$
\Psi(\beta)=\varepsilon^{k_{1} h_{1}+\ldots \ldots+k_{i} h_{2}}
$$

where

$$
\beta=\mathrm{k}_{1} \cdot 1_{F}+\mathrm{k}_{2} \theta+\ldots+\mathrm{k}_{\mathrm{s}}{ }^{s-1} ; \quad 0 \leq \mathrm{k}_{\mathrm{i}} \leq \mathrm{p}-1, \mathrm{i}=1, \ldots, \mathrm{~s} ;
$$

$\varepsilon=\cos (2 \pi / \mathrm{p})+\mathrm{i} \sin (2 \pi / \mathrm{p})$ and by abuse of notation we may also write $\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{s}} \in \mathrm{F}$. Let ζ be the irreducible multiplicative character of the multiplicative group $\mathrm{F}^{*}{ }_{q}$ with

$$
\zeta\left(\rho^{i}\right)=(-1)^{i} \quad \text { for any } \quad i \in Z .
$$

Now define
$\tau_{(s)}(\zeta ; \Psi):=\sum_{0 * \beta \in \epsilon e_{0}} \zeta(\beta) \Psi(\beta) ; \mathrm{x}_{(s)}(\Psi)=\sum_{\beta \in K} \Psi(\beta) ; \mathrm{y}_{(*)}(\Psi)=\sum_{\beta \in \rho K} \Psi(\beta)$
and write $\tau_{(s)} ; x_{(s)} ; y_{(s)}$ instead of $\tau_{(s)}(\zeta ; \Psi) ; x_{(s)}(\Psi) ; y_{(s)}(\Psi)$ for $\Psi=\Psi_{1.0, \ldots 0}$ and we call $\tau_{(s)}$ the normed Gaussian sum over the finite field F_{q}.

Let $\mathrm{G}=\mathrm{GL}(2, \mathrm{q})$ denote the group of all non-singular 2×2 matrices over F_{q} and $\mathrm{S}=\mathrm{SL}(2, \mathrm{q})$ denote the group of 2×2 matrices over Fq with determinant unity. S is a normal subgroup of G .

In this paper we will use the following properties to obtain the primitive idempotents of $\operatorname{CSL}(2, \mathrm{q})$ which correspond to the irreducible $\operatorname{CSL}(2, \mathrm{q})$ characters.

Property 1 ([6]). 1. $\mathrm{F}_{\mathrm{q}}=\mathrm{F}(\rho)=\mathrm{F}\left(\rho^{2}\right)$; i.e. ρ and ρ^{2} are primitive elements of F_{q} over F, namely, θ can be chosen as ρ and ρ^{2} for any $s \in \mathbf{N}$.
2.a) If $s=2 n+1, n \in N \cup\{0\}$ then $\tau_{(s)}, x_{(s)}$ and $y_{(s)}$ are independent of the choice of the primitive element θ.
b) If $s=2 n, n \in N$, then

$$
\tau_{(s)}=-\sqrt{q} ; x_{(s)}=-\frac{1}{2}(1+\sqrt{q}) ; y_{(s)}=-\frac{1}{2}(1-\sqrt{q})
$$

for any primitive element $\theta \in \rho K$.
c) For any $s \in \mathbf{N}$ and for any primitive element $\theta \in\left\langle\rho^{2}\right\rangle=K$ we always have

$$
\tau_{(s)}=\eta \sqrt{q} ; \mathrm{x}_{(\mathrm{s})}=-\frac{1}{2}(1-\eta \sqrt{q}) ; \mathrm{y}_{(\mathrm{s})}=-\frac{1}{2}(1+\eta \sqrt{q}),
$$

where

$$
\eta=\left\{\begin{array}{l}
+1, \text { if } \mathrm{q} \equiv 1(\bmod 4) \\
+\mathrm{i}, \text { if } \mathrm{q} \equiv 3(\bmod 4)
\end{array} \quad ; \mathrm{i}=\sqrt{-1}\right.
$$

Property 2. G be a finite group of order n and K be an algebraically closed field with characteristic not dividing n. If χ is an irreducible KGcharacter affording the central idempotent e_{x} of KG , then

$$
\mathrm{e}_{\chi}=\chi(1) \mathrm{n}^{-1} \sum_{\chi \in G} \chi\left(g^{-1}\right) g
$$

where $\chi(1)$ is the degree χ.

Property 3 ([2], [3]). Let H be a subgroup of G, ψ be an irreducible KH-character of degree 1 and η an irreducible KG-character. Assume that the multiplicity of η in the induced KG-character ψ^{G} is one. If η and ψ afford the central idempotents e_{η} and e_{ψ} respectively, then $e_{\eta} e_{\psi}$ is a primitive idempotent of KG which corresponds to η.

Method and Results

Let θ be a primitive element of F_{q}; i.e. $\mathrm{F}_{\mathrm{q}}=\mathrm{F}(\theta)$. Consider the following elements of $\mathrm{S}=\mathrm{SL}(2, \mathrm{q})$:

$$
\mathbf{a}_{\mathrm{i}}=\left(\begin{array}{cc}
1 & 0 \\
\theta^{\mathrm{i}-1} & 1
\end{array}\right) ; \quad \mathbf{a}_{\mathrm{i}}^{\mathrm{p}}=\mathrm{I} ; \quad \mathrm{i}=1, \ldots, \mathrm{~s} .
$$

Then S has the elementary abelian subgroup

$$
\mathrm{H}=\left\langle\mathbf{a}_{1}>\mathrm{x} \ldots \mathrm{x}<\mathbf{a}_{\mathbf{s}}>.\right.
$$

The order of H is q. Since $\mid S\left[=q\left(q^{2}-1\right)\right.$, then H is a Sylow p-subgroup of S and

$$
H=\left\{\left.\left(\begin{array}{ll}
1 & 0 \\
\beta & 1
\end{array}\right) \right\rvert\, \beta \in F_{q}\right\}
$$

All the characters of $\left\langle\mathbf{a}_{i}\right\rangle$ are linear and with the form

$$
\varphi_{h^{\prime}}\left(\mathbf{a}_{\mathbf{i}}\right)=\varepsilon^{h},
$$

where $\varepsilon=\cos (2 \pi / p)+i \sin (2 \pi / p) ; 0 \leq h_{i} \leq p-1 ; i=1, \ldots ., s$.
Thus all the characters of H are linear and with the form

$$
\left(\varphi_{h_{1}} \ldots \varphi_{h_{s}}\right)\left(\mathrm{a}_{\mathrm{i}}\right)=\varepsilon^{h_{\mathrm{i}}} \quad\left(0 \leq \mathrm{h}_{\mathrm{i}} \leq \mathrm{p}-1 ; \mathrm{i}=1, \ldots, \mathrm{~s}\right)
$$

Let us denote them by the symbol $\varphi_{h_{1} \ldots, h_{s}}$.
If $\quad \mathrm{x}=\left(\begin{array}{cc}1 & 0 \\ \beta & 1\end{array}\right), \beta=\mathrm{k}_{1}+\mathrm{k}_{2} \theta+\ldots+\mathrm{k}_{\mathrm{s}} \theta^{\mathrm{s}-1},,\left(0 \leq \mathrm{k}_{\mathrm{i}} \leq \mathrm{p}-1 ;\left(\mathrm{k}_{1}, \ldots \mathrm{k}_{\mathrm{s}}\right) \neq(0, \ldots, 0)\right)$
is an element of H, then

Thus we have all irreducible CH -characters which are given by table 1 .

Irreducible CH-characters

$\begin{aligned} & \beta=\mathrm{k}_{1}+\mathrm{k}_{2} \theta+\ldots+\mathrm{k}_{\mathrm{s}} \theta^{\mathrm{s}-1}, ; \mathrm{k}_{\mathrm{i}}=0,1, \ldots, \mathrm{p}-1 ; \\ & \left(\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{s}}\right) \neq(0, \ldots, 0), \mathrm{h}_{\mathrm{i}}=0,1, \ldots, \mathrm{p}-1 ; \mathrm{i}=1, \ldots, \mathrm{~s} ; \varepsilon^{\mathrm{p}}=1, \varepsilon \neq 1 \end{aligned}$			
Element	Number of Conjugacy Classes	Number of elements in the conj. class	$\varphi_{h_{1}, \ldots, l_{s}}$
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	1	1	1
$\left(\begin{array}{ll}1 & 0 \\ \beta & 1\end{array}\right)$	q-1	1	$\varepsilon^{k_{1} \mathrm{l}_{1}+\ldots \ldots+k_{\text {d }} \mathrm{h}_{s}}$

Table 1
The irreducible CG-characters are given by table II in [5] and are as follows:

Irreducible CG-Characters	Degree	Frequency
$\chi_{1}^{(n)}$	1	$q-1$
$\chi_{4}^{(n)}$	q	$q-1$
$\chi_{q+1}^{(m, n)}$	$\mathrm{q}+1$	$\frac{1}{2}(\mathrm{q}-1)(\mathrm{q}-2)$
$\chi_{q-1}^{(n)}$	$\mathrm{q}-1$	$\frac{1}{2} \mathrm{q}(\mathrm{q}-1)$

Table 2
All the elements of $\mathrm{H}-\{1\}$ are conjugate in G and each of them are similar to the matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) .
$$

We thus have the values of irreducible CG-characters on H . They are shown in Table 3.

Elcınents	$x_{\mathrm{T}}^{(n)}$	$x_{q}^{(n)}$	$x_{q+1}^{(n+1)}$	$x_{q-1}^{(n)}$
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	1	9	$q+1$	$4-1$
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	1	0	1	-1

Table 3
If $\varphi=\varphi_{h_{1}, \ldots, n_{s}}$ is a nontrivial irreducible character of H, we have

$$
\begin{equation*}
\sum_{x \in \mathcal{H}-41\}} \varphi(x)=-1 \tag{1}
\end{equation*}
$$

If $\chi \neq \chi_{1}^{(n)}$ is an irreducible CG-character, by

Table 1, Table 3 and (1)

$$
\begin{equation*}
\left(\varphi, \chi_{\mathrm{H}}\right)=1, \tag{2}
\end{equation*}
$$

where χ_{H} is the restriction of χ to H. By Frobenius Theorem

$$
\begin{equation*}
\left(\varphi^{\mathrm{G}}, \chi\right)_{\mathrm{G}}=\left(\varphi, \chi_{\mathrm{H}}\right)_{\mathrm{H}}=1 \tag{3}
\end{equation*}
$$

Let $S=S L(2, q)$. The conjugacy classes and character table of S is given in [1]. The irreducible CS-characters are as follows:

Irreducible CS-charac.	Degree	Frequency
$1{ }_{5}$	1	1
ф	q	1
χ_{i}	q^{+1}	$\frac{1}{2}(q-3)$
θ_{j}	q-1	$\frac{1}{2}(q-1)$
ξ_{1}	$\frac{1}{2}(q+1)$	1
5_{2}	$\stackrel{1}{2}(q+1)$	1
η_{1}	$\frac{1}{2}(q-1)$	1
η_{7}	$\frac{1}{2}(q-1)$	1

Table 4
Let $1=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \quad c=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), \quad \mathrm{d}=\left(\begin{array}{ll}1 & 0 \\ \rho & 1\end{array}\right)$.
For any $x \in S$, let (x) denote the conjugacy class of S containing x.
If $\beta \in \mathrm{K}$ then $\left(\begin{array}{cc}1 & 0 \\ \beta & 1\end{array}\right) \in(\mathrm{c})$; if $\beta \in \mathrm{KK}$ then $\left(\begin{array}{ll}1 & 0 \\ \beta & 1\end{array}\right) \in(\mathrm{d})$.

Thus we have the values of the irreducible CS-characters on H . They are shown in Table 5.

The values of irreducible CS-characters on H .

	1_{s}	ϕ	χ_{i}	θ_{j}	ξ_{1}	ξ_{2}	η_{i}	η_{2}
$\mathbf{1}$	1	q	$\mathrm{q}+1$	$\mathrm{q}-1$	$\frac{1}{2}(q+7)$	$\frac{1}{2}(q+1)$	$\frac{1}{2}(\varphi-1)$	$\frac{1}{2}(\varphi-1)$
c	l	0	1	-1	$\frac{1}{2}(1+\eta \sqrt{q})$	$\frac{1}{2}(1-\eta \sqrt{\varphi})$	$\frac{1}{2}(-1+\eta \sqrt{\varphi})$	$\frac{1}{2}(-1-\eta \sqrt{q})$
d	1	0	1	-1	$\frac{1}{2}(1-\eta \sqrt{q})$	$\frac{1}{2}(9+\eta \sqrt{q})$	$\frac{1}{2}(-1-\eta \sqrt{q})$	$\frac{1}{2}(-1+\eta \sqrt{q})$

Table 5
If $\mathrm{q} \equiv 1(\bmod 4)$, the element (-1) is a square in $\mathrm{F}_{\mathrm{q}}^{*}$. If $\mathrm{q} \equiv 3(\bmod 4)$, the element (-1) is not a square in $\mathrm{F}_{\mathrm{q}}^{*}$, so that c^{-1} and c are not conjugate and d^{-1} and d are not conjugate in S, forcing $c^{-1} \in(d), d^{-1} \in(c)$. Thus we have the following Lemma:

Lemma. 1. For $q \equiv 1(\bmod 4)$: Every element of H is conjugate to its inverse in S.
2. For $q \equiv 3(\bmod 4): c^{-1} \in(d), d^{-1} \in(c)$.

Let $\varphi=\varphi_{h_{1}, \ldots, h_{s}}$ be a nontrivial irreducible character of H. By Frobenius Theorem

$$
\left(\varphi^{\mathrm{S}}\right)^{\mathrm{G}}=\varphi^{\mathrm{G}} \text { and }\left(\left(\varphi^{\mathrm{S}}\right)^{\mathrm{G}}, \chi\right)_{\mathrm{O}}=\left(\varphi^{\mathrm{S}}, \chi_{\mathrm{S}}\right)_{\mathrm{S}} .
$$

Thus we have by (3)

$$
\left(\varphi^{\mathrm{S}}, \chi_{\mathrm{S}}\right)_{\mathrm{S}}=\left(\varphi^{\mathrm{G}}, \chi\right)_{\mathrm{G}}=1
$$

and by [4]

$$
\left(\chi_{\mathrm{s}}, \chi_{\mathrm{s}}\right)=1 \text { or } 2
$$

Then it is easy to see that

$$
\begin{equation*}
\left(\varphi^{s}, \phi\right)_{s}=1,\left(\varphi^{s}, \chi_{i}\right)_{s}=1,\left(\varphi^{s}, \theta_{j}\right)_{s}=1, \tag{4}
\end{equation*}
$$

where $1 \leq \mathrm{i} \leq(\mathrm{q}-3) / 2 ; \mathrm{l} \leq \mathrm{j} \leq(\mathrm{q}-1) / 2$.

1) If $\mathrm{q} \equiv 1(\bmod 4)$: Then $\eta=+1$ and
$\left(\varphi^{\mathrm{S}}, \xi_{\mathrm{j}}\right)_{\mathrm{S}}=\left(\varphi, \xi_{\mathrm{j} \mid \mathrm{H}}\right)_{\mathrm{H}}=$
$=\mathrm{q}^{-1}\left\{\frac{1}{2}(\mathrm{q}+1)+\left(\sum_{p \in K} \Psi(\beta)\right) \frac{1}{2}\left(1+(-1)^{)^{-1}} \sqrt{q}\right)+\left(\sum_{\beta \in \rho K} \Psi(\beta)\right) \frac{1}{2}\left(1+(-1)^{\mathrm{j}} \sqrt{\mathrm{q}}\right)\right\}$
$=1$ or 0 .
$\left(\varphi^{\mathrm{s}}, \eta_{\mathrm{j}}\right)_{\mathrm{s}}=\left(\varphi, \eta_{j \mathrm{H}}\right)_{\mathrm{H}}=$
$=\mathrm{q}^{-1}\left\{\frac{1}{2}(\mathrm{q}-1)+\left(\sum_{\beta \in K} \Psi(\beta)\right) \frac{1}{2}\left(-1+(-1)^{j-1} \sqrt{q}\right)+\left(\sum_{\beta \in \rho K} \Psi(\beta)\right) \frac{1}{2}\left(-1+(-1)^{j} \sqrt{q}\right)\right\}$
$=1$ or 0 .
2) If $\mathrm{q} \equiv 3(\bmod 4)$: Then $\eta=+\mathrm{i}$ and
$\left(\varphi^{\mathrm{S}}, \xi_{\mathrm{j}}\right)_{\mathrm{S}}=\left(\varphi, \xi_{\mathrm{j} H}\right)_{\mathrm{H}}=$
$=\mathrm{q}^{-1}\left\{\frac{1}{2}(\mathrm{q}+1)+\left(\sum_{\beta \in K} \Psi(\beta)\right) \frac{1}{2}\left(1+(-1)^{j} \mathbf{i} \sqrt{q}\right)+\left(\sum_{\beta \in \rho K} \Psi(\beta)\right) \frac{1}{2}\left(1+(-1)^{j-i} \mathbf{i} \sqrt{q}\right)\right\}$
$=1$ or 0 ,
$\left(\varphi^{\mathrm{s}}, \eta_{\mathrm{j}}\right)_{\mathrm{S}}=\left(\varphi, \eta_{\mathrm{j} \mid \mathrm{H}}\right)_{\mathrm{H}}=$
$=\mathrm{q}^{-1}\left\{\frac{1}{2}(\mathrm{q}-1)+\left(\sum_{\beta \in K} \Psi(\beta)\right) \frac{1}{2}\left(-1+(-1)^{\mathrm{j}} \mathbf{i} \sqrt{q}\right)+\left(\sum_{\beta \in \rho K} \Psi(\beta)\right) \frac{1}{2}\left(-1+(-1)^{\mathrm{j}-\mathrm{i}} \mathbf{i} \sqrt{\mathrm{q}}\right)\right\}$
$=1$ or 0 ,
where $\quad \mathrm{j}=1,2 ; \quad \beta=\mathrm{k}_{1}+\mathrm{k}_{2} \theta+\ldots+\mathrm{k}_{\mathrm{s}} \theta^{s-1}, ; \quad \varphi=\varphi_{\mathrm{h}_{2}, \ldots, \mathrm{~h}_{s}} ; \quad \Psi(\beta)=\varepsilon^{\mathrm{k}_{1} \mathrm{~h}_{1}+\ldots \ldots+\mathrm{k}_{\mathrm{p}} \mathrm{h}_{\mathrm{s}}} ;$
$\varepsilon^{\mathrm{P}}=1, \varepsilon \neq 1 ; 0 \leq \mathrm{k}_{\mathrm{i}} \leq \mathrm{p}-1 ; 0 \leq \mathrm{h}_{\mathrm{i}} \leq \mathrm{p}-1, \mathrm{i}=1, \ldots, \mathrm{~s} ;\left(\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{s}}\right) \neq(0, \ldots, 0)$ and $\mathrm{i}=\sqrt{-1}$.
If $\left(\varphi^{\mathrm{s}}, \xi_{1}\right)_{S}=1$ then $\left(\varphi^{\mathrm{s}}, \xi_{2}\right)_{S}=0$ and $\left(\varphi^{\mathrm{s}}, \eta_{1}\right)_{S}=1,\left(\varphi^{\mathrm{s}}, \mathrm{r}_{2}\right)_{\mathrm{S}}=0$.
If $\left(\varphi^{\mathrm{S}}, \xi_{1}\right)_{\mathrm{S}}=0$ then $\left(\varphi^{\mathrm{S}}, \xi_{2}\right)_{\mathrm{S}}=1$ and $\left.\left(\varphi^{\mathrm{S}}, 1_{1}\right)\right)_{\mathrm{S}}=0,\left(\varphi^{\mathrm{S}}, \eta_{2}\right)_{\mathrm{S}}=1$.
Since $x_{(s)}(\Psi)=\sum_{\beta \in K} \psi(\beta), \mathrm{y}_{(s)}(\psi)=\sum_{\beta \in \rho \mathcal{K}} \Psi(\beta)$, using (5), (6), (7)
from the solution of a simple system of linear equations, we obtain the following result which we have already shown in [6] by another way.

Lemma 2. $\left\{x_{(s)}(\Psi), y_{(s)}(\Psi)\right\}=\left\{-\frac{1}{2}(1-\eta \sqrt{q}),-\frac{1}{2}(1+\eta \sqrt{q})\right\}$

Proposition. 1) For any nontrivial irreducible character $\varphi=\varphi_{h_{1}, \ldots, n_{s}}$ of H , $\left(\varphi^{s}, \phi\right)_{S}=1,\left(\varphi^{s}, \chi_{i}\right)_{S}=1,\left(\varphi^{s}, \theta_{j}\right)_{S}=1$
where $1 \leq \mathrm{i} \leq(\mathrm{q}-3) / 2 ; 1 \leq \mathrm{j} \leq(\mathrm{q}-1) / 2$.
2) Let $\theta \in \rho K$ and $\theta^{s}=a_{1}+a_{2} 0+\ldots .+a_{s} \theta^{s-1}, a_{1} \neq 0 . q=p^{5}$.
a) If $\mathrm{s}=2 \mathrm{n}+1, \mathrm{n} \in \mathrm{N} \cup\{0\}$ then for $\varphi=\varphi_{1.0 \ldots, \ldots} 0$

$$
\left(\varphi^{s}, \xi_{1}\right)_{S}=1, \quad\left(\varphi^{s}, \xi_{2}\right)_{S}=0, \quad\left(\varphi^{s}, \eta_{1}\right)_{S}=1,\left(\varphi^{S}, \eta_{2}\right)_{S}=0
$$

and for $\varphi=\varphi_{0 . \ldots \ldots, 0,}$,

$$
\left(\varphi^{s}, \xi_{1}\right)_{S}=0,\left(\varphi^{s}, \xi_{2}\right)_{S}=1,\left(\varphi^{s}, \eta_{1}\right)_{S}=0,\left(\varphi^{s}, \eta_{2}\right)_{S}=1
$$

b) If $s=2 n, n \in \mathbf{N}$ then for $\varphi=\varphi_{1,0, \ldots 0}$

$$
\left(\varphi^{\mathrm{S}}, \xi_{1}\right)_{\mathrm{S}}=0,\left(\varphi^{\mathrm{S}}, \xi_{2}\right)_{\mathrm{S}}=1,\left(\varphi^{\mathrm{S}}, \eta_{1}\right)_{\mathrm{S}}=0,\left(\varphi^{\mathrm{S}}, \eta_{2}\right)_{\mathrm{S}}=1
$$

and for $\varphi=\varphi_{0, \ldots, 0 . a_{1}}$

$$
\left(\varphi^{\mathrm{S}}, \xi_{1}\right)_{\mathrm{S}}=1,\left(\varphi^{\mathrm{s}}, \xi_{2}\right)_{\mathrm{S}}=0,\left(\varphi^{\mathrm{s}}, \eta_{1}\right)_{\mathrm{S}}=1,\left(\varphi^{\mathrm{S}}, \eta_{2}\right)_{\mathrm{S}}=0 .
$$

3) Let $\theta \in \mathrm{K}$ and $\varphi=\varphi_{1,0 \ldots 0}$ then for any $s \in \mathbf{N}\left(q=p^{s}\right)$

$$
\left(\varphi^{\mathrm{S}}, \xi_{1}\right)_{\mathrm{S}}=1,\left(\varphi^{\mathrm{S}}, \xi_{2}\right)_{\mathrm{S}}=0,\left(\varphi^{\mathrm{S}}, \eta_{1}\right)_{\mathrm{S}}=1,\left(\varphi^{\mathrm{S}}, \eta_{2}\right)_{\mathrm{S}}=0 .
$$

Proof. 1) See (4).
2) Since $\theta \in \rho K$ then by property 1

$$
\mathrm{x}_{(6)}=\left\{\begin{array}{c}
\left.-\frac{1}{2}(1-\eta \sqrt{q}) \text { for } \mathrm{s}=2 \mathrm{n}+1, \mathrm{n} \in \mathbf{N} \cup \emptyset\right\} \\
-\frac{1}{2}(1+\sqrt{q}) \text { for } \mathrm{s}=2 \mathrm{n}, \mathrm{n} \in \mathbf{N}
\end{array} \text { and } \quad \mathrm{y}_{\mathrm{w})}=\left\{\begin{array}{c}
-\frac{1}{2}(1+\eta \sqrt{q}) \text { for } \mathrm{s}=2 \mathrm{n}+1, \mathrm{n} \in \mathbf{N} \cup\{0\} \\
-\frac{1}{2}(1-\sqrt{q}) \text { for } \mathrm{s}=2 \mathrm{n}, \mathrm{n} \in \mathbf{N}
\end{array}\right.\right.
$$

where $\quad \eta=\left\{\begin{array}{l}+1.961(\text { mad } 4) \\ +\mathrm{i} .9 \mathrm{q}(\text { (mad } 4)\end{array} ; \mathrm{i}=\sqrt{-1}\right.$.
a) If $\mathrm{s}=2 \mathrm{n}+1, \mathrm{n} \in \mathrm{N} \cup\{0\}$:
i) $\mathrm{q} \equiv 1(\bmod 4): \quad \eta=+1$ and if $\varphi=\varphi_{1,0, \ldots, 0}$ then

$$
\begin{equation*}
\sum_{\beta \in K} \Psi(\beta)=x_{(s)} ; \quad \sum_{\beta \in \rho K} \Psi(\beta)=\mathrm{y}_{(\mathrm{s})} . \tag{8}
\end{equation*}
$$

Thus by (5) we have

$$
\left(\varphi^{S}, \xi_{1}\right)_{S}=1,\left(\varphi^{S}, \xi_{2}\right)_{S}=0,\left(\varphi^{S}, \eta_{1}\right)_{S}=1,\left(\varphi^{S}, \eta_{2}\right)_{S}=0
$$

If $\theta^{\mathrm{s}}=\mathrm{a}_{1}+\mathrm{a}_{2} \theta+\ldots+\mathrm{a}_{\mathrm{s}} \theta^{\mathrm{s}-1}, \mathrm{a}_{1} \neq 0$ and $\beta=\mathrm{k}_{1}+\mathrm{k}_{2} \theta+\ldots+\mathrm{k}_{\mathrm{s}} \theta^{\mathrm{s}-1}$
then $\theta \beta=\mathrm{a}_{1} \mathrm{k}_{\mathrm{s}}+\mathrm{k}_{2}^{\prime} \theta+\ldots+\mathrm{k}_{\mathrm{s}}^{\prime} \theta^{s-1}$. Since $\theta \in \mathrm{pK}$, if $\beta \in \mathrm{K}$ then $\theta \beta \in \rho \mathrm{K}$ and if $\beta \in \rho K$ then $\theta \beta \in K$. Thus we obtain

$$
\begin{equation*}
\sum_{\beta \in K} \varepsilon^{a, k_{s}}=\sum_{\beta \in \rho K} \varepsilon^{k_{1}}=y_{(s)} ; \sum_{\beta \in \rho k^{K}} \varepsilon^{a, k_{s}}=\sum_{\beta \in K} \varepsilon^{k_{1}}=\mathrm{x}_{(s)} . \tag{9}
\end{equation*}
$$

Let $\varphi=\varphi_{0 \ldots, \ldots, a}$ then by (5) and (9) we have

$$
\begin{gather*}
\left(\varphi^{\mathrm{s}}, \xi_{\mathrm{j}}\right)_{\mathrm{s}}=q^{-1}\left\{\frac{1}{2}(q+1)+y_{(s)} \frac{1}{2}\left(1+(-1)^{\mathrm{j-1}} \sqrt{q}\right)+x_{(s)} \frac{1}{2}\left(1+(-1)^{\prime} \sqrt{q}\right)\right\} \\
\left(\varphi^{\mathrm{S}}, \eta_{\mathrm{j}}\right)_{\mathrm{s}}=q^{-1}\left\{\frac{1}{2}(q-1)+y_{(s)} \frac{1}{2}\left(-1+(-1)^{\mathrm{j}-1} \sqrt{q}\right)+x_{(s)} \frac{1}{2}\left(-1+(-1)^{j} \sqrt{q}\right)\right\} \tag{10}\\
\mathrm{j}=1,2
\end{gather*}
$$

and by (10)

$$
\left(\varphi^{S}, \xi_{1}\right)_{S}=0, \quad\left(\varphi^{S}, \xi_{2}\right)_{S}=1, \quad\left(\varphi^{S}, r_{1}\right)_{S}=0, \quad\left(\varphi^{S}, r_{2}\right)_{S}=1
$$

ii) $q \equiv 3(\bmod 4): \eta=+\mathbf{i}$ and if $\varphi=\varphi_{1,0, \ldots, 0}$ then by (8) and (6) we have

$$
\left(\varphi^{s}, \xi_{1}\right)_{S}=1,\left(\varphi^{s}, \xi_{2}\right)_{S}=0, \quad\left(\varphi^{s}, \eta_{1}\right)_{S}=1, \quad\left(\varphi^{s}, \eta_{2}\right)_{\mathrm{S}}=0
$$

If $\varphi=\varphi_{0, \ldots, 0, a_{1}}$ then by (6) and (9) we have

$$
\begin{gather*}
\left(\varphi^{\mathrm{S}}, \xi_{\mathrm{j}}\right)_{\mathrm{S}}=q^{-1}\left\{\frac{1}{2}(q+1)+y_{(s)} \frac{1}{2}\left(1+(-1)^{\mathrm{j}} \mathbf{i} \sqrt{q}\right)+x_{(s)} \frac{1}{2}\left(1+(-1)^{j-1} \mathbf{i} \sqrt{q}\right)\right\} \\
\left(\varphi^{\mathrm{S}}, \eta_{\mathrm{j}}\right)_{\mathrm{S}}=q^{-1}\left\{\frac{1}{2}(q-1)+y_{(s)} \frac{1}{2}\left(-1+(-1)^{\mathrm{j}} \mathbf{i} \sqrt{q}\right)+x_{(s)} \frac{1}{2}\left(-1+(-1)^{i-1} \mathbf{i} \sqrt{q}\right)\right\} \tag{II}\\
\mathrm{j}=1,2
\end{gather*}
$$

and by (11)

$$
\left(\varphi^{s}, \xi_{1}\right)_{S}=0,\left(\varphi^{s}, \xi_{2}\right)_{s}=1,\left(\varphi^{s}, \eta_{1}\right)_{s}=0,\left(\varphi^{s}, \eta_{2}\right)_{s}=1
$$

b) If $s=2 n, n \in N$: Then $q \equiv 1(\bmod 4)$ and if
$\varphi=\varphi_{1,0 \ldots, 0}$ by (5) and (8) we have

$$
\left(\varphi^{\mathrm{s}}, \xi_{1}\right)_{\mathrm{S}}=0,\left(\varphi^{\mathrm{s}}, \xi_{2}\right)_{\mathrm{S}}=1,\left(\varphi^{\mathrm{s}}, \eta_{1}\right)_{\mathrm{S}}=0, \quad\left(\varphi^{\mathrm{s}}, \eta_{2}\right)_{\mathrm{S}}=1
$$

If $\varphi=\varphi_{0, \ldots, n_{1}}$ by (10)

$$
\left(\varphi^{\mathrm{S}}, \xi_{1}\right)_{\mathrm{s}}=1, \quad\left(\varphi^{\mathrm{S}}, \xi_{2}\right)_{\mathrm{s}}=0, \quad\left(\varphi^{\mathrm{S}}, \eta_{1}\right)_{\mathrm{s}}=1, \quad\left(\varphi^{\mathrm{S}}, \eta_{2}\right)_{\mathrm{s}}=0
$$

3) If $\theta \in K$ by property I for any $s \in N$
$X_{k s}=\left\{\begin{array}{l}-\frac{1}{2}(1-\sqrt{q}) \text { for } q \equiv 1(\bmod 4) \\ -\frac{1}{2}(1-\mathbf{i} \sqrt{q}) \text { for } q \equiv 3(\bmod 4)\end{array} ; \mathrm{y}_{\mathrm{sl}}=\left\{\begin{array}{l}-\frac{1}{2}(1+\sqrt{q}) \text { for } q \equiv \mathrm{l}(\bmod 4) \\ -\frac{1}{2}(1+\mathbf{i} \sqrt{q}) \text { for } q \equiv 3(\bmod 4)\end{array}\right.\right.$
If $\varphi=\varphi_{1,0 \ldots, 0}$:
i) $q \equiv 1(\bmod 4)$: Then by (5) and (8) we have

$$
\left(\varphi^{\mathrm{S}}, \xi_{1}\right)_{S}=1, \quad\left(\varphi^{\mathrm{S}}, \xi_{2}\right)_{\mathrm{S}}=0, \quad\left(\varphi^{\mathrm{S}}, \eta_{1}\right)_{\mathrm{S}}=1, \quad\left(\varphi^{\mathrm{S}}, \tau_{1}\right)_{\mathrm{S}}=0 .
$$

ii) $\mathrm{q} \equiv 3(\bmod 4)$: Then by (6) and (8) we have

$$
\left(\varphi^{\mathrm{S}}, \xi_{1}\right)_{\mathrm{S}}=1, \quad\left(\varphi^{\mathrm{S}}, \xi_{2}\right)_{\mathrm{S}}=0, \quad\left(\varphi^{\mathrm{S}}, \eta_{1}\right)_{\mathrm{S}}=1, \quad\left(\varphi^{\mathrm{S}}, \eta_{2}\right)_{\mathrm{S}}=0
$$

Finally using the above proposition and property 3, we have the following theorem:

Theorem. If $e_{\phi}, e_{\chi_{i}}, e_{\theta_{j}}, e_{\xi_{1}}, e_{\xi_{2}}, e_{\eta_{1}}, e_{n_{2}}$, are the central idempotents afforded by the irreducible $\operatorname{CSL}(2, q)$-characters $\phi, \chi_{i}, \theta_{\mathrm{j}}, \xi_{1}, \xi_{2}, \eta_{1}, \eta_{2}$ respectively and $e_{h_{1}, \ldots, \ldots,}$ is the central idempotent afforded by the irreducible CH-character $\varphi_{h_{1}, \ldots, h_{i}}$ then:

1) The primitive idempotents of the group algebra $\operatorname{CSL}(2, q)$ which correspond to $\phi, \chi_{\mathrm{i}}, \theta_{\mathrm{j}}$ are as follows:
$e_{\phi} e_{h_{1}, \ldots, \ldots,} ; \mathrm{h}_{\chi_{i}} e_{\mathrm{h}_{1}, \ldots, \mathrm{~h}_{s}} ; \mathrm{e}_{\theta_{j}} \mathrm{e}_{\mathrm{h}_{1}, \ldots, \mathrm{l}_{\mathrm{t}}}$ respectively,
where $\mathrm{l} \leq \mathrm{i} \leq(\mathrm{q}-3) / 2 ; \mathrm{l} \leq \mathrm{j} \leq(\mathrm{q}-1) / 2, \mathrm{l} \leq \mathrm{h}_{\mathrm{i}} \leq \mathrm{p}-1, \mathrm{i}=1, \ldots, \mathrm{~s} ;\left(\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{s}}\right) \neq(0, \ldots 0)$.
2) If $\theta \in \rho K$ and $\theta^{s}=a_{1}+a_{2} \theta+\ldots+a_{s} \theta^{s-1}, a_{1} \neq 0$, then the primitive idempotents of the group algebra $\operatorname{CSL}(2, q)$ which correspond to $\xi_{1}, \xi_{2}, \eta_{1}, \eta_{2}$ are as follows:
a-) If $\mathrm{s}=2 \mathrm{n}+1, \mathrm{n} \in \mathbf{N} \cup\{0\}$

$$
e_{\xi_{1}} \mathrm{e}_{1,0, \ldots} ; e_{\xi_{2}} e_{0 \ldots \ldots, a_{1}} ; e_{\eta_{2}} e_{1,0, \ldots, 0} ; e_{\eta_{2}} e_{0, \ldots, \ldots, a_{1}}
$$

, respectively.
b-) If $s=2 n, n \in N$

$$
e_{\xi_{1}} e_{0, \ldots, 0, a_{1}} ; e_{\xi_{2}} e_{1,0, \ldots, 0} ; e_{\eta_{1}} e_{0, \ldots, a_{1}} ; e_{\eta_{2}} e_{1,0, \ldots, \ldots}
$$

, respectively.

3-) If $\theta \in \mathrm{K}$ and $u=\left(\begin{array}{ll}1 & 0 \\ 0 & \rho\end{array}\right)$ then for any $s \in \mathbf{N}$, the primitive idempotents of the group algebra $\operatorname{CSL}(2, q)$ which correspond to $\xi_{1}, \xi_{2}, \eta_{1}, \eta_{2}$ are as follows:

$$
e_{\xi_{1},} e_{1,0, \ldots, 0} ; u e_{\xi_{1},} e_{1,0 \ldots, 0} u^{-1} ; e_{\eta_{1}} e_{1,0, \ldots, \ldots} ; u e_{\eta_{1}} e_{1,0, \ldots, \ldots} 0^{u^{-1}} .
$$

REFERENCES

[1] DORNHOFF, L. : Group Representation Theory, Dekker, New York, 1971.
[2] GÜZEL, E. : Primitive Idempotents of the Group Algebra CSL(3,q), Math. Scand., 70 (1992), 177-185.
[3] JANUSZ, C.J. : Primitive Idempotents in Group Algebra, Proc. Amer.
Math. Soc., 17 (1996), 520-523.
[4] SIMPSON, W.A. and FRAME, J.S. : The character tables for $\operatorname{SL}(3, q), \operatorname{SU}\left(3, \mathrm{q}^{2}\right), \operatorname{PSL}(3, q)$, $\operatorname{PSU}\left(3, \mathrm{q}^{2}\right)$, Can. J. Math., 25 (1973), 486-494.
[5] STEINBERG, R.: The Representations of GL($3, q)$, $\operatorname{GL}(4, q), \operatorname{PGL}(3, q)$ and PGL(4,q), Can. J. Math., 3(1951), 225-235.
[6] YELKENKAYA, N.: On Gauss Sums over Finite Fields, (to appear in İst. Üniv. Fen Fak. Mat: Der.).

Nese YELKENKAYA

Department of Mathematics
Faculty of Science
University of Istanbul
Vezneciler 34459, Istanbul, Turkey

