ON A TYPE OF SEMI-SYMMETRIC NON-METRIC CONNECTION ON A RIEMANNIAN MANIFOLD

U.C. DE \& S. C. BISWAS

Summary : The concept of semi-symmetric non-metric connection on a Riemannian manifold has been introduced by Agashe and Chafle [1]. The properties of a Riemannian manifold admitting a semi-symmetric non-metric connection with recurrent torsion tensor have been studied in [2].In the present paper we study a type of semi-symmetric nonmetric connection $\widetilde{\text { which }}$ satisfying $\widetilde{\mathrm{R}}(\mathrm{X}, \mathrm{Y}) . \mathrm{T}=0$ and $\omega(\widetilde{\mathrm{R}}(\mathrm{X}, \mathrm{Y}) \mathrm{Z})=0$, where T is the torsion tensor of the semi-symmetric non-metric connection, $\widetilde{\mathrm{R}}$ is the curvature tensor corresponding to $\tilde{\nabla}$ and ω is the associated 1-form of T.

INTRODUCTION

Let M^{n} be an n -dimensional Riemannian manifold with a metric tensor g and LeviCivita connection ∇. A linear connection $\tilde{\nabla}$ on M^{n} is said to be a semi-symmetric nonmetric connection if its torsion tensor T and the metric tensor g of the manifold satisfy the following conditions:

$$
\begin{equation*}
T(X, Y)=\omega(Y) X-\omega(X) Y \tag{1}
\end{equation*}
$$

for any two vector fields X, Y where ω is a 1-form associated with the torsion tensor of the connection $\widetilde{\nabla}$ and

$$
\begin{equation*}
\left(\tilde{\nabla}_{\mathrm{X}} g\right)(Y, Z)=-\omega(Y) g(X, Z)-\omega(Z) g(X, Y) \tag{2}
\end{equation*}
$$

Then we have [1] for any vector fields $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$

$$
\begin{equation*}
\tilde{\nabla}_{\mathrm{X}} \mathrm{Y}=\nabla_{\mathrm{X}} \mathrm{Y}+\omega(\mathrm{Y}) \mathrm{X} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \omega\right)(Y)=\left(\nabla_{X} \omega\right)(Y)-\omega(X) \omega(Y) \tag{4}
\end{equation*}
$$

Also, we have [1]

$$
\begin{equation*}
\widetilde{\mathrm{R} X}, \mathrm{Y}) \mathrm{Z}=\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}+\alpha(\mathrm{X}, \mathrm{Z}) \mathrm{Y}-\alpha(\mathrm{Y}, \mathrm{Z}) \mathrm{X} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha(Y, Z)=g(A Y, Z)=\left(V_{Y} \omega\right)(Z)-\omega(Y) \omega(Z) \tag{6}
\end{equation*}
$$

$\widetilde{\mathrm{R}}$ and R the respective curvature tensors for the connections $\tilde{\nabla}$ and ∇, A being a (1-1) tensor field.

Now, let us suppose that the connection (1) satisfies the following conditions:

$$
\begin{equation*}
\widetilde{R} X, Y) \cdot T=0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(\widetilde{\mathrm{K}} \mathrm{X}, \mathrm{Y}) \mathrm{Z})=0 \tag{8}
\end{equation*}
$$

where $\tilde{R}(X, Y)$ is considered as a derivation of the tensor algebra at each point of the manifold for tangent vectors X, Y.

1. EXPRESSION FOR THE CURVATURE TENSOR OF THE SEMI-SYMMETRIC NON-METRIC CONNECTION

The condition (7) gives

$$
\begin{equation*}
\widetilde{R} X, Y) T(U, V)-T(\widetilde{R} X, Y) U, V)-T(U, \widetilde{R} X, Y) V)-\left(\tilde{\nabla}_{r}(X, Y) T\right)(U, V)=0 \tag{1.1}
\end{equation*}
$$

Now $\quad\left(\tilde{\tilde{T}}_{\mathrm{T}, \mathrm{Y}, \mathrm{Y})} \mathrm{T}\right)(\mathrm{U}, \mathrm{V})$

$$
\begin{align*}
& =\quad\left(\tilde{\nabla}_{\omega(Y) X}-\omega(\mathrm{X}) \mathrm{YT}\right)(\mathrm{U}, \mathrm{~V}) \\
& =\quad \omega(\mathrm{Y})\left(\tilde{\nabla}_{\mathrm{X}} \mathrm{~T}\right)(\mathrm{U}, \mathrm{~V})-\omega(\mathrm{X})\left(\widetilde{\nabla}_{\mathrm{Y}} \mathrm{~T}\right)(\mathrm{U}, \mathrm{~V}) \\
& =\quad \omega(\mathrm{Y})\left[\left(\mathrm{V}_{\mathrm{X}} \omega\right)(\mathrm{V}) \mathrm{U}-\left(\nabla_{\mathrm{X}} \omega\right)(\mathrm{U}) \mathrm{V}\right] \\
& \tag{1.2}\\
& \\
& -\omega(\mathrm{X})\left[\left(\nabla_{\mathrm{Y}} \omega\right)(\mathrm{V}) \mathrm{U}-\left(\nabla_{\mathrm{Y}} \omega\right)(\mathrm{U}) \mathrm{V}\right]
\end{align*}
$$

From (1.1) and (1.2) we get

$$
\begin{align*}
& \omega(\widetilde{\mathrm{R} X}, \mathrm{Y}) \mathrm{U}) \mathrm{V}-\omega(\widetilde{\mathrm{R} X}, \mathrm{Y}) \mathrm{V}) \mathrm{U}-\omega(\mathrm{Y})\left[\left(\nabla_{\mathrm{X}} \omega\right)(\mathrm{V}) \mathrm{U}-\left(\nabla_{\mathrm{X}} \omega\right)(\mathrm{U}) \mathrm{V}\right] \\
& + \tag{1.3}\\
& +\omega(\mathrm{X})[\nabla v \omega)(\mathrm{V}) \mathrm{U}-\left(\nabla_{\mathrm{v}}(\omega)(\mathrm{UJ}) \mathrm{V}\right]=0
\end{align*}
$$

Now using the condition (8) it follows from (1.3)

$$
\begin{equation*}
\omega(\mathrm{X})\left[\left(\nabla_{\mathrm{Y}} \omega\right)(\mathrm{V}) \mathrm{U}-\left(\nabla_{\mathrm{Y}} \omega\right)(\mathrm{U}) \mathrm{V}\right]-\omega(\mathrm{Y})\left[\left(\nabla_{\mathrm{X}} \omega\right)(\mathrm{V}) \mathrm{U}-\left(\mathrm{V}_{\mathrm{X}} \omega\right)(\mathrm{U}) \mathrm{V}\right]=0 \tag{1.4}
\end{equation*}
$$

Contracting U in (1.4) we obtain

$$
\begin{equation*}
\omega(\mathrm{X})\left(\nabla_{\mathrm{Y}} \omega\right)(\mathrm{V})-\omega(\mathrm{Y})\left(\nabla_{\mathrm{X}} \omega\right)(\mathrm{V})=0 \tag{1.5}
\end{equation*}
$$

Putting $X=\rho$ we get

$$
\begin{equation*}
\left(\nabla_{Y} \omega\right)(Z)=\frac{\omega(Y)}{\omega(\rho)}\left(\nabla_{\rho} \omega\right)(Z) \tag{1.6}
\end{equation*}
$$

where we take $V=Z$
From (6) and (1.6) we get

$$
\begin{equation*}
\alpha(Y, Z)=\frac{\omega(Y)}{\omega(\rho)}\left(\nabla_{p} \omega\right)(Z)-\omega(Y) \omega(Z) \tag{1.7}
\end{equation*}
$$

Now putting the value of $\alpha(Y, Z)$ in (5) we get

$$
\begin{align*}
{ }^{\prime} \tilde{\mathrm{R}}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{U}) & ={ }^{\prime} \mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{U})+\frac{\left(\nabla_{\rho} \omega\right)(\mathrm{Z})}{\omega(\rho)}[\omega(\mathrm{X}) \mathrm{g}(\mathrm{Y}, \mathrm{U})-\omega(\mathrm{Y}) \mathrm{g}(\mathrm{X}, \mathrm{U}) \\
& -\omega(\mathrm{Z})(\omega(\mathrm{X}) \mathrm{g}(\mathrm{Y}, \mathrm{U})-\omega(\mathrm{Y}) \mathrm{g}(\mathrm{X}, \mathrm{U})) \tag{1.8}
\end{align*}
$$

where $\left.\quad{ }^{\prime} R(X, Y, Z, U)=g(\widetilde{R} X, Y) Z, U\right)$ and $\quad ' R(X, Y, Z, U)=g(R(X, Y) Z, U)$
Thus we can state
Theorem 1. Let a Riemannian manifold admits a semi-symmetric non-metric connection (1) satisfying (7) and (8). Then the curvature tensor of the semi-symmetric non-metric connection has the form (1.8).

If, in particular, $\tilde{\mathrm{R}}=0$, then from (5) we get

$$
{ }^{\prime} \mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{U})=\alpha(\mathrm{Y}, \mathrm{Z}) \mathrm{g}(\mathrm{X}, \mathrm{U})-\alpha(\mathrm{X}, \mathrm{Z}) \mathrm{g}(\mathrm{Y}, \mathrm{U}) .
$$

Now putting $X=U=e_{i}$ in the above expression where $\left\{e_{i}\right\}$ is an orthonormal basis of the tangent space at any point we have by taking the sum for $1 \leq \mathrm{i} \leq n$

$$
S(Y, Z)=(n-1) \alpha(Y, Z)
$$

Since S is symmetric, we get

$$
\alpha(Y, Z)=\alpha(Z, Y)
$$

Hence from (6) we get

$$
\left(\nabla_{Y} \omega\right)(Z)=\left(\nabla_{Z} \omega\right)(Y) .
$$

Therefore

$$
\begin{equation*}
\left(\nabla_{\rho} \omega\right)(Y)=\left(\nabla_{Y} \omega\right)(\rho) . \tag{1.9}
\end{equation*}
$$

From (1.6) we get

$$
\begin{equation*}
\left(\nabla_{Y} \omega\right)(\rho)=\beta \omega(Y) \tag{1.10}
\end{equation*}
$$

where $\quad \beta=\frac{\left(\nabla_{\rho} \omega\right)(\rho)}{\omega(\rho)}$
Now taking $\quad \tilde{\mathrm{R}}=0$ and using (1.10) in (1.8) we get

$$
\begin{equation*}
{ }^{\prime} \mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{U})=v[\omega(\mathrm{Y}) \omega(\mathrm{Z}) \mathrm{g}(\mathrm{X}, \mathrm{U})-\omega(\mathrm{X}) \omega(\mathrm{Z}) \mathrm{g}(\mathrm{Y}, \mathrm{U})] \tag{1.11}
\end{equation*}
$$

where $\quad v=\frac{\left(\nabla_{\rho} \omega\right)(\rho)}{\omega(\rho) \omega(\rho)}-1$
Remarks. The conditions (7) and (8) of our paper are weaker than the conditions of [2], since it is known that in a Riemannian manifold recurrent torsion tensor implies $\widetilde{R} X, Y) . T=0$ and $\widetilde{R_{R}} 0$ implies $\left.\omega(\widetilde{\mathbb{R} X}, Y) Z\right)=0$, but the converse are not necessarily true. Hence we can state the following :

Theorem 2. Let a Riemannian manifold admits a semi-symmetric non-metric connection satisfying (7) and (8) whose curvature tensor vanishes, then the curvature tensor of the manifold is gevin by (1.11).

From (1.8) it can be easily seen that ${ }^{\prime} \tilde{\mathrm{R}}$ satisfies

$$
/ \widetilde{R} X, Y, Z, U)=-/ \widetilde{R} Y, X, Z, U) .
$$

Also we get

$$
\begin{equation*}
\left.\left.\left.{ }^{\prime} \widetilde{\mathbb{R}} \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{U}\right)+{ }^{\prime} \widetilde{\mathrm{R}} \mathrm{Y}, \mathrm{Z}, \mathrm{X}, \mathrm{U}\right)+{ }^{\prime} \widetilde{\mathrm{R}} \mathrm{Z}, \mathrm{X}, \mathrm{Y}, \mathrm{U}\right)=0 \tag{1.12}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\omega(Y)\left(\nabla_{\rho} \omega\right)(Z)=\omega(Z)\left(\nabla_{\rho} \omega\right)(Y) . \tag{1.13}
\end{equation*}
$$

2. SYMMETRY CONDITION OF THE RICCI TENSOR OF $\tilde{\nabla}$

In this section a necessary and sufficient condition for the symmetry of the Ricci tensor of the semi-symmetric non-metric connection is obtained by proving the following theorem :

Theorem 3. A necessary and sufficient condition that the Ricci-tensor of the semisymmetric non-metric connection $\tilde{\nabla}$ to be symmetric is that the $(0,4)$ curvature tensor ${ }^{\prime} \widetilde{\mathrm{R}}$ of the connection $\tilde{\nabla}$ satisfies

$$
\left.\left.\left.{ }^{\prime} \widetilde{\mathbb{R}}, \mathrm{Y}, \mathrm{Z}, \mathrm{U}\right)+{ }^{\mathrm{K}} \widetilde{\mathrm{Y}} \mathrm{Y}, \mathrm{Z}, \mathrm{X}, \mathrm{U}\right)+{ }^{\prime} \widetilde{\mathfrak{R}} \mathrm{Z}, \mathrm{X}, \mathrm{Y}, \mathrm{U}\right)=0 .
$$

Proof: Let S and $\widetilde{\mathrm{S}}$ denote the Ricci tensors of the Levi-Civita connection and the semi-symmetric non-metric connection respectively.

Now putting $X=U=e_{i}$ in (1.8) we get

$$
\begin{equation*}
\widetilde{\S} Y, Z)=S(Y, Z)-\frac{(n-1)}{\omega(\rho)} \omega(Y)\left(\nabla_{\rho} \omega\right)(Z)+(n-1) \omega(Y) \omega(Z) \tag{2.1}
\end{equation*}
$$

From (2.1) it follows that

$$
\widetilde{\delta} Y, Z)=\widetilde{S} Z, Y) \text { if and only if } \omega(Y)\left(\nabla_{\rho}(\omega)(Z)=\omega(Z)\left(\nabla_{\rho} \omega\right)(Y)\right.
$$

But from (1.12) and (1.13) we see that (1.12) holds if and only if (1.13) holds. Hence \widetilde{S} is symmetric if and only if the condition (1.12) holds.

This completes the proof.

3. EXISTENCE OF A GRADIENT VECTOR FIELD

In this section we consider a Riemannian manifold M^{n} that admits a semisymmetric non-metric connection $\tilde{\nabla}$ whose Ricci tensor is symmetric and satisfies the conditions (7) and (8). It is shown that if a Riemannian manifold admits such a connection, then the manifold admits a gradient vector field.

If the connection (1) satisfies the conditions (7) and (8), then we get from (1.6)

$$
\left(\nabla_{X} \omega\right)(Y)=\frac{\omega(X)}{\omega(\rho)}\left(\nabla_{\rho} \omega\right)(Y)
$$

Since $\widetilde{8}$ symmetric, we get from theorem 3 and (1.13)

$$
\begin{equation*}
\omega(\mathrm{Y})\left(\nabla_{\rho} \omega\right)(\mathrm{X})=\omega(\mathrm{X})\left(\nabla_{\rho} \omega\right)(\mathrm{Y}) \tag{3.2}
\end{equation*}
$$

Putting $Y=\rho$ in (3.2) we get

$$
\begin{equation*}
\left(\nabla_{\rho} \omega\right)(X)=\beta \omega(X) \tag{3.3}
\end{equation*}
$$

where $\quad \beta=\frac{\left(\nabla_{\rho} \omega\right)(\rho)}{\omega(\rho)}$
Using (3.3) in (3.1) we obtain

$$
\begin{equation*}
\left(\nabla_{\mathrm{X}} \omega\right)(\mathrm{Y})=\mathrm{a} \omega(\mathrm{X}) \omega(\mathrm{Y}) \tag{3.4}
\end{equation*}
$$

where $\quad a=\frac{\left(\nabla_{\rho} \omega\right)(\rho)}{\omega(\rho) \omega(\rho)}$.
From (3.4) it follows that the 1 -form ω is closed. That is, the associated vector field ρ is a gradient vector field. Hence we can state the following.

Theorem 4. If a Riemannian manifold admits a semi-symmetric non-metric connection satisfying (7) and (8) with symmetric Ricci tensor, then the manifold admits a gradient vector field.

REFERENCES

[1] AGASHE, N. S. AND CHAFLE, M. R. : A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure apl. Math., 23(6): 399-409, June 1992.
[2] DE, U. C. AND KAMILYA, D. : On a type of semi-symmetric non-metric connection on a Riemannian manifold, To appear in Istanbul Univ. Fen. Fak. Mat. Der. 53(1994).

Department of mathematics, University of Kalyani, Kalyani-741235 West Bengal, India e-mail: ucde@klyuniv.ernet.in

