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A R I T H M E T I C A L PROPERTIES OF T H E 
V A L U E S OF S O M E P O W E R SERIES W I T H 
A L G E B R A I C C O E F F I C I E N T S T A K E N F O R 

f / m - N U M B E R S A R G U M E N T S . 1 

Gulden Y I L M A Z 

A b s t r a c t : I n this paper i t is proved that the values of some gap series 
for Um-numbers arguments are either a ( /-number of degree < m or an 
element of a certain algebraic number field. I n this work the method which 
is used by Oryan for Liouvil le numbers i n [9] and [10] is extended to the Um-
numbers. This extended method is used first for the gap series w i t h rat ional 
coefficients and then for the gap series w i t h algebraic coefficients. Further 
by using the similar methods for the p-adic gap series the similar results 
are obtained. The obtained results i n the work contains the theorems in 
[9], [10] as special cases. 

I N T R O D U C T I O N 

Mahler [5] d iv ided i n 1932 the complex numbers into four classes A, S, T, U as 
follows. 

Let P{x) — anxn + ... + ci\x + a 0 be a polynomial w i t h integer coefficients. The 
number H{P) — m a x { | a R | , . . . , \a0\} is called the height of P{x). Let £ be a complex 
number and 

" n ( t f , f l - n i i n { | P ( O I : degree of P < n, H{P) < H, P ( 0 + 0 } , 

where n and H are na tura l numbers. Let 

H^oo lOg H 

and 

n-foo Tl 

The inequalities 0 < < co and 0 < < oo hold. From ujn+i(H,£) < wn(Ht£) 
we get u j n + i ( ^ ) > u>n{C)- So is either a non-zero finite number or positive infinity. 

! T h i s paper is an English translation of the substance of a doctoral dissertation accepted by the 
Institute of Science of the University of Istanbul in October 1996. Ï am grateful to Prof. Dr. Mehmet 
H. O R Y A N for his valuable help and encouragement in all stages of this work. 
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I f for an index = + 0 0 , then is defined as the smallest of them; otherwise 
— + 0 0 . So fi is uniquely determined and both of fi(Q and u(£) cannot be finite. 

Therefore there are the following four possibilities for £. £ is called 

A - number i f — 0 , — 00, 

S - number i f 0 < < 00 , fj,(£) = 00, 

T — number if u)(£) — 00 , = 00, 

U - number if = 00 , < 00. 

The class .4 is composed of all algebraic numbers. The transcendental numbers are 
divided into the classes 5, T, U. £ is called a [/-number of degree m {1 < m) i f 

= m. Um denotes the set of [/-numbers of degree m. The elements of the subclass 
U\ are called Liouvi l le numbers. 

Koksma [3] set up i n 1939 another classification of complex numbers. He divided 
them into four classes A", S", T*, U*. Let £ be a complex number and 

a>* = min{|£ - ar| : degree of a < n , H(a) < H , a ^ £} , 

where a is an algebraic number. Let 

H-*ao log i l 

and 

We have 0 < < 00 and 0 < < 00. I f for an index = + 0 0 , then 
is defined as the smallest of them; otherwise / / ( £ ) — + 0 0 . So /J* is uniquely 

determined and bo th of and cannot be finite. There are the fol lowing four 
possibilities for £. £ is called 

A* - number i f = 0 , /**(£) = co, 
- number i f 0 < < 00 , = 00, 

T* — number i f — 00 , — 00, 

U* — number i f = 00 , < 00. 

£ is called a [ / ' -number of degree m (1 < m) i f //*(£) = m . The set of [ /"-numbers 
of degree m. is denoted by U^. 

Wirs ing [12] proved t h a t both classifications are equivalent, i.e. 5-, T - , [/¬
numbers are as same as A*-, 5*-, T*- , [ / ' -numbers. Moerover every {J-mimber of 
degree m is also a [ /" -number of degree m and conversely. 
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LeVeque [4] proved that the subclass Um is not empty. Oryan [8] proved that 
a class of power series w i t h algebraic coefficients take values in the subclass for 
algebraic arguments under certain conditions. Zeren [13] obtained the similar results 
for the some gap series. Oryan [10] also proved t h a t the values of some power series 
for the arguments from the set of Liouville numbers are [/-numbers of degree < rn. 

Let p be a fixed prime number and |... \p denotes the p-adic valuation of the set 
of rat ional numbers Q . Furthermore let Q p denotes the all p-adic numbers over Q . 

Mahler [6] had a classification of p-adic numbers i n 1934 as follows. Let 

P(x) = a„zn + ... + aix - f cio 

be a po lynomial w i t h integer coefficients. The number 

is called the height of P. Let £ be a p-adic number and 

w B ( i f , 0 = m i n { | P ( 0 | P = degree of P < n, H(P) < J=T, P (£ ) ± 0} 

where n and H are na tura l numbers. Let 

Lon {£) = hm sup — -—i- , 
H-KX, log H 

and 
w ( 0 = I i m s u p i ^ . 

n-*oo 71 

I t is clear t h a t 0 < < +oo and 0 < < +oo for n > 1. I f for an index 
— +oo , then fj,(£) is defined as the smallest of them; otherwise — +oo . So 

fj,(£) is uniquely determined and both of OJ{£) and /*(£) cannot be f inite. Therefore 
there are the fol lowing four possibilities for p-adic £ number. The p-adic number £ is 
called 

A — number i f = 0 , fi(£) — oo, 
S - number i f 0 < < co , = oo, 
T — number i f = oo , — oo, 
U - number i f w f f ) — oo , < oo. 

£ is called a [ / -number of degree m (1 < m) i f /x(f) = m . f / m denotes the set of 
[ /-numbers of degree m . The elements of the subclass Ui are called Liouvil le numbers. 
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The classification of complex numbers which is given by Koksma [3] can be carried 
over Q p . 

Let £ be a p-adic number and 

w ; i ( t f , 0 = n i i n { | f - a | J > : degree of a < n , H{a) < H , a + £} , 

where TJ and H are natural numbers. Let 

w „ f = h m s u p — , 
i?-»oo lOg H 

and 
w * ( 0 = h m s u p ^ ^ . 

The inequalities 0 < < oo and Q < < oo hold. I f for an index = +oo , 
then fj.*(£) is defined as the smallest of them; otherwise ft*{£) — + 0 0 . So /J*(£) is 
uniquely determined and bo th of ^*(£) and cannot be finite. There are the 
following four possibilities for f . The p-adic number £ is called 

.4* — number i f — 0 , = oo, 
5" — number i f 0 < w*(£) < oo , ju*(£) = oo, 
T " — number i f w*(£) — oo , p*(£) — oo, 
[/* - number i f — co , < oo. 

£ is called a [/*-number of degree m (1 < m) i f = m , The set of p-adic i7*-numbers 
of degree m is denoted by U^. 

B o t h classifications are equivalent, i.e. 5-, T - . [/-numbers are as same as A*~, 
S*-, T*-} [ /"-numbers. Moreover every [ / -number of degree m is also a [/"-number of 
degree m and conversely. Oryan [8] proved t h a t a class of power series w i t h algebraic 
coefficients takes values i n the class p-adic Um for p-adic algebraic arguments. Zeren 
[13] obtained the s imilar results for the some gap series. Furthermore Oryan [9] proved 
t h a t the values of some power series for the arguments from the set of p-adic Liouvil le 
numbers are p-adic [/-numbers of degree < m. 

L e m m a 1 . Let a i Q k (A: > 1) be algebraic numbers which belong to an 
algebraic number field K of degree g, 77 be an algebraic number and F(y,xll... , 2 ^ ) 
be a po lynomial w i t h integral coefficients so t h a t its degree is at least one in y. Next 
assume t h a t Ffi?, a i , . . . , ctfc) = 0. Then the degree of rj < dg and 
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where !ı(rj) ıs the height of ft(04) (i = 1 , 2 . . . . . k) is the height of a* { i = 1,2,.... A:), 
is the m a x i m u m of the absolute values of coefficients of F , U ( i = 1, 2 , . . . , k) is the 

degree of F in x f ( i = 1 ,2, . . . ,*) and d is the degree of F i n y. (O. Ş. İÇEN [2], p.25) 

L e m m a 2. Le t a be an algebraic number of height h, then 

\a\<h+l 

(Schneider, T h . [11], p.5, Hilfssatz 1) 

L e m m a 3. Let aly...,ak {k > 1) be p-adic algebraic numbers i n p-adic 
number field Q p of degree 5. T; be a p-adic algebraic number and F(yt £ 1 , . . . , Zfc) be a 
polynomial w i t h integral coefficients so that i ts degree is at least one i n y. Next assume 
that F(r}t a x , . . . , ak) - 0. Then the degree of rj < dg and 

h{rj) < 3 2 d f l + ( i l + - + £ t , i ' i i ^ ( a i / l i ' . . . k{ak)ikS , 

where ^(77) is the height of 7j, /i(ojj) { i = 1 , . . . , fc) is the height of ctf ( i = 1 , . . . , k), 
H is the m a x i m u m of the absolute values of coefficients of F, l{ (i — 1 , . . . , k) is the 
degree of F in x{ (i = 1 , . . . , k) and d is the degree of F i n y. (Orhan Ş. İÇEN [2], p.25) 

L e m m a 4. Let P{x) be a po lynomial w i t h integral coefficients, a £ Q p and 
P ( a ) = 0. Then 

H P > i f ( P ) " 1 , 

where H(P) is the height of P{x). (J .F. Morr ison [7], p.337) 

T h e o r e m ( B a k e r ) . Let £ be a real or complex number, x > 2 and a 1 ; a 2 ) • • • 
be a sequence of d is t inct numbers in an algebraic number field K w i t h field heights 
# j i ' ( i * ı ) j - f r A ' ( û ! 2 ) î • • • such that for each i 

| f - a J < ( i M a O ) - * ( i ) 

and 

l o g i T K ( a i + 3 ) 
h m s u p - r - < + 0 0 . (M) 

i^oo log HK{ai) 

Then £ is either an 5-number or a T-number. (Baker, A . [1], p.98, Theorem 1) 

T H E O R E M S 
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T h e o r e m 1 . Let 

C O 

/ ( s ) = E c ^ " ( ^ € Z (71 = 0 , 1 , 2 , . . . ) ; k0<kl<k2<..:) (1.1) 

6e a series with non-zero rational coefficients = hk,Ja,kn (a£ n,fy ;„ integers; b^ ^ 0. 
at,, > 0 ana! a f c n > 1 for n > No) satisfying the following conditions 

l i m l £ i ^ = + 0 O , ( L 2 ) 

n->a= loga f c n 

l i m s u p 1 ^ ^ ^ < 1 (1.3) 
n-ioo logafcn 

and 

log at 
hm = + o o . (1.4 

Furthermore let ^ be a Um-num.ber for which the following two properties hold. 

1°) £ has an approximation with algebraic numbers an of degree m of an algebraic 
number field K so that the following holds for sufficiently large n 

where \K : Q ] = m. 

2°) There exist two real numbers <5j and So with 1 < Si < 62 and 

4\ < H ( a t , ) * - < a £ (1.6) 

for sufficiently large n. 
Then f(x) converges for every complex number x and /(£) is either a U-number 

of degree < m or an algebraic number of K. 

P r o o f . 1 ) Since the sequence {akn} which satisfies the conditions above is strictly 
increasing for sufficiently large n , we have l i m at„ = + 00. Because f rom f l 21 we eet 

l o g ° * » + i > S l o g a n > l oga f c n 
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for n > Ni > N(). Hence akn+1 > a f c n , that, is, the sequence {akli} is str ict ly increasing. 
Moreover, 

log a*, > l o g a ^ i 2 " - A ' 1 

for n > Ni. i t holds l i m log a*. = + oo, since l i m 2" — + 0 0 . Hence we get 
l i m a/;n = + 00, 

Let 
a v ! o g | ^ J 
v : = i imsup 

«—*oo log afcn 

From (1.3) and from 6 < ~ < 1, there exists a number iV 2 £ JN such that 

l o g l f i j t j < 1 + 6 
log ajt„ ~ 2 

holds for n > N2 > iV i . Therefore we deduce 

| 6 * J < « i f • (1.7) 

Let 2; be a complex number. We can show by using the Ratio Test that f(x) 
converges. Say 

C O CO 

)i=0 

then from (1.2), (1.4) and (1.7) we have 
71 = 0 

< 

for a suitable £ > 0. Therefore 

l i m 
II—>oo 

- 0 < 1 . 

Now we prove an inequality which we w i l l use later. Let A^n : = [a/^, a * j , . . . , a^J 
and T\ be a constant such t h a t 0 < 77 < 1 — (l /<5i)- We have the inequality 

for n > N3 > N2 where i fo > 1 is a suitable constant. Because from (1.2) we have 

log«fc n + i 1 
!og a f c n 77 
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for n > A" 3 > A ;
2 and so 

a*n < (1-9) 

Let A'o : = akoakl . . . akKs_1 .From (1.9) it. follows that 

for n > Ns. So we have 

Ak„ < akoakl . . . afc^.j . . . 
<r h" / . I 7 i " - w 3 + i i " " A r 3 - i + . . . + l i + i 

< A 0 a i n 

which is the inequality (1.8). 

2) We consider the polynomials 

/ « ( * ) = f X * * " (0 = 1 ,2 ,3 , . . . ) . 

Since 

we have {fn{^kn))° < " i - Now w e c a n determine an upper bound for the height of 
jn( a fc„)- For this , we consider the po lynomia l 

n 

F{y,x) = Akny - £ Akackvxk" . 

Since F{y,x) is the polynomial w i t h integral coefficients and 
n 

^ ( / ^ ( a f c n W J = A j ^ / n f a O - Aknckvak£ 

= A f c „ / n ( a t i l ) - Akn ckuak

k"n = 0 
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applying Lemma 1 we have 

H{fn{akn)) < 32Am+k"rnH{F)7nH[akn)k»m 

< Z:ik"">(AknBkii)mH(ahJk-m 

where Bkn maxi lbjt I ) . From (1.6) we get 

H(fn{^J) < 3 3 t " m ( . 4 f c B B j b J m a £ m . 

Moreover we can wri te 

where c = 3 3 > 1 is a constant. Since the sequence {aku} is monotonicaily increasing 
and l i m ak = + oo, i t follows from (1.7) 

J 1 - + O 0 " 

< akl (1.10) 

for n > N4 > N3. From here using (1.8) we get 

for n > N4 where d = offo > 1 and 7 = ^ + ^ - f <52 • FVom (1 .4) we have 

for n> N5> N4. Thus i t holds for n > A f
5 

H ( / B ( a t J ) < (1.11) 

where y = 1 + 7 . 

3) Since 

1 / (0 -fMkJ\ = i /CO - + / „ ( € ) - / n ( a i b j | 

< | / ( 0 - / n ( i ) [ + ! / n C f ) - / n ( a O I 
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we can determine an upper bound for | / (£ )~ /n(£ ) l a n d !/»).(£) ~ / n ( Q f c n ) i - The following 
equality holds. 

/ « ( 0 - / » { « * „ ) = t ^ - t ^ ; ( i . i 2 ) 

i/=0 

Moreover f r om (1.5) we have 

for n>N6> N5. Thus using (1.5) and (1.12) we get 

| / n ( 0 - / n K ) l < f e - ^ J E i c f c J j e ' ; ' ' - 1 + ^ - 2 a f c n + . . . + a ^ - 1 | (1.13) 

< ^ J - ^ ^ E l c J ^ d ^ + l ) ^ - 1 

for n > NQ. Since 

E K M I i l + i ^ - ^ ^ d i i + i ) * - - 1 

using l i m w(/c n) = +oo , (1.4) and (1.10) we have 

^ ( I f l + i ) * " - - ^ ^ 2 ^ 

for n > Ny > NG. From this inequality, (1.6) and (1.13) i t follows t h a t 

l / n ( 0 - / n K J i < ^ ( ^ ) - ^ < ^ a f ; ( t ^ 2 

< ^ ( a j i J ^ ^ - ^ i Q f c J ^ - J / 2 

for n > N7. Thus using (1.6) and (1.11) we deduce t h a t there exists a suitable sequence 
{u)*\ w i t h l i m w* = + o o and 

! / „ ( £ ) - / « K J I < \H(fn(akn))-< (1.14) 
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for n > Ns > N7. 

4) Now we can determine an upper bound for - / „ (£) !• W e h a v e 

l / ( 0 - A ( i ) i = 

From (1.7) we get 

for v > N:. Thus i t follows 

,7^ akn+li 

1 / ( 0 - / » ( 0 I < J ^ | € M + ^ | € | ^ + . . . 

< 
1 J . [ fc" + ' j j^ j i : n +2 -Jr n +l + _ _ 

for v > N&. Hence f rom (1 - 6)/2 > 0, J i m log ~ +oo , (1.2) and (1.4) we have 

\ ^ - " ^ 2 1 
^ |tjfc,H.2-fc„+i < 1 

, \ ( l - t f ) / 2 

for n > A"3 > A ' s . So we get 

i / i o - / » c o i < 
a . 

< 
2jg| f c " + 1 

1 1 1 

for n > Ag.Fron) (1.4) we have 

; n d 

1 / ( 0 - / » ( 0 I < k ^ ' 4 
0-15) 
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for n > Nio > Ng. We define now s'(n) : = ( l o g a f c | i + 1 / l o g £!*„). From (1.2) 
l im s'(n) = -foo. Us ing (1.15) we have 

1 / (0 - / . { f ) l < W M < 1 - ° } " 2 

for n > Nw- Since l i m s'(n) — +oc, from (1.11) we deduce that there exists a suitable 
~ l i — I C O 

sequence { s ( n ) } w i t h l i m s(n) — +oo and 

\a-k;'W-W < \H{fn{akn))-™ (1.16) 

for n > A 'n > A rio- Let now m" : = m i n { s ( n ) , w * } for n > A r
u . So from (1.14) and 

(1.16) i t follows t h a t 

\f(0~fnM\ < H(fn(akn))-<' (1.17) 

for n > Nu where l i m u** = +oo. I f the sequence { /* (£**„)} is constant then / ( £ ) is 
an algebraic number of K. Otherwise / ( £ ) is a ( /-number of degree < m. 

C o r o l l a r y . For kn — n and m = 1 from Theorem 1 we obtain Theorem 1 i n [10] 
as a special case. 

E x a m p l e . Let a be a constant algebraic number of degree m and c be an integer 
w i t h c > 1. We consider the number 

C O 1 

e = £ ^ -

Because of Theorem 1 i n [S] we know t h a t £ is a £/m-number. We consider now the 
algebraic numbers 

" 1 

a » = E ^ ^ (71 = 1 ,2 ,3 , . . . ) . 

From Lemma 1 we obtain 

where k > 0 is a constant. Furthermore we get 

i e - t * „ i < c - « » + i > ! > s * ( £ > o ) 
< c - ( n l ) a ( n + l ) a e 

< ( i / K ) ) - 1 ^ 

< ( K M r ^ 
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as we have done before. I f u>n = f " ^ ) ? c then w„ -> oo as n - r oo. From here we have 

- a J < J f f a - J - * " - ' ( l i m u>„ = + 0 0 ) . (1.18) 

Th is is the condit ion (1.5). Let now choose the sequences { a „ t } and {b„k} so that the 
conditions (1.2), (1.3), (1.4) and (1.6) are satisfied. We define now f{x) suitably. The 
degrees of the terms of the sequence {a„} are bounded. Therefore we can construct a 
subsequence { a „ t } of this sequence so that the terms of this subsequence are different 
from each other and the sequence {H(ank)} is s tr i c t ly increasing. For this subsequence 
i t holds 

U m s u p M i ^ i = + c o . { L 1 9 ) 

log i f (a „ J 

Because i f this l i m sup was finite, from (i i ) i n B a k e r ' s Theorem and from (1.18) the 
condit ion (i) would be satisfied and because of Baker 1 s Theorem £ would be an S-
number or a T-number . This would contradict the fact that £ is a D^-number. Hence 
(1.19) is true . O n the other hand because of (1.19) there exists an index subsequence 
{nkj} of the sequence {nk} such that 

Since {H(ank)} is monotonically increasing, we have 

\ogH{ank.+1) logH{an,.+i) 

J o g f f ( a n t j ) ~ logH(ank.) 

From here using (1.20) we get 

log H(an. ) 
• U m 7 «f J + 1 , = + 0 0 . (1.21) 3^ log H(ankj) 

L e t 

ankj : = ^ ( a B t . ) I M I (,, = 1 ,2 ,3 , . . . ) 

where fx| denotes the integral part of x. For the sequence { a n f c . } we show that the 
condit ion (1.6) is satisfied for ¿1 = 2 , 6-2 — 3. i t is clear t h a t 

Because i t holds 

2 
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and on the other band 

for 7i/.. > 6. Thus we have 

Tijr - Hi, -

3 ~ 2 

nk} < 3 
I 2 

Now we show that the condition (1.2) is satisfied. From (1.21) we obtain 

log ank. 

iog ar 

as j —> cc, since 

/ r ] | log H{a1lk 

-co 

> 
and H(ant ) is monotonically increasing to in f in i ty as j —»• co. Furthermore since 

Hm 

we obtain 
l o g o - . 

hrn = h m - — - — = +oo . 
log H (a, 

j->co nkj 3-+00 nkj 

From here we have the condit ion (1.4). For brLk_ — 1 (j = Q, 1,2. . . . ) the condition (1.3) 
is satisfied. Thus the conditions of Theorem 1 are satisfied for £ and 

3=0 a % 

Therefore either / i ( / ( £ ) ) < m or / ( £ ) belongs to i f . Using the above ideas i t is possible 
to construct many other f and f(x) so t h a t the conditions of Theorem 1 are satisfied. 

T h e o r e m 2. Let 

/ ( z ) = E — ^ " ( ^ n € Z + (71 = 0 , 1 , 2 , . . . ) ; A o < A i < * 2 < . . . ) (2-1) 
»1=0 

&e a senes WZ£/A non-zero algebraic integer rjkn (n = 0 , 1 , 2 , . . . ) of a number field K 
of degree q and with positive integers akn (akn >lforn> N0) satisfying the following 
conditions 

h m —- +- = + co , 
I 1 - + O C \ogakn 

(2.2) 
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l o g / f ( T f c n ) 
km s u p — — — < 1 (2.o) 

n-»oo log a k n 

and 

^ » ^ = + 0 0 , (2.4) 

Wiere H(rjkn) {n = 0 , 1 , 2 , . . . ) is the height off]k„ (ft = 0 ,1 , 2 , . . . ) . Furthermore let £ 
/>? a Um-number for which the following two properties hold. 

1°) £ has an approximation with algebraic numbers a„ of degree m of an algebraic 
number field L so that, the following holds for sufficiently large n 

I f - a ' » l < „ , \ — ( i i m ^ f " ) = 4- oo) , (2.5) 

lo/iere [L : Q ] = m. 

2°) There exist two real numbers c± and c 2 with 1 < c i < c 2 and 

fl£ < H ( a * J * B < a £ (2-6) 

/ o r sufficiently large n. Let M be a smallest number field which contains K and L with 
[ M : < Q ] = t . 

Then f(x) converges for every complex number x and /(£) is either a U-number 
of degree <t or an algebraic number of M. 

P r o o f . 1) Since the sequence {akn} which satisfies the conditions above is s tr i c t ly 
increasing for sufficiently large n , we have l i m akn ~ 4- oo. Because f rom (2.2) we 
have 

l o g a ^ > 21oga f c n > Ioga f c n 

for n > Ni > NQ. Hence a t n + ] > ak„, t h a t is, the sequence { a t n } is s tr i c t ly increasing. 
Moreover, 

l oga f c n > log ^ 2 " - * ' 

for n > Ni. I t holds l i m logafc„ = 4- oo, since l i m 2" = + oo. Thus we get 
l i m at = + oo. 

Let 

8 := l i m sup -•—— . 
Ti-too log akn 

From (2.3) and f r om 6 < ^ < 1, there exists a number N2 € K such t h a t 

log a*. 
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holds for n > A'2 > Ni. Thus we deduce 

for n > A 2 . A p p l y i n g Lemma 2 we have 

K , | < + 1 < 2 f f ( i ; f c J < 2 ^ . 

(2,7; 

(2.8) 

Let 1 be a complex number. We can show by using the Ratio Test that f(x) 
converges. Say 

then from (2.2), (2.4) and (2.8) we have 

for a suitable > 0. Therefore 

l i m 
n->00 

Un+1 = 0 < 1 . 

Now we prove an inequality which we w i l l use later. Let Akn : = [a^ 0 , , . . . , akn] 
and let 77 be a constant such that 0 < 7? < 1 - ( 1 / c i ) . We have the inequality 

for n > A 3 > A r
2 where 0 < e < c i - 1 / (1 - TJ). From (2.2) we have 

log akn r} 

for 71 > A 3 and so 

Let K0 : = a j t D a f c l • - • ^ N . _ r From (2.10) i t follows 

(2.10) 
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for ??- > A3. Thus we have 

Akn < akoakl...akK3_1akNa...akn 

, ts- r ) " + . . . + I ) - r - l 
< 0 akn 

for n > A3. Since l i m akn = + 0 0 . i t follows 

for sufficiently large n . Thus we have inequality (2.9). 

2) We consider the polynomials 

/»(z) = E — ( 1 = 1 , 2 , 3 , . . . ) . 

Let 

7 « : = E ^ f c = / B ( a f c J • 
„ = 0 a k -

Since 7 „ 6 M {n = 1 , 2 , 3 , . . . ) , we have ( 7 « ) ° < t (n = 1, 2. 3 . . . . ) . Now we can 
determine an upper bound for the height of j n . For this , we consider the polynomial 

n Ak 

Since F(y, XQ. X\, . . . , x n , £ t l +i ) is the po lynomial w i t h integral coefficients and 

applying Lemma 1 we have 

H{ln) < 3 2 -* - 1 +K 1 + 1 + - + 1 > + l f c »J i i r* J f f (^ J t 0 )* . . . i f ( i 7 f c l l ) t i / C a i f e J f c - * 

where H is the height of the polynomial F{y, xG> xi,..., xn, xn+i), g ~ t, d ~ 1, 
ia = 1, . . . ,£„ = 1, 4 + i = fcn- Since i i = m a ^ { A f c n , = Akn, using (2.6) we 
get 

H(ln) < 3 2 i + 3 f c " l A ^ H ( r ? f c 0 ) ' . . . J r 7 ( 7 7 f c J f i i ( a f c J f c " - t 

< 3^tA'kaH(rlkay...H(r)kyaZt 
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for n > A r
3 . 

Let, A", : = H{r}ko)... H{r)kK } . From (2.7) i t follows that 

for n > A3. Thus using (2.9) we have 

Hhn) < ^ ! 4 „ K a , 1 . . . a , J t < 1 + W 2 a - t 

< c
f c « i

a l f +f 1 / ( l - ' i ) ) ] [t ( l+e)/2+i) a C z t 

_ j t n , | c + ( l / ( l - „ ) ) J [ t ( l - r f ) / 2 + l ] + C ! i 
— L LLi. 

= c " a. 

where 7 = [e + ( 1 / ( 1 - n ) ) ] [ ( l + 9)/2 + 1] + c 2 and c > 1 is a suitable constant. On the 
other hand f rom (2.4) we obtain 

for n > A ?
4 > A3. Thus we have 

tf(7n) < a £ (2.11) 

for n> N4 where 7 ' = 1 + 7 . 

3) Now we can determine an upper bound for j / ( f ) — 7 J . Since 

1 / ( 0 - 7-1 - \f(0-fn(0 + fn(0~7n\ 

< l / ( 0 - / » ( 0 l + l / « ( 0 - 7 » i , 

we must determine an upper bound for j / ( £ ) — / „ ( £ ) ! a n ^ | / n ( 0 — 7n|- We have 

1 / ( 0 - / » ( £ ) ! = E ^ 
./=n-t-l 

and from (2.8) 

akn 

for n > A4. Thus i t follows that 
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\Vk»\ 
mo - / n ( o i < E ^ i e i f c - < E ^ - " " i f f -

2 2 |trl f e"+i _j \f\kn+i 

2 jg| f c - " 
„U-*)/2 

ft 
(l-D)/2 + ... 

1 + 
. ( 1 -0/2 

for n > A 4 . Hence from (1 - 0 ) /2 > 0, Km l o g a ^ = +co , (2.2) and (2.4) we can 
obtain 

( l - fO/2 

for 7?. > A 5 > A r
4 . From here we have 

(1 -0/2 

e|fcB + I + , - f c n + l < J _ ^ 1 ,2 ,3 , . . 0 

1 / ( 0 - A ( 0 l < 
a 

, 1 1 1 
] h . . . H h 

2 2 2 2" 

a 

for n > A 5 . From (2.4) i t follows that 

and here also 

(2.12) 

for n > Ag > As. We define now s'(n) :- ( l o g a f c n + 1 / l o g a f c „ ) . From (2.2) 
l i m s'(n) — +oo . Using (2.12) we have 

i / ( o - / n ( o i < i « f c - ; ' i I 1 ) ( 1 ^ / 4 (2.13) 

for n > N r . Since l i m s'(n) = +oo , from (2.11) we deduce t h a t there exists a suitable 
sequence { s ( n ) } w i t h l i m s(n) = +oo and 
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for n > A" 7 > A V From here using (2.13) we have 

| / ( f ) - / l i ( f ) i < ^ ( T n ) - 5 ( " ) (2.14) 

for n > N7. 

4) Now we can determine an upper bound for j / n ( f ) — 7 n . ) | - The following equalities 
hold. 

fn(0-ln - f ^ - t ^ a t (2.15) 
„=0 akv „ = 0 

From (2.5) we have 
K J < l £ l + i 

for n > A r
8 > N7. Thus using (2.5) and (2.15) we get 

l / B ( 0 - 7 B | < l ^ - ^ d E ^ " 1 + ^ - V + - - . + « t 1 | (2.16) 

< H ( a k J - k " ^ f : ^ fc„(|ej + l ) f c " - 1 

for n> AT%. Moreover we can obtain t h a t 

E ^ M K i + i ) * * - 1 < fcXdCI + i ) * - " 1 (2-17) 

where /3fcn : = max I t ^ J . Since the sequence {akii} is monotonicalh/ increasing and 

l i m ai- = + 0 0 , f rom (2.8) i t follows t h a t 

n-too " ' 

ft. < 2a£ 1
B

+*> / 2 

for n> Ng > Ns. Thus we have 
^ n ( i e i + i ) f c " - 1 < 2 ^ 2 { i a + i ) f c " ~ i 4 1

n
+ e ) / 2 

for n > A V From (2.16) and (2.17) we obtain t h a t 
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for n > NE. Then using (2.6) i t follows that 

1 , ( 0 - , I < 2 f c " m + 1 ) t ' " ' (*18) 
a,. 

for sufficiently large n. Using (2.4) and l i m u>(kn) = +oo we deduce that there exists 
n •—too 

a suitable sequence ( s " ( n ) } w i t h Hm^ s"(n) — +oo and 

for n > M o > M , . From (2.11), (2.18) and (2.19) we have 

L M 0 - 7 n | < ^ ( 7 n ) - ' " t B ) (2.20) 

for n > M o - L e t now s"'(n) : = mm{s"(re) , s{n)} for n > M o - Thus from (2.14) and 
(2.20) i t follows t h a t 

( / < £ ) - 7 u | < i ? ( 7 n ) - " ' " i B ) (2-21) 

for n > NIQ where l i m s"'(n) — +oo . 
— 7 1 - + C O 

I f the sequence { 7 n } is constant then / ( £ ) is an algebraic number of M. Otherwise 
/ ( £ ) is a /7-number of degree < t . 
C o r o l l a r y . For kn = n and t — 1 f rom Theorem 2 we obtain Theorem 3 i n [10] as a 
special case. 

E x a m p l e . Let a be a constant algebraic number of degree m and c be an integer 
w i t h c > 1. We consider the number 

C C 1 

Because of Theorem 1 i n [8] £ is a [ /^-number. We consider now the algebraic numbers 

a ' « = E - w F a V ( " ^ 1 .2 ,3 , . . . ) . 
^=0 c 

From Lemma 1 we obtain 
H(an)<ck^ 

where k > 0 is a constant. From the above we get 

| f - « n | < W a n ) ) " ™ - K = ^ t 1 ^ ->Oo) . \ 
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This is the condition (2.5). We can now choose the sequence {aUk} and {nnk} so that 
the conditions (2.2). (2.3). (2.4) and (2.6) are satisfied. As i n the example of Theorem 
1 we can construct a subsequence {ank } of the sequence {cen} so t h a t the terms of 
this subsequence are different from each other and for the sequence {H(ank_)} the 
conditions (1.19), (1.20) and (1.21) are satisfied. 

Let 

S : = # K f c j ) M ( j = l ; 2 , 3 , . . . ) 

and {3 be a constant algebraic integer of a number field K of degree q. I f 

Vnkj U = 1 ,2 ,3 , . , . ) 

the conditions (2.2), (2.3), (2.4) and (2.6) are satisfied for cY = 2 , c 2 = 3. So the 
conditions of Theorem 2 hold for £ and 

/ ( « ) = E — * n i ' • 

Therefore either / / ( / ( £ ) ) < £ or / ( f ) belongs to a smallest number field which contains 
K and Q (a ) . 

T h e o r e m 3 . In the p-adic field Q F, let 

f{x) = J2c^xkn (KeZ ( « = 0 , 1 , 2 , . . . ) ; k0 < k} < k2 < . . . ) (3,1) 

be a series with non-zero rational coefficients ckn — bkn/akn [akn, bkn integers; 
bkn ^ 0 , akn > 0, {akn,bkn) — 1 and akn > 1 for n > NQ) satisfying the following 
conditions 

l i m = + o o , (3,2) 

077. <f 

0 < hm sup — E — - — - < oo (3.3) 
n-*co Ukn ' 

hm — = + o o (3 .4) 
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where \ckn\p = p Ufc", Akn - [akoiakl,... ,akn], Bktt = max|i ) A J . Furthermore let £ be a 

p-adic Um-number fur which the following two properties hold. 

1°) f has an approximation with p-adic algebraic numbers an of degree m of a 
p-adic algebraic number field K so that the following holds for sufficiently large n. 

\i - a„\p < Hion)'™™ Q i m w f n ) = + oo) , (3.5) 

where [K : Q ] = m . 

2°) There exist two real numbers 5] and S2 with 1 < ¿1 < 82 and 

pUk-Sl < H{akn)kn < p u * - i a (3.6) 

for sufficiently large n where H(akn) (n = 0 , 1 , 2 , . . . ) is the height of akn 

( n - 0 , 1 , 2 , . . . ) . 
Then the radius of convergence of f(x) is infinity and /(<£) is either a p-adic U-

number of degree < m. or a p-adic algebraic number of K. 

P r o o f , 1) Since 

1 1 
r — 7=== ~ thl ~ ^im m^P k'" — + ° ° 1 
- . l i m s u p kmckn\p L i m s u p p - " ^ k n~*°° 

i t follows t h a t the radius of convergence of f(x) is inf in i ty . We consider the polynomials 

n 

fn{x) = E C ^ X * " ( " = 1 .2 , - . . ) • 

Since 
n 

M<*kJ = E c ^ a t = c ^ a t + + . . . + ckT,ak
kl £ K, 

we have (fn{ct'kn)Y 5= m - Now we can determine an upper bound for the height of 
fn{ak„)- For this , we consider the polynomial 

n 

F(y,x) = 4 f e „ y - E A k n V k " . 

/ 
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Since F(y.x) is the polynomial w i t h integral coefficients and 

FUr,(^„),akn) = AkJn(akJ - ¿ Abnck„afc = 0 , 

applying Lemma 3 we have 

#(/»(<**.)) < 3*-1-m+k»-mH(F)mH(akn)k«-m 

< 3*k"m(Ak,,BkJnH(akJk»™ . 

Thus using (3.G) we get 

#(/»(<**,)) < S3knm(AknBkJmp^-m.s2 

Moreover we can wri te 

(<**„)) < ck"m(AknBkn)mp^-^ (3.7) 

where c\ > 1 is a constant. 
Let 6 := l i m s u p - g | ' ^ " g ^ . From (3.3) there exists a number A a e N such t h a t 

)i—too *" 

l o g p A f c n B f c n 

for n > Ni > N0. Thus we have 

(AknBkn)m < p<*< (3.8) 

for n > Ni where c2 — ^m. From (3.4) we obtain 

for 7?. > A r
2 > A\. Combining (3.7), (3.8) and (3.9) i t follows t h a t 

W n K J ) < P C 3 l l i " (3.10) 

for n > A 2 where c 3 — c 2 4- m + mS7. 

2) I t holds that 

I / ( 0 - / « ( ^ ) I P = l / ( 0 - / n ( f ) + / « ( 0 - / » ( a f c J | l , (3.11) 

< m a x { | / ( f l - / n ( O U I / n ( 0 - / n ( o f c J | p } • 
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We can determine an upper bound for | / ( f ) - / „ ( 0 I P
 a n c ! I . M O ~ fn(u'kJ\P- i t holds 

l / ( 0 - / « ( O l p - = I E ^ ^ ' i i -

We can find an upper bound for \ckn£,k"{p as follows 

From (3.4) we have 

and 

for n > A 3 > A 2 . According to (3.2), since the sequence is monotonically 
increasing for sufficiently large n we obta in 

1 / ( 0 - / n ( O I P < m a x { p ^ - ^ / 2 , p - ^ ^ / 2 , . . . } - p - W * (3.12) 

for n > N4 > A 3 . 

3) We have 

< m j x | c ^ ( ^ ~ a t ) | p (3.13) 

Since 
Ia7.jp = |€ - ( i - a*«)|P < max{|i| p , |f - a j j p } < + 1 

for sufficiently large n , i t follows t h a t 

Hence using (3.13) we get 

| /n (0 - f»M\P < n w { p - ^ } | f - ahJp{\£\p + 1 ) * - * . 

Since the sequence {uk } is monotonically increasing for n > N4, m a x l p ^ " * " } is bounded. 
Thus there exists a constant c 4 > 0 such t h a t 

l / n ( 0 ~ A K J I P < c 4 |C - a*Jp((i|p + 1 ) * " " 1 
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for n > A r
4 . From (3.5) and (3.6) we have 

\fn(0~fnM\P < 4"H(akn)~b^ (3.14) 

for n > A r
4 where C5 > 0 is a constant. Since l i m to(kn) ~ +oc . from (3.2), (3.4) 

and (3.10) we deduce that there exist two suitable sequences {s'n} and {sj[} w i t h 
l i m si — + 0 0 , l i m s'l — +00, 

< # ( A ( a , J ) - s " (3.15) 

and 

for n>Ns> A r
4 . Therefore from (3.11), (3.12) and (3.14) we obtain 

l/te) - / * K . ) I P < m a x f j T ^ ' ' 2 , c f - p - ^ n ' i ^ * - ) } (3.17) 

for n > AR5. Thus combining (3.15), (3.16) and (3.17) we have 

1 / ( 0 - / > O I P < m a x { i i ( / B ( a * J ) - ' » ) H ( / „ ( a , J ) - " } 

for n > A 7
S . Let s„ : = m i n j s j , , From the inequality above we get 

l / ( f ) - / n ( O f c J | p < J? ( / n ( 0 J b » ) ) — 

for n> N5 where tinj^Sn = + ° ° - I f the sequence {fn(akn)} is not a constant sequence 
then m ( / ( 0 ) < m f ° r / ( 0 , t n a t i s> / ( 0 i s a P-adic ^-number of degree < m. Other¬
wise / ( f ) is a j>adic algebraic number of K. 

C o r o l l a r y . For kn = n and m - 1 from Theorem 3 we obtain Theorem 1 in [9] 
as a special case. 

T h e o r e m 4 . In the p-adic field (Qp, let 

f(x) = f ; ^ * - ( f c n e Z + ( n = 0 , l , 2 , . . . ) ; *„ < < A* < . . . ) (4.1) 
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be a series with non-zero p-adic algebraic integers *qkn (n = 0 ,1 ,2 , . . . ) of a p-adic 
number field K of degree q and with positive integers akn (akn > 1 for n > NQ) , 
\rjk„ I akll\p — p~tk" and Akn = [a t 0 , akl,..., akn] satisfying the following conditions 

l i m = + oo , (4.2) 

and 

0 < h m sup — < oo (4.3) 
n—too tkn 

l i m ^ = + 0 0 (4 .4) 

where H{r]kn) [n = 0 , 1 , 2 , . . . ) is i/ie height ofnkn (n — 0 , 1 , 2 , . . . ) . Furthermore £ be a 
p-adic Um-number for which the following two properties hold. 

1°) f Aa.? an approximation with p-adic algebraic numbers an of degree m of a 
p -adic number field L so that the following holds for sufficiently large n 

I f - < H M ~ ^ ( J im u ( n ) = + oo) , (4.5) 

w/iere [X, : Q ] = m . 

2° ) 77iere exisi itwo reu£ numbers c\ and c<i with 1 < c\ < C2 and 

i A » C l < # ( a < * J f c n (4.6) 

/ i i r sufficiently large n where H(akn) (n = 0 , 1 , 2 , . . . ) ¿5 the height of akn (n = 
0 , 1 , 2 , . . . ) . Let M be a smallest number field which contain K and L with [M : Q ] = t. 

Then the radius of convergence of f{x) is infinity and / ( f ) is either a p-adic U-
number of degree <t or a p-adic algebraic number of Ad. 

P r o o f . l ) I t can be satisfied t h a t the radius of convergence of f(x) is inf ini ty as 
Theorem 3. We consider the polynomials 

„ = 0 ak„ 
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Let 

In •= / n ( a j t j = E ~ ® t • 

Since 7 „ 6 M . (7»i)° < i (n = 1, 2 , . . . ) . We can now determine an upper bound for the 
height of 7 „ . For this , we consider the polynomial 

F(y,X0.Xi, . . . , I n i I n + l) - Ak„y- E L^Lx"Xn"^ • 
1/zzO ak„ 

Since F(yt x$, x.j,..., xn, Xn+i) i S the polynomial w i t h integral coefficients and 

applying Lemma 3 we have 

H{ln) < 3 2 i - 1 + i ( 1 + 1 + - + 1 H ^ l ' ^ F ( r ? f c 0 ) i . . . J i ( % n ) i F ( a A J ^ i 

where i f is the height of the polynomial F(y, x 0> £i, • • •, xn, %n+i), 5 = £, d = 1, 
£o = 1 , . . . , i n = 1, £ n + 1 - fc„. Since 

7/ = m a x { A f c n , A f c n / a ^ } = Akn , 

using (4.6) we have 

H M < 3 2 i + 3 f c " i 4 n / / ( % 0 ) i . . . i i ( % J i A i - (4.7) 

for sufficiently large n where i 0 > 0 is a suitable constant. From (4.2) and (4.3) i t 
follows 

i ^ / l o g p ^ H ^ J ) = +co (4.8) 

for n> Ni > NQ. Since jat^+Jp < 1, from Lemma 4 we obtain 

and f rom here 
tkn+i < logpH(-nkn+1) . 
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Furthermore since Akn > 1, we can write 

Thus using (4.8) we obrain 

,. l o g P ^ ( % n + ! ) , hm r - = + c o . 

"-*«> l0g p H(77fcJ 

I t is satisfied 

H(rikn+iy > H(r,kn) (4.9) 
for n> N2 > Ni where i / is a constant w i t h 0 < v < 1/2. 

Let tf0 : = H{nka)H{i]kA... H(r}kNX From (4.9) we have 

j ? ( T f e W ( ) < mvkN2+1r < H(nknr-"2 

for n > A 2 . We also get 

H(r}k0)...H(r,kn) < H(nko)... H{Vklij _ J f f f o ^ ) . . . f f f o j 

< i ^ o i i ( r / , J ' ' ^ ; V 2 + l " ' " N 2 " 1 + - + t ' + l 

< # o t f ( % „ r + - + " + i 

for n > A 2 - Combining this inequality w i t h (4.7) i t follows t h a t 

where i x is a constant w i t h h — l0K0 > 0. From (4.4) we obta in 

i * - * = p f c » i t o « F i > <p £ *» (4.11) 

for n > A3 > A 2 . On the other hand from (4.3) we have 

AknH(Vkn) <Ptk"h (4.12) 



for n > A' 4 > A3 where l2 > 0 is a suitable constant. Combining (4.10).(4.11) and 
(4.12) i t follows t h a t 

H{ln) < ptk»+2thtk«+lk»tC2 = p '*- ' 3 

for n > A'4 where ¿3 is a constant w i t h 1 3 - 1 + ¿ ( 2 / 2 + c 2 ) . 

2) I t holds 

1 / ( 0 - 7 n | p = l / ( f ) - / » ( f ) + / » ( 0 - 7 n | p 

< T T i O l i l / t O - Z ^ O U I / ^ O - T n l p } • 

We can determine an upper bound for | / ( f ) — fn{Q\p a n d i / n ( f ) — 7 J I | P -

l / ( f ) - / n ( i ) l p - X T * * 

< max 
ak„-

Vkn. 

ak„-
\Z\>+2; 

and 

are hold. From (4.4) i t follows t h a t 

Vk„ 
— 

akn V akn 

r < k» - l o S p I f i 

for n> N5 > A 4 . S 0 we have 

< P" 

(4.13) 

(4.14) 

for n > A5. According to (4.2) since the sequence {tkn } is monotonically increasing for 
sufficiently large n, we obtain 

l / ( f ) - )|p < m a x { p - W 2 , p - W 2 , . . . } = 

for n > N6 > N5. 

(4.15) 
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3) Furthermore i t is clear that 

| / n ( 0 - 7 n | p = < max (4.16) 

— max 
t/=0 

Since 
K J P = l i - ( f - ctJtJIp < ™ax{ ! fU je - akJp] < \£\p + 1 

for sufficient!}' large n, we get 

le*""1 + + • - • + < ( l i t + 1 ) ^ " 1 • 

From here using (4.16) we obtain 

| / „ ( 0 - ln\P < { p - ' * - } | i - akJM\P + l ) * " " 1 • 

Since the sequence {tkn } is monotonicaliy increasing for n > M , m a x { p _ i * " } is bounded. 
I/—0 

Therefore there exists a positive constant U s u c b t h a t 

| / n ( 0 - 7 B | p < i 4 | i - a * I . | J , ( | f | J I + l ) f c - - 1 

for n > N$ Thus f rom (4.5) and (4.6) we have 
! / * ( £ ) - 7 » I P < t H ( a k n ) - k M k n ) (4.17) 

for n > NR where U is a suitable constant w i t h L > 0. Furthermore from l i m uj(kn) — 
n->oo ' 

+oo , (4.2), (4.4) and (4.13) we deduce that there exist suitable sequences {s'n} and 
{ < } such t h a t 

and 

p - W 2 < F ( 7 n ) - < (4.18) 

(4.19) 

for n > N7 > N6 where l i n ^ s * = +oo and J i m = +oo. Combining (4.14), (4.15) 
and (4.17) we obta in 

1 / (0 " 7 . |p < max{p- t *«+./ 2 , i*»p- '*-«»«t*»}} (4.20) 
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for n > N7. From here using (4,18), (4.19) and (4.20) we also have 

1 / (0 -7»l„ < m a x { t f ( T T j A # ( 7 n r " } 

for n > Ay. Let sn :— min{5^, s„}. From the inequality above we obtain 

\f(0-ln\P<inin)-Sn 

for sufficiently large n where l i m sn — +oo. I f the sequence {-yn} is not a constant 
sequence then / J - ( / ( f ) ) ^ ^ f ° r / ( 0 J t h a t is, / ( f ) is a p-adic tZ-number of degree < t 
Otherwise / ( f ) is a p-adic algebraic number of K. 

C o r o l l a r y . For k„ — n ve t — 1 from Theorem 4 we obtain Theorem 3 in [9] as 
a special case. 
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