MATRIX TRANSFORMATION OF $\ell(p, s)$ TO $\ell_{\infty}(p)$ AND $c_{0}(p)$
 Tunay BILGIN* Ercan TUNÇ**

Abstract: In this paper we have determined necessary and sufficient contidions for an infinite matrix $A=\left(a_{n, k}\right)$ to transform $I(p, s)$ into $t_{\infty}(p)$ and $c_{0}(p)$.

1. Introduction

Lat N and C denote the sets of natural numbers and complex numbers, respectively.
X will denote a notrivial complex linear space of elements x, with zero element θ and with paranorm g.A subset G of X is called a fundamental set in X if linear bull (G), the set of all finite linear combinations of elements of G, is dense in X.A. sequence $\left(b_{k}\right)$ of elements of X is said to be a basis in X if for each $x \in X$ there is a unique complex sequence $\left(\lambda_{k}\right)$ suhc that $g\left(x-\sum_{k=1}^{n} \lambda_{k} b_{k}\right) \rightarrow 0(n \rightarrow \infty)$. Thus any basis in X is also a fundamental set in X .

We denote the set of continuous linear functionals on X by X^{*}. A linear functional A on X is an element of X^{*} if and only if

$$
\|A\|_{M} \equiv\left\{|A(x)|: g(x) \leq \frac{1}{M}\right\}<\infty \text { for some } M>1
$$

If x is a space of complex sequence $x=\left(x_{k}\right)$, then we denote the generalize Kothe-Teoplitz dual of X by X^{+}, i.e.

$$
X^{+}=\left\{\left(\alpha_{k}\right): \sum_{k} \alpha_{k} x_{k} \text { converges for every } x \in X\right\}
$$

(Throughout \sum_{k} denotes summation over k from $k=1$ of $k=\infty$).
The following a paranormed β-space were defined by Maddox (1974). Let $\left(X_{n}\right)$ be asequence of subsets of X such that $\theta \in X_{j}$ and such that if $x, y \in X_{n}$ tben $x \pm y \in X_{n+1}$ for $n \in N$; tehn (X_{n}) is called an α-space in X. If we can write $X=\bigcup_{n=1}^{\infty} X_{n}$, where $\left(X_{n}\right)$ is an α-sequence in X and each X_{n} is nowhere dense in X, then X is called α-space; otherwise X is a β-space. Clearly, every α-space is of the first category, whence we see that any complete paranormed space is a β-space.

We now list some sets of complex sequence due to Maddox (1967) and Bulut E. and Çakar Ö (1979). If $p=\left(p_{k}\right)$ is a sequence of strictly positive real numbers, then

$$
\begin{aligned}
& 1_{\infty}(p)=\left\{x \sup _{k}\left|x_{k}\right| p^{p_{k}}<\infty\right\}, \\
& c_{o}(p)=\left\{x: \lim _{k}\left|x_{k}\right|^{p_{k}}=0\right\},
\end{aligned}
$$

[^0]$$
\mathrm{f}(\mathrm{p}, \mathrm{~s})=\left\{\mathrm{x}: \sum_{\mathrm{k}} \mathrm{k}^{-\mathrm{s}}\left|\mathrm{x}_{\mathrm{k}}\right|^{\mathrm{p}_{\mathrm{k}}}<\infty, \quad \mathrm{s} \geq 0\right\}
$$

Now we collect some known results which will be useful in what follows.
Lemma 1. I (p, s) is a linear space if and only if
$0<\mathrm{p}_{\mathrm{k}} \leq \sup _{\mathrm{k}} \mathrm{p}_{\mathrm{k}}=\mathrm{H}<\infty \quad$ (Buiut E. and Çakar Ö. 1979).
Lemma 2. If $0<\inf _{\mathrm{k}} \mathrm{p}_{\mathrm{k}} \leq \mathrm{p}_{\mathrm{k}} \leq \sup \mathrm{p}_{\mathrm{k}} \mathrm{p}_{\mathrm{k}}=\mathrm{H}<\infty \quad$ with $\mathrm{M}=\max (\mathrm{H}, 1)$,
then

$$
g(x)=\left\{\sum_{k} k^{-s}\left|x_{k}\right|^{p_{k}}\right\}^{1 / M}
$$

defines a paranorm on $l(p, s), 1(p, s)$ is complete under g, and $\left(e^{(k)}\right)$ is a basis in $l(p, s)$, where $e^{(k)}$ is a sequence with 1 in the k th place and zero elsewhere (Bulut E. and Çakar Ö. 1979).

Theorem 3. (i) If $1<p_{k} \leq s u p_{k} p_{k}=H<\infty$ and $p_{k}^{-1}+q_{k}^{-1}=1$ for each $k \in N$, then $1(p, s)^{+}=\left\{a=\left(a_{k}\right): \sum_{k} k^{s\left(q_{k}-1\right)} N^{-q_{k}} / p_{k}\left|a_{k}\right| q_{k}, s \geq 0\right.$, for some integer $\left.N>1\right\}$
(ii) If $0<\inf _{\mathrm{k}} \mathrm{p}_{\mathrm{k}} \leq 1$ for all $\mathrm{k} \in \mathrm{N}$ then

$$
1(p, s)^{+}=\left\{a=\left(a_{k}\right): \sup _{k} k^{s}\left|a_{k}\right|^{p_{k}}<\infty, s \geq 0\right\} \text { (Theorem } 1 \text { in Bulut E. and Çakar Ö. 1979). }
$$

Theorem 4. If either $1<p_{k} \leq \sup _{k}=H<\infty$ for all k, or $0<\inf _{k} p_{k} \leq p_{k} \leq 1$ for all k, then every $A \in$ $1(\mathrm{p}, \mathrm{s})^{*}$ may be written as $\mathrm{A}(\mathrm{x})=\sum_{k} \alpha_{k} \mathrm{x}_{\mathrm{k}}$ on $\mathrm{l}(\mathrm{p}, \mathrm{s})$ for some $\left(\alpha_{k}\right) \in \mathrm{l}(\mathrm{p}, \mathrm{s})^{+}$, and conversely $\mathrm{A}(\mathrm{x})=\sum_{k} \alpha_{k} \mathrm{x}_{k}$ defines an element of $1(p, s)^{*}$ for each $\left(\alpha_{k}\right) \in 1(p, s)^{+}$(Theorem 2 in Bulut E. and Çakar Ö. 1979).

Theorem 5. Let X be a paranormed space and let $\left(A_{n}\right)$ be a sequence elements of X^{*}, and suppose r is bounded, where r is a sequence of strictly positive real numbers. Then
(1) $\sup _{n}\left(\|A\|_{M}\right)^{r_{n}<\infty}$ for some $M>1$
implies
(2) $\quad\left(A_{n}(x)\right) \in 1_{\infty}(r)$ for every $x \in X$, and the converse is true if X is a β-space. (Theorem I in Maddox I.J. and Willey M.A.L. 1974).

Theorem 6. Let X be a paranormed space and let $\left(A_{n}\right)$ be a sequence of elements of X^{*}.
(i) If X has fundamental set G and if r is bounded, then the fololwing propositions
(3) $\quad\left(A_{n}(b)\right) \in c_{0}(r)$ for every $b \in G$,
(4) $\quad \lim _{M} \limsup _{n}\left(\left\|A_{n}\right\|_{M}\right)^{r_{n}}=0$,
together imply
(5) $\quad\left(A_{n}(x)\right) \in c_{0}(r)$ for every $x \in X$.
(i) If $\mathrm{r}_{\mathrm{n}} \rightarrow 0 \quad(\mathrm{n} \rightarrow \infty)$ then (4) implies (5).
(iii) Let X be a β-space; tehn (5) implies (4) even if r is unbounded. (Theorem 2 in Maddox I.J. and Willey M.A.L. 1974).

Theorem 7. Let X be a paranormed space and let $\left(A_{n}\right)$ be a sequence of elements of X^{*} and suppose r is bounded.
(i) If X has fundamental set G, and if there is an $L \in X^{*}$ such that
($\left.A_{n}(b)-L(b)\right) \in c_{0}(r)$ for all $b \in G$ and
(6) $\quad \lim _{M} \lim \sup _{n}\left(\left\|A_{n}-L\right\|_{M}\right)^{\mathrm{I}_{\mathrm{n}}}=0$,
then
(7) $\quad\left(A_{n}(x)\right) \in c(r)$ on X.
(ii) If $r_{n} \rightarrow 0 \quad(n \rightarrow \infty)$ and if there is an $L \in X^{*}$ such that (6) holds, then (7) is true.
(iii) If X is a β-space and if (7) is true, then there is an $L \in X^{*}$ such that (6) holds. (THeorem 3 in Maddox I.J. and Wıliey M.A.L. 1974).

Let Y and Z be sets of sequences. We shal write (Y, Z) for the class of matrices $A=\left(a_{n, k}\right)$, $n, k=1,2, \ldots$ of complex numbers $a_{n, k}$, such that for each $y=\left(y_{k}\right) \in Y$,

$$
A_{n}(y)=\sum_{k} a_{n, k} y_{k}
$$

converges for each n, and $\left(A_{n}(y)\right) \in Z$. The class (Y, Z) is said to be the set of matrices transforming Y into Z .

Theorem 8. (i) If $1<p_{k} \leq \sup p_{k} \mathrm{P}_{\mathrm{k}}=\mathrm{H}<\infty$ and $\mathrm{p}_{\mathrm{k}}^{-1}+\mathrm{q}_{\mathrm{k}}^{-1}=1$ for every $\mathrm{k} \in \mathrm{N}$ then $\mathrm{A} \in\left(\mathrm{l}(\mathrm{p}, \mathrm{s}), \mathrm{l}_{\infty}\right)$ if and only if there exists an integer $B>1$ such that

$$
\sup _{k} \sum_{k} \cdot k^{s\left(q_{k}-1\right)} B^{-q_{k}}\left|a_{n, k}\right|^{q_{k}}<\infty
$$

(ii) If $0<\inf _{k} p_{k} \leq p_{k} \leq 1$ for each $k \in N$, then $A \in\left(1(p, s), l_{\infty}\right)$ if and only if

$$
\sup _{n, k} k^{s}\left|a_{n, k}\right|^{P_{k}}<\infty \text {. (Theorem } 3 \text { in Bulut B. and Çakar Ö. 1979) }
$$

We shall frequently use the following inequalities. Take $x, y \in C$; if $0<p \leq 1$ then

$$
|x| p_{-\mid y}\left|{ }^{P} \leq|x+y|^{P} \leq|x|{ }^{P}+|y| P\right.
$$

and $f p>I$ and $p^{-I}+q^{-1}=1$ then $|x y| \leq|x|^{p}+|y| q$.

2. Matrix Tranfsormations

In the profs of the following result, as in earlier ones, we may without loss of generality assume that $r_{n} \leq 1$ for all $n \in N$, and we shall do so when convenient.

Theorm 9. (i) Let $0<i n f_{k} p_{k} \leq p_{k} \leq 1$ and $p_{k}^{-1}+q_{k}^{-1}=1$ for each $k \in N$, and let r be bounded. Then $A \in\left(1(p, s), l_{\infty}(r)\right)$ if and only if

$$
\begin{equation*}
\sup _{n}\left\{\sup _{k} k^{s / p_{x}}\left|a_{n, k}\right| M^{-1 / p_{k}}\right\}^{r_{n}}<\infty \text { for some } M>1 \tag{8}
\end{equation*}
$$

(ii) Let $1<p_{k} \leq \sup p_{k} p_{k}=H<\infty$ and $p_{k}^{-1}+q_{k}^{-1}=1$ for each $k \in N$, and let r be bounded, Then $A \in\left(1(p, s), 1_{\infty}(r)\right.$ if and only if
(9) $T(B) \equiv \sup _{n} \sum_{k} k^{s\left(q_{k}-1\right)} B^{-q_{k} / r_{n}}\left|a_{n, k}\right|^{q_{k}}<\infty$ for some $B>1$.

Proof. Write, for each $x \in\left(1(p, s), l_{\infty}(r)\right)$; then for each $n,\left(a_{n}, 1, a_{n, 2}, \ldots\right) \in 1(p, s)^{+}$. Also, by Theorem 4, $A_{n} \in 1(p, s)^{*}$ for each $n \in N$. We show that for each $n,\left\|A_{n}\right\| M^{=}=\sup _{k} \mid a_{n, k} / k^{s / p_{k}} M^{-1 / p_{k}}$ for al M such that $\left\|A_{n}\right\|_{M}$ is defined. Choose any $n \in N$. First, if M is such that, for some sequence ($k(i)$) of integers,

$$
\begin{aligned}
& \left|a_{n, k(i)}\right| k(i)^{s / p_{k(i)}} M^{-1 / p_{x(i)}} \geq i \text { for each } i \in N \text {, then by defining } \\
& x^{(k(i))}=\left(M^{-1 / p_{k(i)}} \operatorname{sgn} a_{n, k(i)} 5 / p_{x(i)}\right) e^{(k(i))} .
\end{aligned}
$$

$i=1,2, \ldots$, we see that $\left\|A_{n}\right\|_{M}$ is underfmed. Since $\left(a_{n, 1}, a_{n, 2}, \ldots\right) \in 1(p, s)^{+}$there is an $M_{n} \geq 1$ such that $\left|a_{n, k}\right|^{P_{k}} k^{s} \leq M_{n}$ for all k. Choose $M \geq M_{n}$. We have if $g(x)=\sum_{k} k^{-5}\left|x_{k}\right|^{P_{k}} \leq 1 / M$, since $\mathrm{M}^{1 / \mathrm{P}_{\mathrm{k}}} \mathrm{k}^{-\mathrm{s} / \mathrm{P}_{\mathrm{k}}}\left|\mathrm{x}_{\mathrm{k}}\right| \leq 1$ for all k and since $\sup _{\mathrm{k}} \mathrm{p}_{\mathrm{k}} \leq 1$,

$$
\begin{aligned}
\left|A_{n}(x)\right| \leq & \sum_{k}\left|a_{n, k} x_{k}\right| \\
& =\sum_{k} k^{s / p_{k}} k^{-s / p_{k}}\left|x_{k}\right| M^{1 / p_{k}} M^{-1 / p_{k}}\left|a_{n, k}\right| \\
& \leq \sum_{k} k^{s / p_{k}} k^{-s}\left|x_{k}\right|^{p_{k}} M^{-1 / p_{k}}\left|a_{n, k}\right| \\
& \leq M \sup _{k}\left(k^{s / p_{k}}\left|a_{n, k}\right| M^{-1 / p_{k}}\right)(1 / M)
\end{aligned}
$$

whence $\left\|A_{n}\right\| M^{\leq s u p_{k}} k^{s / p_{k}}\left|a_{n, k}\right| M^{-1 / p_{k}}$. Given $\varepsilon>0$ we can choose an m such that

$$
\left|a_{n, m}\right| M^{-1 / p_{m}} m^{s / p_{m}}>\sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}} k^{s / p_{k}}-\varepsilon
$$

Defining $x=\left(M^{-1 / p_{m}} \operatorname{sgn} a_{n, m} m^{s / p_{m}}\right) e^{(m)}$ we have $g(x) \leq 1 / M$ and

$$
A_{n}(x)=\left|a_{n, m}\right| M^{-1 / p_{m}} m^{s / p_{m}}>\sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}} k^{s / p_{k}}-\varepsilon
$$

whence $\left\|A_{n}\right\|_{M}=\sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}} k^{s / p_{k}}$ as required. By the Lemma 2,1 (p, s) is complete, so it is a β-space; tuhs by Theorem 5 we must have (8).

Conversel let (8) hold. Then as above it follows that for each $n, A_{n} \in 1(p, s)^{*}$ with $\left\|A_{n}\right\|_{M}=\sup _{k}\left|a_{n, k}\right| M^{-1 / p_{k}} k^{s / p_{k}}$ for all M such that $\left\|A_{n}\right\|_{M}$ is defined. Then using Theorem 5 we obtain $\left(A_{n}(x)\right) \in l_{\infty}(r)$.
(ii) For the sufficiency, let (9) hold. Then ifi $x \in 1(p, s)$ we have for each n, assuming $r_{n} \leq 1$ for all n,

$$
\begin{aligned}
\left|A_{n}(x)\right|^{r_{n}} & \leq\left\{\sum_{k}\left|a_{n, k} x_{k}\right|\right\}^{r_{n}} \\
& =\left\{\sum_{k} k^{s / p_{k}} k^{-s / p_{k}}\left|x_{k}\right| B^{1 / r_{n}} B^{-1 / r_{n}}\left|a_{n, k}\right|\right\}^{r_{n}} \\
& \leq\left\{\sum_{k} k^{s\left(q_{k}-1\right)}\left|a_{n, k}\right|^{q_{k}} B^{-q_{k} / r_{n}}+\sum_{k} B^{p_{k} / r_{n}} k^{-s}\left|x_{k}\right|^{p_{k}}\right\}^{r_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq\{T(B)\}^{\mathrm{r}_{\mathrm{x}}}+\mathrm{B}^{\mathrm{H}}\left\{\mathrm{~g}^{\mathrm{H}}(\mathrm{x})\right\}^{\mathrm{r}_{n}} \\
& \leq \mathrm{T}(\mathrm{~B})+\mathrm{l}+\mathrm{B}^{\mathrm{H}}\left\{\mathrm{~g}^{\mathrm{H}}(\mathrm{x})+\mathrm{l}\right\}
\end{aligned}
$$

which implies $A \in\left(1(p, s), l_{\infty}(r)\right)$.
Now let $a \in\left(1(p, s), 1_{\infty}(r)\right)$; then $\left(a_{n}, 1, a_{n}, 2, \ldots\right) \in 1(p, s)^{+}$for each n and so, by Theorems $3(i)$ and $4, A_{n} \in l(p . s)^{*}$ for all n. By Theorem 5 there exist $M>1$ and $G \geq l$ such that $\left|A_{n}(x)\right|^{r_{n}} \leq G$ for all n and all $x \in l(p, s)$ with $g(x) \leq 1 / M$. Then $\left|\sum_{k} G^{-\frac{1}{2} / r_{n}} a_{n, k} x_{k}\right| \leq 1 \quad n=1,2, \ldots$, if $g(x) \leq 1 / M$. Write $\Gamma=\left(G^{-1 / r_{n}} a_{n, k}\right)$, and choose any $x \in l(p, s)$. By the continuity of scaler multiplication on $l(p, s)$ there is a $K \geq 1$ such that $g\left(K^{-1} x\right) \leq 1 / M$, whence $\left|\sum_{k} G^{-1 / r_{n}} a_{n, k} x_{k}\right| \leq K$ for all n. Thus we see that $\Gamma \in\left(1(p, s), l_{\infty}\right)$ and so by Theorem $8(i)$ there is a $D>1$ such that

$$
\sup _{\mathrm{n}} \sum_{k} \mathrm{k}^{s\left(q_{k}-1\right)} \mathrm{D}^{-q_{k}}\left[\left.\mathrm{G}^{-l / r_{n}} a_{n, k}\right|^{q_{k}}<\infty \text {. Writing } B=G D\right. \text { and using the fact that }
$$ $\mathrm{D}^{\mathrm{I}_{\mathrm{n}}} \leq \mathrm{D}$ for all n , we obtain (9).

Theorem 10. (i) Let $0<\inf _{k} P_{k} \leq p_{k} \leq 1$ for each $k \in N$, and let r be bounded. Then $A \in\left(1(p, s), c_{0}(r)\right)$ if and only if
(11) $\left|a_{n, k}\right|^{r_{n}} \rightarrow 0(n \rightarrow \infty)$ for every $k \in N$ and,
(12) $\quad \lim _{M} \lim \sup _{n}\left\{\left.\sup _{k} k^{s / p_{k}}\right|_{a_{n}, k} \mid M^{-1 / p_{k}}\right\}^{t_{n}}=0$.
(ii) Let $1<\mathrm{p}_{\mathrm{k}} \leq \sup _{\mathrm{k}} \mathrm{p}_{\mathrm{k}}=\mathrm{H}<\infty$ and $\mathrm{p}_{\mathrm{k}}^{-1}+\mathrm{q}_{\mathrm{k}}^{-1}=1$ for each $\mathrm{k} \in \mathrm{N}$, and let r be bounded. Then $A \in\left(1(p, s), c_{0}(r)\right)$ if and only if (11) holds and, for every $D \geq 1$,
(13) $\lim _{B} \limsup \operatorname{sun}_{n}\left\{\left.\sum_{k} k^{s\left(q_{k}-1\right)} D^{-q_{k} / r_{x}} B^{-q_{k} \mid a_{n, k}}\right|^{q_{k}}\right\}^{\tau_{n}}$.

Proofi (i) Lat $A \in\left(1(p, s), c_{0}(r)\right)$; since $\left(1(p, s), c_{0}(r)\right) \subseteq\left(1(p, s), l_{\infty}(r)\right)$ then as above we have $\mathrm{A}_{\mathrm{n}} \in \mathrm{X}^{*}$ and
$\left\|A_{n}\right\|\left|M^{=s u p} p_{k}\right| a_{n, k} \mid M^{-1 / p_{k}} k^{s / p_{k}}$ whenever $\left\|A_{n}\right\|$ is defined, for each $n \in N$. Then, by Theorem 6 (iii), (12) must hold. also $x=e^{(k)} \in l(p, s)(k=1,2, \ldots)$ we obtain (11).

Conversely if (11) and (12) hold we can show that $A_{n} \in l(p, s)^{*}$. With $\| A_{n}\left|M^{=s u p_{k}}\right| a_{n, k} \mid M^{-1 / p_{k}} x^{s / p_{k}}$ whenever $\left\|A_{n}\right\|$ is defined, for each $n \in N$; also ($e^{(k)}$) is a basis in $1(\mathrm{p}, \mathrm{s})$ by Lemma 2. Then by Theorem $6(\mathrm{i})$ we can deduce that $A \in\left(1(\mathrm{p}, \mathrm{s}), \mathrm{c}_{0}(\mathrm{r})\right)$.
(ii) Define A by (10) on $l(p, s)$, for each $n \in N$. First we prove the necessety: let $A \in\left(1(p, s), c_{0}(r)\right)$. Obviously we must have (11) and as in Theorem 9 (ii) we see that $A_{n} \in I(p, s)^{*}$ for all n. If $A \in\left(l(p, s), c_{0}(r)\right)$ then $\left(D^{1 / r_{n}} a_{n, k}\right) \in\left(l(p, s), c_{0}(q)\right)$ for all $D>1$, so it is enough to show that (13) holds for $D=1$. Since $\mathrm{c}_{0}(\mathrm{r}) \subseteq l_{\infty}(\mathrm{r})$ and using Theorem 8 (i) there isa $B>1$ such that

$$
T_{n} \equiv \sum_{k} k^{s\left(q_{k}-1\right)} B^{-H q_{k}\left|a_{n, k}\right|^{q_{k}} \leq 1} \text { for every } n \in N \text {. Choose any } n \text {, and define }
$$ $x_{k}^{(n)}=B^{-H q_{k}} \operatorname{sgn} a_{n, k}\left|a_{n, k}\right|^{q_{k}-1} k^{s\left(q_{k}-1\right)}$ for each k; then

$$
\begin{aligned}
g^{H}\left(x^{(n)}\right) & =\sum_{k} k^{-s} k^{s\left(q_{k}-1\right) p_{k}} B^{-H q_{k} p_{k}}\left|a_{n, k}\right|^{q_{k} p_{k}} \\
& =\sum_{k} k^{s\left(q_{k}-i\right)} B^{-H q_{k}-H p_{1}}\left|a_{n, k}\right|^{q_{k}} \\
& \leq B^{-H} \sum_{k} k^{s\left(q_{k}-1\right)} B^{-H q_{k}}\left|a_{n, k}\right|^{q_{k}} \\
& \leq B^{-H}
\end{aligned}
$$

and

$$
\begin{aligned}
A_{n}\left(x^{(n)}\right) & =\sum_{k} a_{n, k} x_{k}^{(n)} \\
& =\sum_{k} a_{n, k} k^{s\left(q_{k}-1\right)} B^{-H q_{k}}\left|a_{n, k}\right|^{q_{k}-1} \operatorname{sgn} a_{n, k} \\
& =T_{n}
\end{aligned}
$$

whence $\left\|A_{n}\right\|_{B} \geq T_{n}$ for each n. By Theorem 6 (iii) we must have $\lim _{B} \lim \sup _{n}\left(\left\|A_{n}\right\|_{B}\right)^{r_{n}=0}$, whence (13) holds with $D=1$.

For the sufficiency, let (11) be true and let (13) hold for all $D \geq 1$. It follows that $A_{n} \in 1(p, s)^{*}$ for all $n \in N$. Since $\left(e^{(k)}\right)$ is a basis in $1(p, s)$ and using Theorem $6(i)$ it is enough to show that $\lim _{B} \lim \sup _{n}\left(\left\|A_{n}\right\|_{B}\right)^{r_{n}}=0$. Choose $\varepsilon, 0<\varepsilon \leq 1$, and $D>2 / \varepsilon$. There exist $B>1$ and m such that

$$
\left\{\sum_{k} k^{s\left(q_{k}-1\right)} D^{-q_{k} / r_{n}} B^{-q_{k}}\left|a_{n, k}\right|^{q_{k}}\right\}^{r_{n}}<\varepsilon / 2
$$

if $n \geq m$. Then if $g(x) \leqslant 1 / B$ and if $n \geq m$ we have

$$
\begin{aligned}
& \left|A_{n}(x)\right|^{r_{n}} \leq\left\{\sum_{k}\left|a_{n, k}\right| D^{1 / r_{n}} B^{-1} B D^{-1 / r_{n}} k^{s / p_{k}} k^{-s / p_{k}}\left|x_{k}\right|\right\}^{r_{n}} \\
& \leq\left\{\sum_{k}\left(\left|a_{n, k}\right|^{q_{k}} D^{q_{k} / r_{n}} B^{-q_{k}} k^{s\left(q_{k}-l\right)}+D^{-p_{k} / r_{n}} B^{p_{k}} k^{-s}\left|x_{k}\right|^{p_{k}}\right)\right\}^{r_{n}} \\
& \leq\left\{\sum_{k}\left(\left|a_{n, k}\right|^{q_{k}} D^{q_{k} / r_{n}} B^{-q_{k}} k^{s\left(q_{k}-1\right)}\right\}^{r_{n}}+\left\{D^{-1 / r_{n}} B^{H} g^{H}(x)\right\}^{r_{n}}\right. \\
& \leq \varepsilon / 2+\left\{D^{-1 / r_{k}} B^{H} g^{H}(x)\right\}^{r_{n}}<\varepsilon,
\end{aligned}
$$

and this completes the proof,

REFERENCES

[1] Bulut E. and Cakar O. The sequence $I(p, s)$ and related matrix transformation. Comm. Fac. Scie. Ankara University, Seri A $_{\mathrm{I}}, 28$, (1979), 33-44.
[2] Maddux I.J. Spaces of strongly summable sequences, Quarterly J. Math. Oxford, (2) 18 (1967). 345-355.
[3] Maddox l.J. and Willey M.A.L. Continuouse operators on paranormed spaces and matrix transformations, Paci. J. Math. (53) I (1974), 217-228.

* Yüzüncu Yil University

Departmen of Mathematics
VAN/TURKEY
** 19 Mayıs Üniversity
Department of Mathematics, SAMSUN/TURKEY

[^0]: ${ }^{A}$ MS Subject Classification (1980): 40C05. 40D05.40H05.

