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ON QUASI-CONFORMALLY RECURRENT MANIFOLDS
U. C. DE & ABSOS ALI SHAIKH

Abstract, The object of this paper is to study a Riemannian manifold called quasi-conformalty recurrent manifold.

1. INTROBUCTION

In [6] Yano and Sawaki defined and studied a tensor field W on a Riemannian
manifold (M, g) of dimension n which includes both the conformal curvature tensor C
and the concircular curvature tensor C as special cases.

A manifold (M, g)'oﬁ dimension n is called quasi-conformally recurrent ifi the

tensor W [6] defined by

WX, Y) Z=- (n~2)b C(X, Y)Z + [a + (n-2)b] X, )z ( I.I)
satisfies the condition

(VW) (X, Y)Z = A(UYW(X, Y)Z (1.2)

where V‘ denotes covariant differentiation with respect to the metric ténsor, C and C are
conformal curvature tenéor and concircular curvature tensor respectively, a, b are
arbitrary constants and A is a non-zero 1-form, p is a non-zero vector field such that
g(X, p) = A(X). Such a manifold will be denoted by QCK,. This notation is taken

because conformally recurrent manifold is denoted by CK,, [2]. In this connection we can

mention the work of Amur and Maralabhavi [1] who studied quasi-conformally flat *-

spaces. [t is easily seen that a recurrent manifold K, [5] is a quasi-conformally recurrent
manifold QCK,, but the converse is not necessarily true. In this paper sufficient
conditions for a QCK,, to be a K, is obtained. Allso it is shown that a 3-dimensional QCK,
is concircularly recurrent ifi a+(n-2)b = 0. In section 3, Einstein QCK,, is studied and it is
proved that in an Einstein QCK, either the associated vector field p of the 1-form A is
null or the manifold is a space form. In the last section, we consider a QCK,, admitting a

recurrent vector field [4].
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2. QUASI-CONFORMALLY RECURRENT MANIFOLD

It is known that the conformal curvature tensor C and the concircular curvature

tensor Care defined by

1 .
CX,Y)Z=REK, Y)Z+ — IS(X, )Y - 8(Y, Z)X + (X, 2)QY
n—

— (Y, 2) QX] - { r[g(X, 2)Y —g(Y, Z)Y]. (2.1)

r
n—-1)(n-2)
r

and {X,Y)Z=R(X Y)Z - [e(Y, Z)X - g(X, 2)Y]. (2.2)

n{n-1)
where R, S and r denotes the Riemannian curvature tensor, Ricci tensor and the scalar

curvature respectively; Q is the Ricci operator defined by
£(QX, Y) = S(X, Y) @3)
Using (2.1) and (2.2) in {1.1), we get

WX, Y)Z=aR(X, Y)Z-b [S(X, 2)Y - S(Y, Z)X + g(X, Z)QY

a+2b(n-1)
- &Y, Z2) QX] - {W 3 rleY, 2)X - g(X, 2)Y].(2.4)

Theorem 1. A quasi-conformally recurrent manifold is recurrent if it is Ricei recurrent
and a = 0.
Proof : Since the manifold is Ricci recurrent [3], we have

(VuS)Y, Z)= A(U) S(Y, Z) (2.5)
where A is a non-zero 1-form.

From (2.3) and (2.5), we get

(VuQX)X) = A(U)Q(X). (2.6)
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Also from (2.6), it fotlows that

Vur = A(U)r. @7 L

Now from (1.2) and (2.4), we get ‘t
a(VuR) (X, Y)Z — b (VyS) (X, 2)Y — (VuS) (Y, )X + g(X, Z) (VyQXY) i

a + 2b(n—1) :

- (Y, Z) (VuQ)(X)] - VUI'[T(H‘_"S‘-" 1{e(Y, 2)X - g(X, Z)Y]

= A(U) {aR(X, Y)Z ~ b[ S(X, Z)Y - S (Y, Z)X + g(X, Z) QY
a+ 2b(n-1)

- g(Y, Z)QX] - r [~———] [g(Y, D)X - g(X, 2)Y]. (2.8) F
ﬂ(n"l ) E

:

Using (2.5), (2.6) and (2.7) in (2.8), we get

(ViRY (X, )Z=A(UR(X, Y)Z, if a=0,
which implies that the manifold is recurrent.

This completes the proof.

Theorem 2. If the Ricci tensor vanishes and a # 0, then a quasi-conformally recurrent
manifold is a recurrent manifold.

Proof : We suppose that S(X, Y) = 0. Then the scalar curvature r = 0. Hence (2.4)

reduces to
WX, Y2 =aR(X, Y)Z (2.9)
Using (2.9) in (1.2), we get
(ViR) (X, Y)Z - A(URK, Y)Z, if a=z0.
This completes the proof.

Theorem 3. A 3-dimensional quasi-conformally recurrent manifold is concircularly

recurrent if a4+ (n-2)b = 0.
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Proof : It is known that in a 3-dimensional Riemannian manifold conformal curvature

tensor vanishes. Then (1.1) reduces to

W(X, Y)Z =[a+ (n-2)b] {X, Y)Z. (2.10)

Since the manifold is QCK,,, we have (1.2). So by virtue of (2.10) and (1.2), we get

(V@ X, )Z=AU) T, Y)Z, if a+(@n-2)b=0.
Thus the manifold is concircularly recurrent if a + (n—2)b 2 0. This completes the proof.
3. EINSTEIN QUASI-CONFORMALLY RECURRENT MANIFOLD

In this section, we suppose that a QCK, is an Einstein manifold. Then the Ricci

tensor satisfies
T
S(X,Y)= T g(X,Y) (3.1)

from which follows
Ver=0 and (VyS)(X, Y)=0. (3.2)

Since the manifold is QCK,, we get from (1.2) and (2.4) by using (3.1) and (3.2),

(VuR) (X, Y)Z = A(U) [R(X, Y)Z - n(%l—)- @Y, DX -gX, DY), (3.3)

if a=0,

Also (3.3) can be written as

(ViR (X, Y, Z,V)=AU)[R(X, Y, Z, V)~

, |
o EYX) XV - g X DYV G 4)

where R(X, Y, Z, V) = g(R(X, Y)Z, V).
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Now from (3.2) and the Bianchi identity
(ViR K Y, Z, )+ (VYR (U, X, Z, V) + (VXR) (Y, U, Z, V) =0, (3.5)

we get divR =10 (3.6)

where ‘div’ denotes divergence.
Using (3.4) in (3.5) and putting U = p, we get

APE)R(X, Y, Z, V) + ACY)REZ V, p, X) + A R(Z, V. Y, p) -

D) [A(P){a(Y, Z) g(X, V) - a(X, Z) g(Y, V)} + A(Y) {g(X, Z) A(Y)

- g(X, VIA(Z)} + AX{A(Z) g(Y, V) - g(Y. 2) A(V)}] =0, (3.7)
where p is a vector field defined by

g(X, p) = A(X). (3.8)

~ Contracting U in (3.3) and using (3.6), we get

R(X,Y,Z,p) = n(—nr:—l—) [e(Y, Z) A(X) - g(X, Z) A(Y)] (3.9)

Using (3.9) in (3.7), we get

A(P) RS Y, Z, V) - I?(:Tr) (&(Y, Z) g%, V) - (X, Z) (Y, V)}] = 0.

Then either A(p)=0
ie, glp.p)=0,
or, the manifold is oficonstant curvature. Hence we can state the following theorem:

Theorem 4. 1f a quasi-conformally recurrent manifold with a # 0 is an Einstein one, then

either the associated vector field p is null or the manifold is a space form.
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4, QCK,, ADMITTING A RECURRENT VECTOR FIELD

In this section, we assume that the QCK, admits a recurrent vector field V defined by
VxV = aX)V
where @ is a non-zero 1-form such that
2(X, V) = o(X). 4.0
So we find from (4.1) that
g(VxV, Y) = g(a(X)V, Y)
ie, (Vxo)(Y)=aoX) gV, Y)=o(X) oY)
Therefore, (Vxw)(Y)-(Vyo)(X)=0
ie, (o)X Y)=0 . (4.2)
where d is the exterior differential.
Also from Ricci identity, we have
VxVyV-Vy Vi V-V vy V=RX Y)V.
Using (4.1), we find that
RX, V)V =(dw) (X, Y)V
So from (4.2), we find that
| R, Y)V=0 _ (4.3)
Now from (4.3), we have

(VoR) (X, V)V = 0. @4)
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Applying Bianchi identity on (4.4), we get
(WR) (X, Y)U = 0. | (4.5)
From (4.5), we get

(VvS) (Y, U)=0. (4.6)

From (2.3) and (4.6), we get
(VvQ) (Y) = 0. 4.7

Also from (4.6), we get ;
Vyr=0. (4.8)

Now from (1.2) and (2.4) and using (4.5), (4.6), (4.7) and (4.8), it follows that

AVWX, Y)Z=0

Then either A(V)=0 or, WX, Y)Z=0

i.e., either g(V,p)=0 or, WX, Y)Z=0,

which implies that either V is orthogonal to the associated vector field p or the manifold
is quasi-conformally flat.

Hence we can state the following theorem :

Theorem 5. If a quasi-conformally recurrent manifold admits a recurrent vector field V,
then either V is orthogonal to the associated vector field p or the manifold is quasi-

conformally flat.
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