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MATRIX TRANSFORMATION OF £ (p,s) TG £ (p) ANB ¢, (p)
Tunay BILGIN® Ercan TUNG*

Abstsact: In this paper we have determined necessary and sufficient contidions
for an infinite matrix A={ap |} t© wransfortn 1(p,5) into [ _(p} and ca(p) -
1. Infroduction
Lat N and C denote the sets of natural numbers and complex numbers, respectively.
X will denote a notrivial complex linear space of elements x, with zero element 8 and with

paranorm g, A sabset G of X is called a fundamental set in X if linear bull (G), the set of all finite linear
combinations of elements of G, is dense in X.A. sequence {by} of elements of X is said to be a basis in X

n
if for each xeX there is a unique complex sequence () suhc that g(x - zlkbk} - 0 (n—w), Thus
k=1
any basis in X is also a fundamental set in X.
We denote the set of continuous linear finctionals on X by X", A linear functional A on X is an
element of X* ifand only if

fiAilv = {fA(X)ifg(X) < ﬁ} <o for some M>1,

If x is a space of complex sequence x={x|}, then we denote the generalize Kéthe-Teoplitz dual
of X by Xt Le.

x* ___{(ak):zkakxk converges for every x EX} .

{Throughout 3 denotes summation over k from k=1 of k=w).

The following a paranormed B-space were defined by Maddox (1974). Let (X)) be asequence of

subsets of X such that 8eX; and such that if x,ye X, tben xtyeX; 11 for neN; tehn (X)) is called an
- +3

a-space in X. if we can write X = UX,., ,,where (X)) is an w-sequence in X and each X[, is nowhere
n=|

dense in X, then X is called o-space; otherwise X is a B-space. Clearly, every a-space is of the first

category, whence we see that any complete paranormed space is a -space.

We now list some sets of complex sequence due to Maddox (1967) and Bulut E. and Gakar
(1979). If p=(py) is a sequence of strictly positive real numbers, then

L (p) = {xsupy ixiP <caf,

colp)= {x:limkkalpk = 01 ,
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p.9) = {3, KPP < oo szo}

Now we collect some known results which will be useful in what follows.
Lemma 1. I(p,s) is a linear space if and only if
| 0<pj<supy py=H<eo  (Buiut E. and Cakar O. 1979).
Lemma 2. Ifi O<infypp<pyssupppi=H<eo with M=max (H,1),

then

M
g(x)={zkk'sixkl”*}

defines a paranorm on 1(p,s), 1{p,s) is complete under g, and (e(k)) is a basis in 1({p,s), where ek s a
sequence with 1 in the k th place and zero elsewhere (Bulut E. and Cakar O. 1979),

Theorem 3. (i) If | <pp<supy, pi=H<eo and p;‘ +q;1 =1 for each keN, then
I(p,s)* :{a =(a ) Zkks(qk‘”N“q*"P*}akPk , 520, for some integer N » 1}

(3) If O<infyp,<l for alikeN then

1(p,s)t={a=(ay):supikSay| = <o, 20} (Theorem 1 in Bulut E. and Cakar 0. 1979).

Theorem 4. If either 1<py<supp=H<oo for all k, or 0<1nfkpk<pk<l for all k, then every Ae
l{p,s) may be written as A(x):Zkoth]\ on 1{p,s) for some (oy)e 1{p,s)", and conversely AX)=Xpoqx)
defines an element of l(p,s) for each () 1(p,s)™ (Theorem 2 in Bulut E. and Cakar 0. 1979).

Theorem 5. Let X be a paranormed space and let {A;) be a sequence elements of x*, and
suppose T is bounded, where r is a sequence of strictly positive real numbers. Then

(1 supy,(lAfp) < for some M>1
implies
) {Ap(x))ely{r) for every xeX,
and the converse is true if X is a f-space. (Theorem 1 in Maddox L.J. and Willey M.A L. 1974),
Theorem 6. Let X be a paranormed space and let (A) be a sequence of elements of X*.
(i) If X has fundamental set G and if r is bounded, then the fololwing propositions
3) (Ap(b)ecylr) for every beg,
(4) limp limsupy (ALl T=g,
together imply
&) {Ap(x))ecylr) for every xeX.
(i) If ;>0 (n-»e0) then (4) implies (5).

{iii} Let X be a B-space; tehn (5) implies (4) even if r is unbounded. {Theorem 2 in Maddox L]
and Willey M.A.L. 1974).
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Theotem 7. Let X be a paranormed space and let (Ap) be a sequence of elements of x* and
suppose T is bounded.

(i} If X has fundamental set G, and if there is an LeX” such that
(Ag(b)-L(by)ecg(r) for allbeG and
(6)  limyy lim supy (JAq-Lih) ™ =0,
then
)] (Ap(x))ec(r) on X.
(ii) If rp;—0 (n—w) and if there is an LeX® such that (6) holds, then (7) is true.

(iii) If X is a p-space and if {7) is true, then there is an Le X* such that (6) holds. (THeorem 3
in Maddox 1.J. and Wiliey M.A L. 1974). :

Let Y and Z be sets of sequences. We shal write (Y, Z) for the class of matrices A=(an,k)’
nk=1,2,... of complex numbers a, i, such that for each y=(y))eY,

An(Y=Zkag kY

converges for each n. and (Ap(y))€Z. The class (Y,Z) is said to be the set of matrices transforming Y
into Z.

Theorem 8. (i) If 1<py<supyp,=H<o and p§1+q§l =1 forevery keN then Ae(I(p,s)iy)
if and only if there exists an integer B>1 such that

supy, Zk,ks(q*_I)B_q*ja,,‘kiq* <w.
(ii) If 0<infippspk<! for each keN, then Ae(I(p.s),15) ifand only if
sup,x k*lap [P <. (Theorem 3 in Bulut B. and Cakar 0. 1979)

We shall frequently use the following inequalities. Take x, yeC; if 0<p<] then
[x{P-ly[P<|x-+y[P<ix[P+y[P,
and fp>1 and pT+q-1=1 then |xyl<|xP+[y9.
2. Matrix Tranfsormations

In the profs of the following result, as in earlier ones, we may without loss of generality assume
that i<l for allneN, and we shall do so when convenient,

Theorm 9. (i) Let O<infipi<pe<! and pp'+q;' =1 for each keN, and let r be bounded.
Then Ae(1(p,s),1{r)) if and only if

T, '
(8) , SUPE{SUPk ks"p"lan,klM'“p*} <w for some M>1.

(ii) Let 1<p p=sup,pp=H<w and p§l -zrqEI =1 for each keN, and let 1 be bounded, Then
Ae(1(p,s),1 o{r) if and only if

®)  T®)=supyy, K BIB W ja [h <o for some B>1.
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Proof. Write, for each xe(1(p,5),1,(r)); then for each n, (an,l,an’z,...)el(p,s)f A]sb, by
Theorem 4, Anet(p,s)* for each neN. We show that for each n, ||An||M:supk|an‘ka3’pk M VP for

al M such that [|Ap[lg is defined. Choose any neN. First, if M is such that, for some sequence (k(i))
of integers,

ian‘k(i)lk(i)sip“"M_”p“” 21 for each ieN, then by defining

KkOD (M—ln’Ptu) sgn an,k(i)s'fpzm)e(k{i)) .

i=1,2,..., we see that |JApllps is underfimed. Since {an 1.2q,2.--) €1(p,sY* there is an Myl such that

L k®<M, for all k. Choose MzM;. We have if g(x):Zkk"ﬂxk!p*s]iM, since

MYPek™SPrix 1< | for allk and since supy px<l,
AL D Jankx
= 3 KPR e MM T P |
szkk“P~k‘5|xk|Pk M M Pa
< M supy (k¥Pfan M%) (17M),
whence [|A,llp<supy kSIptian=k|M"l"p* . Given >0 we can choose an m such that
]ammlM_l""'"ms"pm > supk|a“.k]M'”1"=ks"F'k —~%.
Defining x = (M™VP= sgn a“,mms'rp'" )™ we have g(x)<I/M and
Ap() Hap M Y PemPe 5 suppja, MR RIP g

whence [|A v =supk|anyk|M_”p*k5i7"‘ as required. By the Lemma 2,1 (p,s) is complete, so itisa
B-space; tuhs by Théorem 5 we must have (8).

Conversel fet (8) hold. Then as above it follows that for each n, Anel(p,s)'t with

HAnIlM:supklan’ki M~ UYBk¥® for all M such that JlApllp is defined. Then using Theorem 5 we obtain
{(Ap(xDe ] fr).

(ii) For the sufficiency, let (9) hold. Then ifixe 1{p,s) we have for each n, assuming r,sl for
all n,

rll
Al = {5 ol
rII
- {Zk ks.’pl ]\(—sﬁ'pI= |Xk[Bm" B‘”".. Ian,k |}

r
~1 -, — n
S{z kks(‘k )Ian,kiqk B /1, +§ kBpl"rnk slxklpt}
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< {8y + B (" (™
<T(BY+1+B g )+ 1}

which implies Ae(l(p,s}, 1)
Now let ae(1(p,s),1(r)); then (an,lvan,2=---)51(P~5)+ for each n and so, by Theorems 3(i)
and 4, Ape l(p.s)* for afl n. By Theorem 5 there exist M>1 and Gz suchthat A (x)" <G for alln

-1,
ZkG ! an Xk

T= (G‘”‘"an'k), and choose any xel(p,s). By the continuity of scaler multiplication on 1(p,s) there

=1,
sz "an,kxk

Te(l(p.s),14) and so by Theorem 8(i} there is a D>1 such that

and all xel(p,s) with g(x)<I/M. Then <1 n=12,., if g(x)<I/M, Write

is a Kzl such that g(K'lx)Sl!M, whence <K for alln. Thus we see that

sup, Zkks(q“”D—qt{G-”r"an‘k{q* <w, Writing B=GD and using the fact that

D™ <D for all n, we obtain (9).

Theorem 10. (i} Let O<infim<m=l for each keN, and let r be bounded. Then
Ae(l(p,s), eg(r)) if and only if

{11y la, 1" — 0(n = ) for every keN
o,k

and,
rlI
(12) limyy lim supn{supk Ko lﬂn,kafl'fP' } =0.

(i} Let 1<py<supy pg=H<wn and pE' +q£l =1 for each keN, and let r be bounded. Then
Ae(l(p,s), cg(r)} if and only if (11) bholds and, for every D=1,

rﬂ
(13) limg limsupn{zkks(ql—l)D—qxfr,B-qk}an'qul} ‘
Proofi (i) Lat Ae(l(psh cg(r)}; since (Hp.sheg{rdc(1(psh1o(r)) then as above we have
AneX* and
Anliv=supi lan,klM_yp*ks”p" whenever |Ap|| is defined, for each neN. Then,

by Theorem 6 (iii), (12) must hold. also x=¢()e 1(p,s) (k=1,2,...) we obtain (11},

Conversely if (11}  and (12)  hold we can show that Ajel(p,s)’. With
nAnIM:supklan’kiM'“p‘xs”p* whenever [|A| is defined, for each neN; also (e(K)) is a basis in
1{p,s) by Lemma 2. Then by Theorem 6(i} we can deduce that Ae(l(p,s), cp(r)).

(iiy Define A by (10) on I(p,s), for each neN. First we prove the necessety: let
Ae(1(p,s), cg(r)). Obviously we must have (11) and as in Theorem 9 (ii) we see that Ane[(p,s)‘ for all

n.If Ae(l(ps), co(r) then (DY™a_ )} e(1(p.s), colq) for all D>1, so it is enough to show that (13)
holds for D=1. Since eg(r)cly(r) and using Theorem § (i) there isa B>1 such that

T, azkksmk"”B_Hq*]an!k{q“ <1 for every neN. Choose any n, and define

xf\.“) =B M sgn ay a7 k¥9%=D for each k; then
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-gH (x(l'l)) = Zk k"sks(chs”'l)Pt B_qupk |an,k’qkpk
- Zk k¥—pg-Ha,-Hp, |an,quk

-H ~1}p—H
<B ZkkS(qk )B qlla]'l.quk

<p-H
and
An(x(n))= Zk amkx{;n)
= Zk an,kks(ch—l) B_H‘h |an,k|‘h—! Sgn ap y
=Tp,

whence ||Ayllg=T, for ¢ach n. By Theorem 6(iii) we must have limg lim sup, (iAplg) ™ =0,
whence (13) holds with D=1.

For the sufficiency, let (11) be true and let (13) hold for all D21. It follows that Aje l(p,s)*
for all neN. Since (e(k)) is a basis in 1(p,s) and using Theorem 6(i) it is enough to show that

limg lim supp(|lAplig) ™ =0. Choose £,0<e<l, and D>2/e, There exist B>1 and tm such that
rlI
{Zk PLCI ot UL |an,k|m} <gl?
. [ifn2m. Then ifg(x)<1/B and if n2m we have

rII
A ()" < a, DY BIBD YT 5P Sy
n K'onk k
< {Zk(!an,qu‘ DUMR- %S | pR/npgh K S|x g [Pe )}r"
rﬂ
S{quan,qul D‘ixl'an“‘Qkks(Qk‘l)} +{lefr,,BHgH(x)}f"

) I,
<g I2+{D_”'-BHgH(x)} <g,

and this completes the proof,
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