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ARITHMETICAL PROPERTIES OF THE
VALUES OF SOME POWER SERIES WITH
ALGEBRAIC COEFFICIENTS TAKEN FOR

U.-NUMBERS ARGUMENTS. *

Giilgen YILMAZ

Ahbstract : In this paper it is proved that the values of some gap series
for Un-numbers arguments are either a U-number of degree < m or an
element of a certain algebraic number field. In this work the method which
is used by Oryan for Liouville numbers in [9] and [10] is extended to the Up,-
numbers. This extended method is used first for the gap series with rational
coefficients and then for the gap series with algebraic coefficients. Further
by using the similar methods for the p-adic gap series the similar results
are obtained. The obtained results in the work contains the thecrems in
[9], {10] as special cases.

INTRODUCTION

Mahler (5] divided in 1932 the complex numbers into four classes A, S, T, U as
follows. ;
Let P(z) = @pz™ + ...+ ;T + ap be a polynomial with integer coeflicients. The :
number H(P) = max{|as|,...,|ao|} is called the height of P(zr). Let { be a complex

number and
we(H, &) = min{|P(¢)| : degree of P <mn, H(P) < H, P(£) # 0},

where n and H are natural numbers. Let

\ — logw,(H, )
) =1 — e
enl€) = Bmsup =
and
w(£) = limsup wnl) .
n—oo i1l

The inequalities 0 < wa(€) < oo and 0 < w(f) < oo hold, From wny1(H,§) < w,(H,£)
we get wpp1(£) 2 wa(€). So w(f) is either a non-zero finite number or positive infinity.

1This paper is an English translation of the substance of a doctoral dissertation accepted by the
Institute of Science of the University of Istanbul in October 1996, T am grateful to Prof. Dr. Mehmet
H. ORYAN for his valuable help and encouragement in all stages of this work.

Il




If for an index wp{£) = +oo, then u(£) is defined as the smallest of them; otherwise
p(€) = +oo. So g is uniquely determined and both of x(£} and w(€) cannot be finite.
Therefore there are the following four possibilities for £. £ is called

A — number if w(f)=10

S —number if 0 < w() <0, p(€) = oo,
T — number if w(€) =00, p(f) = oo,
L7 — number if w(f) =00

The class 4 is composed of all algebraic numbers. The transcendental numbers are
divided into the classes 5, T, U. £ is called a U-number of degree m (1 < m) if
(&) = m. U, denotes the set of U-numbers of degree m. The elements of the subclass
U, are called Liouville numbers.

Koksma [3] set up in 1939 another classification of complex numbers, He divided
them into four classes A*, §*, T*, U*. Let £ be a complex number and

wi(H, &) =min{{{ —a| : degreeof a<n, H(a) < H,a £},
where « is an algebraic number. Let

. . —log(Hw;(H,
wa{) = lim sup g(log I; &) ;

and

wH{€) = hmsup ”(6)

We have 0 < wi{€) € oo and 0 < w*(§) < oo. If for an index w’(€) = oo, then
p(€) is defined as the smallest of them; otherwise p*(€) = +oo. So p* is uniquely
determined and both of u*(£) and w*(€) cannot be finite. There are the following four
possibilities for £. £ is called

A* — number if w(€) =0, u*(£) = oo,
S* —number if 0 <w*(§) < o0, p*(£) = oo,
T* — number if w*(€) = oo, p*{€) = oo,
- U* — number if w*{§) = oo, w{£) < oo.
¢ is called a U*-number of degree m (1 < m) if *(€) = m. The set of U/*-numbers
of degree m is denoted by UZ.
Wirsing [12] proved that both classifications are equivalent, ie. A-, S-, T, U-

numbers are as same as A*-, S*-, T"-, U -numbers. Moerover every [/-mumber of
degree m is also a U*-number of degree m and conversely.
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LeVeque [4] proved that the subclass Up is not empty. Oryan [8] proved that
a class of power series with algebraic coeflicients take values in the subclass Uy, for i
algebraic arguments under certain conditions. Zeren [13] obtained the similar results : .
for the some gap series. Oryan [10] also proved that the values of some power series
for the arguments from the set of Liouville numbers are /-numbers of degree < m.

Let p be a fixed prime number and | ... |, denotes the p-adic valuation of the set ¥

of rational numbers § . Furthermore let @ , denotes the all p-adic numbers over @) .
Mahler [6] had a classification of p-adic numbers in 1934 as follows. Let

P) =g+ .. oz +ap :
be a polynomial with integer coefficients. The number
H(P) = max{|aal,. ., lao]}
is called the height of P. Let € be a p-adic number and
wn(H,€) = min{|P(£)}, : degree of P < n, H(P) < H, P(£) #0}

where n and H are natural numbers. Let

L "~ —logw,(H, &)
wn(f)—h;;nj;p g H

and
w(£) = limsup EPTEL) .

It is clear that 0 < w,(£) £ +oc and 0 < w(é} < +oo for m > 1. If for an index
wn(£Y = +o0, then p(€) is defined as the smallest of them; otherwise u(€) = +oc. So
w(£) is uniquely determined and both of w(£) and () cannot be finite. Therefore
there are the following four possibilities for p-adic £ number. The p-adic number £ is
called

A — number if w(€) =0, pl€) = o0,
S —number if 0 < w(f] <oo, ulf) = o0, '
T — number if w(f) =00, pl€)

U/ — number if w(€) = o0, plf) <

£ is called a U-number of degree m (1 < m) if p(€) = m. U, denotes the set of
U-numbers of degree m. The elements of the subclass U; are called Liouville numbers.
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The classification of complex numbers which is given by Koksma {3] can be carried

over @ ..
Let € be a p-adic number and

wi(H, &) =min{{ —af, : degreeofa<n, Hlo) < H, a#£&} ,

where n and H are natural numbers. Let

- log(Hu,(H.€)

w,(€) = hm sup

H—oo lOgH
and
w(£) = ]imsupw"—(g) .
LiEmdv el

The inequalities 0 < w?(§) < oo and 0 < w*(§) < oo hold. If for an index w;(£) = +o0,
then p*(£) is defined as the smallest of them; otherwise p*(£) = +oo. So p*(€) is
uniquely determined and both of p*(£) and w*{¢) cannot be finite. There are the
following four possibilities for £ The p-adic number £ is called

A* — number if wH(E) =0, p* (&) = oo,

S — number if 0 < w*(€) <oo, p(€) = oo,
T — number if w(€) =00, i (¢) = oo,
[* — number if whf) =0, p(f) <0

£ is called a U*-number of degree m (1 < m) if u*(&) = m. The set of p-adic U*-numbers
of degree m is denoted by Uy,.

Both classifications are equivalent, i.e. A-, 5-, T-, U-numbers are as same as A*-,
5%, T*-, U*-numbers. Moreover every U/-number of degree m is also a /*-number of
degree m and conversely. Oryan [8] proved that a class of power series with algebraic
coefficients takes values in the class p-adic Uy, for p-adic algebraic arguments. Zeren
[13] obtained the similar results for the some gap series. Furthermore Oryan [9] proved
that the values of some power series for the arguments from the set of p-adic Liouville
numbers are p-adic [/-numbers of degree < m.

LEMMAS

Lemma 1. Let ay,...,o¢ (k > 1) be algebraic numbers which belong to an
algebraic number field K of degree g, 7 be an algebraic number and F(y,zy,...,z4)
be a polynomial with integral coefficients so that its degree is at least one in y. Next
assume that F(5,0q,...,04) = 0. Then the degree of < dg and

h(ﬂ) < 32d9+(£1+--.+[k)9H9h(a.1)fls' o h(ak)fkg ,
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where 7(57) is the height of n, A{oy) (¢ =1,2,...,k) is the height of oy (i = 1,2,... . &},
H is the maximum of the absolute values of coefficients of F', & (i = L2,..., k) is the
degree of F inz; (¢ = 1,2,...,k) and d is the degree of Fin y. (O. . ICEN [2], p.25)

Lemma 2. Let o be an algebraic number of height A, then
lal < h+1
(Schneider, Th. [11], p.5, Hiifssatz 1)

Lemma 3. Let ay,...,ox {k > 1) be p-adic algebraic numbers in p-adic

number field @) , of degree g,  be a p-adic algebraic number and F(y,z1,. .. , k) be a
polynomial with integral coefficients so that its degree is at least one in y. Next assume
that F(n,ay,...,a) = 0. Then the degree of < dg and

hin) < gHETAI I 00 J19 L f(0g)0

where h(n) is the height of 5, h(ay) (i = 1,...,k} is the height of a; (i = 1,....k),
H is the maximum of the absolute values of coeflicients of ', £; (i = 1,...,k) is the
degree of Finz; (1 = 1,...,k) and d is the degree of F" in y. (Orhan §. ICEN [2], p.25)

Lemma 4. Let P(z) be a polynomial with integral coefficients, o € Q 5 and
P(a) =0. Then
ledp 2 H(PYT

where H (P} is the height of P(z). (J.F. Morrison [7], p.337)

Theorem (Baker). Let £ be a real or complex number, ¥ > 2 and oy, 03, . ..
be a sequence of distinct numbers in an algebraic number field X with field heights
Hiy (o), Hi(as), ... such that for each i

i€ — o) < (Hp{oq)) ™™ : ()

and

Clog Hy(ones)
1 —_— . 7
1211’ Sololp Tog (o) < 400 (2£)

Then ¢ is either an S-number or a T-number. {Baker, A. [1], p.98, Theorem 1)

THEOREMS

115




Theorem 1 . Let
flo) = Sen™ (BeZ (n=01,2..) h<kh <k <..) (L1)
n=0

be a series with non-zero rotional coefficients cg, = by, fax, (aw,,br, integers; by, # 0,
ay, > 0 and a,, > 1 for n > N;) satisfying the following conditions

1
0g 0k, = +00, {L.2)
n—toc logakn
) log [by., |
1 — <1 1.
I?—i}o}p logak“ { 3)
and
. logay,
nilrnc}oT = - 00. (1.4)

Furthermore let £ be o Uy,-number for whick the following two properties hold.

1°) £ has an approzimation with algebreic numbers oy of degree m of an algebraic
number fleld K so that the following holds for sufficiently large n

16— | < ﬁ(_o?ij (im w(n) = + o0), (15)

TL—00

where [K : Q] = m.

2°) There exist two real numbers &y and 82 with 1 < §, < 6 and

ag < H{oy,)* < af2 (L.6)

for sufficienily large n.

Then f{z) converges for every complez number = and f(£) is either o U-number
of degree < m or an algebraic number of K,

Proof. 1) Since the sequence {a,, } which satisfies the conditions above is strictly
increasing for sufficiently large n, we have ﬂ}l{go ak, = + 00. Because from {1.2) we get

log ag, ., > 2logag, > logay,
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for n > N, > N,. Hence ay,,, > ag,, that is, the sequence {ay, } is strictly increasing.
Moreover,

log ai, > log apy, gn—mh ‘
for n > Ny. It holds lim logay, = + o0, since Jim 2% = 4 oo. Hence we get
lim az, = +co.
—0C
Let e ]
og |by
6 = lim sup —2 k=

From (1.3) and from & < 42 < 1, there exists a number N € N such that

log |b, | < 1+4

log ax,, 2

holds for n > Ny > N;. Therefore we deduce

14¢

b < 0yl (17)

Let z be a complex number. We can show by using the Ratio Test that f(z)
converges. Say

@)= enatn =S u,
n=0

n=0
then from (1.2}, (1.4) and (1.7) we have

bigyr phn+

U"ﬂ+]— _ akn+1 1
- by — L€
Un ;‘;’-’Ek" Bt
for a suitable & > 0. Therefore

: Un+1

lim |—=|=0<1.

n—oa |

Now we prove an inequality which we will use later. Let Ag, := [ary, Gys-- -, Cko

and 7 be a constant such that 0 <5 <1 — (1/6;). We have the inequality

Akn < KD ﬂ]:;q (18}
for n > Ny > N; where Ky > 1 is a suitable constant. Because from (1.2) we have

logay, ., S l
logag, 7
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for n > N; > Ny and so
ek, < ap (1.9)

kg’

Let Ko = ag,ax, - - Qip,_, -From (1.9) it follows that

—-N
7 7T
Ofpy, < akMH«(akn
gt
Dk g 41 < G,

akn_] < a'kn

for n > Nj3. So we have

Ak“ < (£ ¢ S akNa_]akM v Qg
< Ky G et N
IS S /R
< f((] akn
1/(1—m)
< KO a-k"

which is the inequality (1.8).

2) We consider the polynomials
fa(Z) =) ez™  (n=1,2,3,..).
=0

Since

n
ko _ .k k 5
folak,) =D onof = auoy® + et + .+ aop € K
r=0

we have ( fn(ak“))° < m. Now we can determine an upper bound for the height of
fa{ex,). For this, we consider the polynomial

Fly,z) = Ay — 3 Ak, a2
v=0
Since F(y, z} is the polynomial with integral coefficients and

F(fﬂ(akn)iakn) = Aknfﬂ(akn) - Z Aknckyai:

p=0

= Ag falon,) — Ak, Y o0l =0
=0
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applving Lemma 1 we have

H{felon,)) < 32'1'm+k"'mH(F)mH(akn )k,..m
< 3 (Ag, Br, )" H (o, )"

where By, = Iﬂglgl{lbkvl}. From (1.6) we get

H(fu(an,)) < 3% (Ay, By, ) ap™ .
Moreover we can write
H{fu(aw,)) < ™Ay, By, )maf™

where ¢ = 3% > 1 is & constant. Since the sequence {ay, } is monotonically increasing
and lim ey, = + 00, it follows from (1.7)
T

o]

By, < @ (1.10)

n

for n > Ny > Ny, From here using (1.8) we get

S L8
H(fa(or,) < ™Klel "a’  ap™
ckanécnmaJEfi_ﬁ+%—£+62)m

(¢

[FAN

e

for n > Ny where ¢ = ¢Kp > 1 and v = }%ﬂ + ]—J{Q + 42 . From (1.4) we have

(Cf)knm — eknmlogn' < Emlagak“ — a;;r:l
for n > N5 > Ny. Thus it holds for n > Ny
H(falow,)) < apt (1.11)

where v =1+ 1.

3) Since

1F(€) = falan )l = {f(€) — fu(€) + ful€) = fulow,)
[F(€) = £l + 1fn () = falow, )]

<
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we can determine an upper bound for | £(€) — fn(€)] and | f,,(6) — fu ()| The following
equality holds,

Fal€) = falon,) = chvék”—zckuaﬁ: (1.12)
= ZCJW o —apr)

= chv — o )T E P o al )

=0

Moreover from (1.5) we have _
lax.| < K€l + 1

for n > N5 > Ns. Thus using (1.5) and (1.12) we get

[fn(€) = falaw )] < 1 —am | Y len J16™ 7 + 52y, + +a$§"*£ (1.13)
=0
< H{ay,) )57 oy, |k (6] + 15
=0 .

for n > Ng. Since
n .
D lew [Ru(lg]+ 1" < By, (€] + 1)
=0
using Jim w(k,) = +oo, (1.4) and (1.10) we have
1 g, i)
KB, (i1 + 1) < sap
for n > N; > Ny. From this inequality, (1.6) and (1.13) it follows that

1 w
ul€) = fulow )] < 5 H(ay,)Thoutinlgeteodrt

S _;_H(G_,k“)‘—‘knw(kﬂ)H(ak“)knw(kn)/z

1 -
= SH{o,) bl

for n > N;. Thus using (1.6) and (1.11) we deduce that there exists a suitable sequence
{wy} with Hl’i’l wh = 4o and

5l®) = Fulew )| < SH o) (1.12)
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for n > Nz > N7,

4) Now we can determine an upper bound for {f{£) - fa(£)|. We have

o- koo o |bkn+u1 knt
IF(6) — £ = 3 chnnn™ | £ 20 e
p= p=1 oty
From (1.7) we get *
by, 1
=02
an al

f

for # > N.. Thus ii follows

b b, iol
7@ - rat) < el g Bl

(2 ) np2
(1—-83/2
v [ (o S—
< e |V I{ s
kn+1 Fure _i

for n > Ny. Hence from (1 —6)/2 > 0, lim logas, = +00, (1.2) and (1.4) we have

(1-#)/2
Qg [YEY - 1
( ﬂ) 551}"“"2 Fat < =

Dy 2

e

£ an {(1-8)/2 ) ) 4
L : ] If}}nn+1+u—-‘m+1 < QJ'_V (L/ — 1‘2; 3’ N )
Chntln

for n > Ny > Ng. So we get |

, e [ 1 I
F6 - 101 < it [1+§+§+...+§;+.._]
Fa+1 X o
kin
< zlgl +1
N (=T
a’kn+i
for n > Ng.From (1.4) we have
" 1-0)/4
gl < ol
end
< I -4 I
HO - fe] < Jal (:.19)
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for n > Ny = Nyg. We define now s'(n) = (logay,,,/logay,). From (1.2)
lim §'(n) = +20. Using (1.13) we have

=00

()~ al€)] < Sags 0O

for n > Nyp. Since Jim §'(n) = +ec, from (1.11) we deduce that there exists a suitable
sequence {s(n}} with lim s(n} = 4o0 and

L sttmin-6)/4 1 ()

§akn < §H(f1t(akn)) (116)

for n > Ny > Nyg. Let now w* = min{s(n),w} for n > Ni;. So from (1.14) and
(1.16) it follows that

1£(&) ~ falaw)]l < H(falow,)) ™ (1.17)

for n = Ny where lim wi® = +-00. If the sequence {fa(cw,)} is constant then f(£) is
an algebraic number of K. Otherwise f(£) is a {/-number of degree < m.

Corollary , For k, = n and m = 1 from Theorem 1 we obtain Theorem 1 in [10]
as a special case,

Example . Let o be a constant algebraic number of degree m and ¢ be an integer
with ¢ > 1. We consider the number

o 1
_ 5 n
' ¢= e v

Because of Theorem 1 in [8] we know that £ is a Up,-number. We consider now the
algebraic numbers
n
1
an=zm—f@” (n=1,2,3,...) .
v=D ¢
From Lemma 1 we obtain
H(Gﬁn) < Ci:(n!)’ ,

where k& > 0 is a constant. Furthermore we get

€ —an| < I (g5 0)

o 12

1A IA

(H(an))~ 5

A

kn

(B ()5

| A
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52
as we have done before. if w, = @i:inii then w, — 00 88 n —+ oc. From here we have
1§ = an] < Haw)™ ( lim w, = +o0) (1.18)

This is the condition (1.6). Let now choose the sequences {a,,} and {0, } so that the
conditions (1.2), (1.3), (1.4) and (1.6) are satisfied. We define now f(z) suitably. The
degrees of the terms of the sequence {a,} are bounded. Therefore we can construct a
subsequence {ay,, } of this sequence so that the terms of this subsequence are different
from each other and the sequence {H(ayp, )} is strictly increasing. Ior this subsequence
it holds

lim sup log H{amy..,}

=400 . 1.19
koo log I (am,) ' (L19)

Becanse if this limsup was finite, from (ii) in Baker’ s Theorem and from (1.18) the
condition (i) would be satisfied and because of Baker’ s Theorem £ would be an S-
number or a T-number. This would contradict the fact that £ is a U;-number. Hence
(1.19) is true. On the other hand because of (1.19) there exists an index subsequence
{ng,} of the sequence {ng} such that

log H(ttn, ;)
lim —————— = . 1.20
e Tog Hlam,) - (1.20)
Since {H{ay,)} is monotonically increasing, we have

10gH(aﬂkj+l) logH(aﬂij)
to H{@n,,) 108 H (an,)

From here using (1.20) we get

log Hiey,, )
1' 341 — . )
oty logH(aﬂkj) oo (1.21)
Let
Qny = Hlan, ) (7=1,23,..)

where [r] denctes the integral part of z. For the sequence {an,  } we show that the
J
condition (1.6) is satisfied for §; = 2, §; = 3. It is clear that

an, = H(ankj)l[i?]

1)

2
< I’I(OcnkJ )ﬂ"j < a,?lk‘ .

2

Because it holds

Nk,
1< 2=y




and on the other hand

i<¢_1<![%]
3 7 2 2

for 1 é 6. Thus we have

nk,— 53

]

Now we show that the condition (1.2) is satisfied. From (1.21) we obtain

]‘ log H (o, i) )
] log H{ Oy, )

=1

and H (e, ) is monotonically increasing to infinity as j — co. Furthermore since
¥

log Grnip |[
log @y, N

f 3 +00
&3

as j — 0o, since
>

[
o
fim === = =
Joee Ty, 2
we obtain [ﬂk ]
logoy, — flog Hay,, )
. - 2 Nk
lim "’:_m Bl = oo
F—300 T"‘kj F—roo nkj,

From here we have the condition (1.4). For b, =1 (7 =0,1,2,...) the condition (1.3)
is satisfied. Thus the conditions of Theorem 1 are satisfied for £ and

o5 1 n
flay =2 ——a™
5=0 my

Therefore either u(f(£)) < m or f(£) belongs to K. Using the above ideas it is possible
to construct many other £ and f(z) so that the conditions of Theorem 1 are satisfied.

Theorem 2. Let

f@) = S g (heZ' n=01,2..); k<k <k <..)(21)

n=0 Gk

be a series with non-zero algebraic integer my, {n =0,1,2,...) of a number field K

of degree q and with positive integers ax, (ax, > 1 for n > Np) satisfying the following

conditions

hm log ay,,,

oo logakn - +OO, (22)
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log H (ms, )

i 2.
hﬁn_}s;p log ay., <1 (2.3)
and
i .
lim 2 = 4og (2.4)

n—ooo ko
where H(my,) (n=0,1,2,...) is the height of m, (n = 0,1,2,...). Furthermore let £

be a U, -number for which the following two properties hold.

1°) £ has an approzimation with algebraic numbers o, of degree m of an algebraic
number field L so that the following holds for sufficiently large n

€ — oy < (ﬂlLIIgow(n) = +00), (2.5)

_r
H(an)m‘)(")
where [L: Q] = m.

29) There erist two real numbers ¢ and ¢3 with 1 < ¢; < ¢ and
i@ < Hlo, ) < of? (26)

for sufficiently large n. Let M be a smallest number field which contains K and L with
M:Q)=t

Then f(z) converges for every complez number z and f(£) is either a U-number
of degree < t or an algebraic number of M.

Proof. 1) Since the sequence {ax, } which satisfies the conditions above is strictly

increasing for sufficiently large n, we have Jim ag, = + oo. Because from (2.2) we
have
logak,,, > 2logag, > logay,

for n > Ny > Ny. Hence ag,,, > ax,, that is, the sequence {ag, } is strictly increasing.
Moreover, :

log ag, > log agy, 2"~
for n > N, It holds lim logaz, = ++ oo, since lim 2® = 4+ oo, Thus we get
R—r00 n—oo
lim ay = + oo.
n—o0
Let tog B
# := limsup AV )

n—+oo IOg Ak,
From (2.3) and from 6§ < 12¢ < 1, there exists a number N, € IN such that

log H(m,) < 1+8
log g, 2
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holds for » > Ny > N,. Thus we deduce

l-_}'-ﬁ
Him,) < a) (2.7)
for n > N;. Applying Lemma 2 we have
LLF-
| < Hne) +1 < 2H(mp,) < 20, (2.8)

Let z be a complex number. We can show by using the Ratio Test that f(z)
converges. Say
_ T Tk kn >,
fla)=2, =" = un
n=0

a={ Qe

then from (2.2), (2.4) and (2.8) we have

Un1 1
u, | aiiH
for a suitable ¢ > 0. Therefore
lim |22 —p <1 |
TI—+00 Up
Now we prove an inequality which we will use later. Let Ay := [ap,, ag,---,04,)
and let 77 be a constant such that 0 <5 <1 - (1/¢;). We have the inequality
+ ;
Akﬂ S Opg v v - O, S ain("") (29)

for n> N3 > N, where 0 < € < ¢; — 1/(1 — n). From (2.2) we have

log Ly - l
log ay, 7
for n > N3 and so

o, < af . . (2.10)

Let Ky := apytig, - . . iy, _,. From (2.10) it follows

N
n 7 3
Ghwy T Ok gy < Gy
,.,.n—Na—I
akNa‘H < f_lk“

n
(277 < O.kn
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for n > Ni. Thus we have

A, £ agar, - Oy Qg v oo Oy
o Nz Ng-lg gnoy
< Ko ay,
< Ky an"+...+n+1
/{1~
< K ag / ~n)

for n > N;. Since linolG ai, = +oo, it follows
Ko S (J.in
for sufficiently large .. Thus we have inequality (2.9).

2) We consider the polynomials

falz) = inﬁx"” (n=1,2,3,...) .

=0 Gk,

Let
ik,
Tn = Z ak,, = fn(a'k,,) .
w=0 Qb
Since v, € M (n=1,2,3,...), we have (1,)° <t (n=1,2,3,...). Now we can
determine an upper bound for the height of ~,. For this, we consider the polynomial

lw
n-H .

F(y: T, T1s - - Iﬂ:zn*l) = Akn

v={ k'v

Since F(y, To, T1, .-, Tns Epy1) 18 the polynomial with integral coeflicients and

A A
F(%’l:’?kov nk17"‘?nkn!akn) = AknrYﬂ - Z _—ﬂkv k.,
v=0 akv
v k.
= ApYe - Ak, Z —ag =10,
v=0 Ok,

applying Lemma 1 we have
H(y,) < g#trtiGhit sl g n, ) Hine, ) H (g, )™

where H is the height of the polynomial F(y,zq,T1,. .., %0, Tn1), § = 6, d =
be=1,...,8, =144 =k, Since H = ma.x{Ak", -’:—kﬂ} = A;_, using (2.6) we
get

BTt AL H (mig)' - H (i) H (g, )

<
< 35k“£ALnH(nkn)t... H(my, )i vat

H('Tn)

127

-
o
v

e s Tt el sl




for n > Ns.
Let Ky = Himy,) - - H(nk,\.yl). From (2.7} it follows that

Hing) . Hi,) < Eilang, .- ax,) 07
<

Ki(agy0k, .. ag, )07

for n > N;. Thus using (2.9) we have

H ()

kot gt t(148)/2 eat
AL (argn, - - - ap, )T G

t1+8)/242 jeat

"

A A

Ck“i(ﬂ.kuak1 e CLk“)
gl HO/-mI 4D/ 240) o

IA

Cknralkf:-(l/(1—1?))}[f(1+9)/2+t]+621

ckn tﬂ.zt b

n

where y = [e + (1/(1 —))){(1 +6}/2 + 1] + ¢5 and ¢ > 1 is a suitable constant. On the
other hand from (2.4) we obtain

Cknt — ekntlogc S eiloguk“ _ a;n
for n > Ny > Nj. Thus we have
. »
H(w) < ay (2.11)

for n > Ny where ' =1+ 7.

3) Now we can determine an upper bound for |f(£) — 4,|. Since

ff(g)_")'n, = 'f(f}‘fn(f)"‘fn(f)’”."n'
< S ) = falE + [fal€) = mi

we must determine an upper bound for |f(€) — f.(€)| and |£.(€) — 7,|. We have

- nk" v - Ny :E,
@O - fu@l = |5 Beghlc 3 Il
v=nt1 Fky v=n+l Gk i
and from (2.8)
|77%. < 2@§=L+9)/2 — 900112
Ay Gk, n

for n > Ny, Thus it follows that

128




O -h@l < 5 Pelige o S5 gg-nign

vensl Fhu v=n+1
2 . 2
- (1_9)/2 I&ikn+] + (]_ﬁ)/‘z Igik:ﬂ& + A
. 1
Kntl K42
-2
Qiélknﬂ : Chengy (1=0)/2 kn42—Fkn41
= e 1t 13 + ...
akﬂ+l a'kﬂ-l-?

for n > N;. Hence from (1 - 8)/2 > 0, lirr;ﬂlogak" = +oo, (2.2) and {2.4) we can

. n=
obtain

a (1-8)/2 \ B 1
n+1 le n4l4e— Kol < 2_u {V — 1’2’3,” )

Liygr g

for n > N5 > N,. From here we have

2Jg[Fmn 11 1
7@ -LO] £ g |lrsrgt Tt
Ent1
4j¢[F+
(1—8)/2
ka1

=

for n > Ns. From (2.4) it follows that

" (1-6)/4
Slglk -H S akrﬁ-l
and here also
1 - .
IF() - f(8)] < Eakﬁl o (2.12)
for n > Ng¢ > N;. We define now s'(n) := (loges,,,/logas,). From (2.2)
Jim 5'(n) = +oo. Using (2.12) we have
1 —5'(n)(1-8}/4
() = 1u(&)] < S, (2.13)

for n > Ny. Since T}Lr& §'(n) = 400, from (2.11} we deduce that there exists a snitable
sequence {s(n)} with Jim s(n) = +oo and

1 ~s"{n}{1-6)/4 1 -
Eak"( H1-8)/ < aH(%‘) s(n)
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for m > N; > Ng. From here using (2.13) we have

7€)~ ule)] < 3 H )™ (2.14)

for n > N7

4) Now we can determine an upper bound for | £, (£) w'):n) |. The following equalities
heid.

ka K, Tow ks
fall) = = Z Z o (2.15)
!/_0 akv Pt Gk,
Mhew ¢ ooy k.
= — — o
yz;nﬂku S )
Ticy -  — -
-3 a6 JEF Ty e
=0

From (2.5) we have
lo, | < 1] +1

for m > Ny > N7. Thus uslng (2.5) and (2.15) we get

AN

[fal€) = m| < 15—%"[2';’%“&"“%‘5’“"—2@ +alT o (2.16)

3

S H knw{k")z ﬂ'k,, E |€!+1 ky—1

for n > Ng. Moreover we can obtain that

ko - o —
> el gt < 2age 4 e @17)
=0 kv
where (i, = m’?ig:|nkv|. Since the sequence {ay,} is monotonically increasing and
na

lim a;, = +oo, from (2.8) it follows that
n—oo
ﬁi— < 2a£1+0}/2
for n > Ny > Ny. Thus we have
K2 B, (1] + 151 < 2k (f€] + 1)F a0
for n > Ny. From (2.16) and (2.17) we obtain that

/€)= el < 2H g, ) o0 (€] 4 1t a1
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for n > Ny. Then using {2.6) it follows that

,"r (;) A % Qki(lﬂ“l‘l)’"’_l
REANY A U e =72

n

(2.18)

for sufficiently large n. Using (2.4) and '}Lrlgc w(ky) = 400 we deduce that there exists
a suitable sequence {s"(n)} with lim §'(n) = +oo and

B+ D L 1 |
—tman < lan) (2.19)

n

for n > Nyg > Ng. From (2.11), {2.18) and {2.19) we have

)~ ol € 3 H ) 2.2)

for n > Ny. Let now §”(n) := min{s"(n), s(n)} for n > Ny. Thus from (2.14) and
(2.20) it follows that

[F6) = 1l € H{p)™"™ (2.21)

for n > Ny where n11_}1{)10 §"{n) = +o0.

If the sequence {+,} is constant then f(£) is an algebraic number of A7. Otherwise
f(&) is a U-number of degree < t.
Corollary . For k, = n and t = 1 from Theorem 2 we obtain Theorem 3 in {10] as a
special case.

Example . Let & be a constant algebraic mumber of degree m and ¢ be an integer
with ¢ > 1. We consider the number

=1
= 7
(=5 e
Because of Theorem 1 in {8} £ is a Up-number, We consider now the algebraic numbers
» — = 1 v .
an—g—c(uf)Qa (n=1,2,3,...) .

From Lemma 1 we obtain
H(Oﬂn) < Ck(n‘.)"’

where k£ > 0 is a constant. From the above we get

ig - an, < (H(a'n))umun (wn =—m 3 OO) . i




This is the condition (2.5}. We can now choose the sequence {a,,} and {r,, } so that
the conditions (2.2}, (2.3), (2.4) and (2.6) are satisfied. As in the example of Theorem
1 we can construct a subsequence {ankj} of the sequence {a,} so that the terms of
this subsequence are different from each other and for the sequence {H(ap, )} the
conditions (.19}, {1.20} and {1.21) are satisfied.

Let

[+ (G=1,23,..)

iy, = H(crnkj)
and # be a constant algebraic integer of a number field K of degree q. If
T, =85 (G=123,..)

the conditions (2.2}, (2.3), (2.4) and (2.6) are satisfied for ¢; = 2, ¢y = 3. So the
conditions of Theorem 2 hold for £ and

fz) = i i T

i=0 Yy,

Therefore either p(f{€)) <t or f{£) belongs to a smallest number field which contains
K and @ (a).

Theorem 3 . In the p-adic field Q ,, let

s +
flz) = Sepst  (kh€Z (n=0,1,2,.. )% k<k <k <..) (31)
=0
be a series with non-zero rational coefficients ¢y, = by, /ox, (ok,, b, integers;
bi, # 0, ag, > 0, {ar,,b,) =1 and ay, > 1 Jor n > Ny) satisfying the following
conditions

lim sntl = 4o (3.2)
n—od
log Ai B

0 < lim sup —2P-2n Zkn (3.3)

n—co Uk,
and
s Ugy,

Jim — + 00 (3.4)
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where |Ckn|P = p_uk" ! "4kn = [a‘ko: gy - e 1O‘kn]1 Bkn = I};liag‘: lbku i Furthermore let 5 be a

kit

p-adic Uy,-number for which the following two properties hold.

1°) € has an approzimation with p-adic algebraic numbers oy of degree m of a
p-adic elgebraic number field K so that the jollowing holds for sufficiently large n.

€ = anlp < H(en) ™™ (lm w(n) = +o0) , {3.5)

ik Lo v]

where [K : Q] =m.

2°) There exist two real numbers &, and 6, with 1 < 6, < 4y and
pUe < H(ag, )™ < piin® (36)

for sufficiently large n where H(ay,) (n = 0,1,2,...) is the height of oy,
(n=0,1,2,...).

Then the radius of convergence of f(z) is infinity and F(£) is either a p-adic U-
number of degree < m or a p-adic algebraic number of K.

Proof . 1) Since

1 1 Lo M
= = o = liminf p™e = 400
. I . —fn kp—too '
.. Hmsup {/ lekalp  limsupp™ *s "
ke —ro0 kn—too

it follows that the radius of convergence of f{z) is infinity. We consider the polynomials

falz) = ick,x’“" (n=1,2,...) .

v=0

Since
= k ki k
— — k.
falow,) = D o 0F = cron® + o0t + .+ 0f € K,
w=0

we have {f,(a:,))° < m. Now we can determine an upper bound for the height of
Fa(c, ). For this, we consider the polynomial

Fly,z) = 4,y ~ ZAk,,Ck.,xk” .
=D )




Since F(y, z) is the polynomial with integral coefficients and

FPfulaw,), ai,) = Ak, fr(ox,) Z Ay, 0l =

applyving Lemma 3 we have

Hifalow,)) € 81 Hm g (FY"H(ay, Yoo

3™ (A, By, )" H(ay, )™

IA A

Thus using (3.G) we get
H(falon,)) < 3%™(Ag, By, )"phemt |

Moreover we can write

H{folow,)) < "™ (A, Bi,)"pten ™0 (3.7)
where ¢ > lisa CDIlSta.I}{t
Let ¢ := limsup —E—?h From (3.3) there exists a number V; € IN such that
T+ 00 n

logp Ay, By, < 1+8
’U.k" 2

for n > Ny > Ny, Thus we have

(Ag, B, )™ < pf2a (3.8)

148

for n > Ny where ¢z = “fm. From (3.4) we obtain

e = el s (9)

for n. > N; > Ny, Combining (3.7), (3.8) and (3.9) it follows that

H(fala,)) < ptin (3.10)

for n > N, where 63 = ¢y + m + mébs.

2) It holds that

FACIES Fnlok, )l

If(g) - fn(E) + fn(f) - fn(a’kn)!p (3'11)
ma‘}‘{Ef(E) - fn (E)lp} ;fn(f) - fn(akn)ip} ©

A
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We can determine an upper bound for [f(€) — f.(E}p and [fa(€) — fulow, }ip. [t holds

| S0 e &M,

y=n+1
max{!ckuw lplfliﬂﬂl 'Ck..n i.uIElﬁ"Hr s } .

We can find an upper bound for {ey, &5, as follows

147l = e el = e oo

fi

HOESAGIS

7N

From [3.4) we have
uk“/Q < Uk, — kn 10g;u i‘ﬂp

and
en €l < 7

for n » Ny » N,. According to (3.2), since the sequence {uy, } is monotonically
increasing for sufficiently large n we obtain

|f(£) - f,.L(§)|p < max{p"“"nH/g,p_“"n+1/2, .. } = p—uk,l—t—l/z (3.12)

for n > Ny > Nj.

3) We have

n
> ek (g™ - aft)

v=0

< it e, (€% - a2 ) (3.13)
P
T{%‘g{ﬂcku{pfﬁ — o €™+ Ry 4+ T )

[fa(€) = falar )iy =

I

Since
ek, |p = £ (€~ akn)!p = max{'flpv € —~ aknlp} < |ﬂ? +1

for sufficiently large m, it follows that
T e e, + o < (DM
Hence using (3.13) we get

[fn(€) = falow,)lp £ I}}E.g{{p_“k"}lg — a, [p(1€]p + l)k"_l .

Since the sequence {zg, }Hs monotonically increasing forn > Ny, m’é@c{p*“*v } is bounded.
=

Thus there exists a constant ¢; > 0 such that

|£a(€) = fulew)lp < cal€ = ag, lp(E]p + 1)F!
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for 7 > Ny. From {3.5) and {3.6) we have

L&) = Fulow )y S i Hiay,) 50 (3.14)
< anp—uknhw(kn)

for o > Ny where ¢5 > 0 is a constant. Since ﬂli_}l’{.low(kn) = +oc, from (3.2), (3.4)
and (3.10) we deduce that there exist two suitable sequences {s,} and {s!} with
lim & = 400, lim &) = +oo,
0 = 00
penl? < H{fu(ax, )~ (8.15)
and
anp—uk“élu(kn) < H(fﬂ(a,kn})gsﬂ (316}
for n > N5 > Ny, Therefore from (3.11), (3.12) and (3.14) we obtain
1£(6) = falaw,)lp < max{p ™12, chrp=unafiwlka)y (3.17)

for n > Ng. Thus combining (3.15), (3.16) and (3.17) we have

2"

17() = falow)lp < max{H (fu(ar,)) ™, H{/alow,) ™}

for n > Ns. Let s, := min{s], s; }. From the inequality above we get

1£(€) = falowa)lp < H(fulow, )7

for n > Ng where lim s, = +oo. If the sequence {f,(a,)} is not a constant sequence

then p(f(£)) <m for f({) that is, f(£) is a p-adic U-number of degree < m. Other-
wise f{£) is a p-adic algebraic number of K.

Corollary . For k, =n and m =1 from Theorem 3 we obtain Theorem 1 in (9]
as a special case.

Theorem 4 . In the p-adic fleld Q ,, let

f@) = S Prgk (heZ (=012 )ik <k <k <..) (41)

n=_ a‘kn
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be a series with non-zere p-adic elgebraic integers m, (n = 0,1,2,...) of a p-edic
number field I of degree q and with positive integers ay, {(ap, > 1 for n > Ng) ,

[/ ko |p = P40 and A, = [Gko, Ok, - - -, Ok, | Satisfying the following conditions
i
lim 2t = 4ooo, (4.2)
n—oo tkn
log, Ax, H
0 < hmsup M < 0o (4.3)
n—oo ik,
and
lim %o = 4.4
oy, = T (4.4)

where H(my,) (n=0,1,2,...) is the height of ny, (n = 0,1,2,...). Furthermore§ be a
p-adic Uy -number for which the following two properties hold.

1°) € has an approzimation with p-edic algebraic numbers an of degree m of a
p-adic number field L so that the following holds for sufficiently large n

€ ~ auly € Hlom)™ ™ (lim win) = +o0) (4.5)

n—0xa

where [L: Q] =m.

2°) There exist two real numbers ¢ and ¢ with 1 < ¢ < ¢ and
P < H (o, )™ < pfinc? (4.6)

for sufficiently large n where H(ay,) (n = 0,1,2,...) is the height of ay, (n =
0,1,2,...). Let M be a smallest number field which contain K and L with [M : Q] = ¢.

Then the radius of convergence of f(z) is infinity and fi(€) is either a p-adic U-

number of degree <t or a p-adic algebraic number of M.

Proof . 1) It can be satisfied that the radius of convergence of f(xz) is infinity as
Theorem 3. We consider the polynomials

falz) = inﬂx’“ (n=1,2,..) .

=0 a’kv
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Let

R4

T]'V Cp
o= falon,) = 3 —afr
v=() a'ku

Since v, € M, (7.)° <t {n=1,2,...). We can now determine an npper bound for the
height of 7,,. For this, we consider the polynomial

LA
_ Aba i
Fly,2q. %1, oy Tn, Tnyr) = Ap,y — E — T L,
=0 7

Since F(y, 2o, Z1,. - ., Tn, Tns1) is the polynomial with integral coeflicients and

n

A,
F (s Ty Moy o0 ey @) = Akl = 3 —==s,

u=0 Ckv

L
Aty Yo — Ak, 3~y =0,

=0 ke

applying Lemma 3 we have
H(%) < 32.1.1+{(1+1+...+1)+knlthH(nko)z . -H(T}kﬂ)iH(akn)k"t

where H is the height of the polynomial F(y,zo, ..., Tn,Trei), ¢ = & d = 1,
to=1,. ..,y =10, = k,. Since

H= I}}zlgi{Akn s Av, for,} = A,

using (4.6) we have

H(y.) < 3%0%tA, Hiny) ... Hin,)'pi=te (4.7)
S RALH) . Hng, )

for sufficiently large n where l; > 0 is a suitable constant. From (4.2) and (4.3) it
follows

HILII;O tk,-.+1/ logp (Aan(ﬁkn)) = +00 (48)
forn > Ny = Ny. Since Jay, |, € 1, from Lemma 4 we obtain

H(T’kn-ﬂ)_l S lnkn+; l? S p"tkn+1 lak.,.H lp S p*tkn_u

and from here

tka < logp H(ﬁan) .




Furthermore since A, > 1, we can write

tk,.H < logp H(’?k,.+1)
log,(As, H (m,)) — log, H(m,)

Thus using (4.8) we obtain

log, H(enrr) _
o Tog, Him)

It is satisfied

H(ney,)" > H{m,) (4.9)

for n > Ny > N, where v is a constant with 0 < v < 1/2.
Let Ko := H{mg)H{ng,) .. H{nky,_,). From (4.9) we have

n— Ny

H(Wm) < H(nkN2+1)V <H(U’En)y
H(Myy) < HOw )"

H(m, ) < Him)”

for n > Na. We also get

H(nky) - H(ne,) £ H(ngy) - Hniy, ) H (My,) - H (1)
Ko B, )" 24
KO H(ﬂ‘k,. )u"+...+v+1

Ko H(ne, )™ < Ko H(n,)?

TAN

AN IA

for n > N,. Combining this inequality with {4.7) it follows that

H(y,) < Ign AL KEH(my, ) pha ' (4.10)
< 1 (Ag H (e, ) pen

where [, is a constant with I; = [g K > 0. From (4.4) we obtain
li{:nt — pknﬂogpll .<_ ptk” (411)
for n > N3 > N,. On the other hand from {4.3) we have

Ak, H (i) < phn'? (4.12)
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for n > Ny » Ny where Iy > 0 is a suitable constant. Combining (4.10).(4.11) and
(4.12) it follows that

H(n) £ phn 2t ttontes = plinls (4.13)

for m > Ny where I3 is a constant with Iz = 1 + £(2ly + c9).

2) It holds

[FE) — fal€) + £ul€) — malp (4.14)
ma’I{Ef(f) - fn(f)im [fn(é-) - ’Tn!p} .

We can determine an upper bound for | f{€) — fal&)lp and [£.(&) — ynlp-

1£(€) = aly

IA

— - nkv Ky
)~ &)l = | 20 —=¢
v=n-{1 Ak, P
< max LLE € |E+, UL |§|§“”,...
ks P Ok,in p
and
Dka gha| o | on €l = ptan HonTog, Kl
G, » Ok, »

are hold. From {4.4) it follows that

te,
= <y, — knlog, €],
for n > Ny > N;.50 we have
-t
Tiﬂ{kn < p—:.kn'
Ak, .

for n > Ny. According to {4.2) since the sequence {#,, } is monotonically increasing for
sufficiently large n, we obtain

1£(€) = fal&)lp < max{p™nri/? phenia/? |} = pmthun /2 (4.15)

fOI'Tl.ZNﬁ 2 N5.
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3) Furthermore it is clear that

n
Tk, " n Mk . -
£al&) = by = [0 T2(E — o)l < x| (6 — o) (4.16)
w0 Sy A »
- m{ R +.--+a-t:"?1p}
v ip
Since

e, lp = [€ = (€ awJlp < max{lE!,,,!E - a'knlp} < +1

for sufficiently large n, we get
IEku-i + Eku—ﬁak“ .+ aﬁ:ilip S (Mlp"" 1)).:.,41 .
From here using (4.16) we obtain

Ifn(g) - ')'nlp < I}}Eﬁ‘{pﬁk"}lf -~ aknlp(l’flp + 1)):,,4 -

Since the sequence {x, } is monotonically increasing for n > N, m"ag({p_“v} is bounded.
=l

Therefore there exists a positive constant Iy such that
£(6) = o < alé — o, p(lE]p + 1)
for n > Ng Thus from (4.5) and (4.6} we have

) = mlp < U= H(oy, ) 5wt (4.17)
< ligﬂp;tk“c;w(kﬂ)

for n > Ny where l; is a suitable constant with Iy > . Furthermore from ILI& wlk,) =
n

400, (4.2), (4.4) and (4.13) we deduce that there exist suitable sequences {s/,} and
{s!} such that

ptren/? < H () (4.18)
and
[’gnp_tknclu(kn) S H(ryn)"s:: (4. 19)

for n > Ny > Ng where lim s, = 400 and lim s¥ = +o00. Combining (4.14), (4.15)
n—3rod Ti—+00
and (4.17) we obtain

[F(€) = Tulp < max{phen /2, fhepikacrsslin)y (4.20)
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for n > N7. From here using (4.18), (4.19) and {4.20) we also have

|f(£) - "Yﬂ.ip < mﬂ.X{H("‘}'ﬂ)“‘;’ H(,Yn}—sﬂ}

for n > N;. Let s, := min{s/, s2}. From the inequality above we obtain

n* n

1F(&) = e < Hwm) ™™

for sufficiently large n where lirgo 8, = +oo. If the sequence {7y,} is not a constant
L3

"t
sequence then u(f(£)) < t for f(£), that is, f(£) is a p-adic U-number of degree < ¢
Otherwise f(£) is a p-adic algebraic number of K.

Corollary . For k; = n ve t = 1 from Theorem 4 we obtain Theorem 3 in [9] as
a special case.
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