MATRIX TRANSFORMATION OF ℓ (p,s) TO ℓ_{∞} (p) AND c₀ (p)

Tunay BİLGİN^{*} Ercan TUNÇ^{**}

Abstract: In this paper we have determined necessary and sufficient contidions for an infinite matrix $A=(a_{n,k})$ to transform I(p,s) into $I_{op}(p)$ and $c_{o}(p)$.

1. Introduction

Lat N and C denote the sets of natural numbers and complex numbers, respectively.

X will denote a notrivial complex linear space of elements x, with zero element θ and with paranorm g.A subset G of X is called a fundamental set in X if linear bull (G), the set of all finite linear combinations of elements of G, is dense in X.A. sequence (b_k) of elements of X is said to be a basis in X

if for each $x \in X$ there is a unique complex sequence (λ_k) such that $g\left(x - \sum_{k=1}^n \lambda_k b_k\right) \to 0 \quad (n \to \infty)$. Thus

any basis in X is also a fundamental set in X.

We denote the set of continuous linear functionals on X by X^* . A linear functional A on X is an element of X^* if and only if

$$||A||_M \equiv \left\{ |A(x)|: g(x) \le \frac{1}{M} \right\} \le \infty \text{ for some } M \ge 1.$$

If x is a space of complex sequence $x=(x_k)$, then we denote the generalize Köthe-Teoplitz dual of X by X⁺, i.e.

$$X^+ = \left\{ (\alpha_k) : \sum_k \alpha_k x_k \text{ converges for every } x \in X \right\}.$$

(Throughout \sum_{k} denotes summation over k from k=1 ot k= ∞).

The following a paranormed β -space were defined by Maddox (1974). Let (X_n) be asequence of subsets of X such that $\theta \in X_i$ and such that if $x, y \in X_n$ then $x \pm y \in X_{n+1}$ for $n \in \mathbb{N}$; then (X_n) is called an

 α -space in X. If we can write $X = \bigcup_{n=1}^{\infty} X_n$, where (X_n) is an α -sequence in X and each X_n is nowhere

dense in X, then X is called α -space; otherwise X is a β -space. Clearly, every α -space is of the first category, whence we see that any complete paranormed space is a β -space.

We now list some sets of complex sequence due to Maddox (1967) and Bulut E. and Çakar Ö (1979). If $p=(p_k)$ is a sequence of strictly positive real numbers, then

$$\begin{split} \mathbf{l}_{\infty}(\mathbf{p}) &= \left\{ \mathbf{x} : \sup_{k} |\mathbf{x}_{k}|^{p_{k}} < \infty \right\}, \\ \mathbf{c}_{0}(\mathbf{p}) &= \left\{ \mathbf{x} : \lim_{k} |\mathbf{x}_{k}|^{p_{k}} = 0 \right\}, \end{split}$$

^AMS Subject Classification (1980): 40C05. 40D05.40H05.

267

$$I(\mathbf{p},\mathbf{s}) = \left\{ \mathbf{x}: \sum_{k} k^{-s} |\mathbf{x}_{k}|^{\mathbf{p}_{k}} < \infty, \quad \mathbf{s} \ge 0 \right\}$$

Now we collect some known results which will be useful in what follows.

Lemma 1. I(p,s) is a linear space if and only if

$$0 < p_k \le sup_k p_k = H < \infty$$
 (Buiut E. and Çakar Ö. 1979).

Lemma 2. If $0 \le \inf_k p_k \le \sup_k p_k = H \le \infty$ with M=max (H,1),

then

$$g(x) = \left\{ \sum_{k} k^{-s} |x_k|^{p_k} \right\}^{1/M}$$

defines a paranorm on l(p,s), l(p,s) is complete under g, and $(e^{(k)})$ is a basis in l(p,s), where $e^{(k)}$ is a sequence with 1 in the k th place and zero elsewhere (Bulut E. and Çakar Ö. 1979).

Theorem 3. (i) If $1 < p_k \le \sup_k p_k = H < \infty$ and $p_k^{-1} + q_k^{-1} = 1$ for each $k \in \mathbb{N}$, then

$$l(p,s)^{+} = \left\{ a = (a_{k}): \sum_{k} k^{s(q_{k}-1)} N^{-q_{k}/p_{k}} |a_{k}|^{q_{k}}, s \ge 0, \text{ for some integer } N > 1 \right\}$$

(ii) If $0 \le \inf_{k \ge k} \le 1$ for all $k \in \mathbb{N}$ then

 $1(p,s)^{+}=\{a=(a_k): \sup_k k^s |a_k|^{p_k} < \infty, s \ge 0\}$ (Theorem 1 in Bulut E. and Çakar Ö. 1979).

Theorem 4. If either $1 \le p_k \le \sup_k = H \le \sigma$ for all k, or $0 \le \inf_k p_k \le p_k \le 1$ for all k, then every $A \in 1(p,s)^*$ may be written as $A(x) = \sum_k \alpha_k x_k$ on 1(p,s) for some $(\alpha_k) \in 1(p,s)^+$, and conversely $A(x) = \sum_k \alpha_k x_k$ defines an element of $1(p,s)^*$ for each $(\alpha_k) \in 1(p,s)^+$ (Theorem 2 in Bulut E, and Çakar Ö, 1979).

Theorem 5. Let X be a paranormed space and let (A_n) be a sequence elements of X^* , and suppose r is bounded, where r is a sequence of strictly positive real numbers. Then

(1)
$$\sup_{n} (\|A\|_{M})^{r_{h}} < \infty$$
 for some M>1

implies

(2) $(A_n(x)) \in I_{\infty}(r)$ for every $x \in X$,

and the converse is true if X is a β -space. (Theorem 1 in Maddox I.J. and Willey M.A.L. 1974).

Theorem 6. Let X be a paranormed space and let (A_n) be a sequence of elements of X^* .

(i) If X has fundamental set G and if r is bounded, then the fololwing propositions

(3) $(A_n(b)) \in c_0(r)$ for every $b \in G$,

(4) $\lim_{M} \limsup_{n \to \infty} (\|A_n\|_M)^{r_n} = 0,$

together imply

(5) $(A_n(x)) \in c_0(r)$ for every $x \in X$.

(i) If $r_n \rightarrow 0$ $(n \rightarrow \infty)$ then (4) implies (5).

(iii) Let X be a β -space; tehn (5) implies (4) even if r is unbounded. (Theorem 2 in Maddox I.J. and Willey M.A.L. 1974).

Theorem 7. Let X be a paranormed space and let (A_n) be a sequence of elements of X^* and suppose r is bounded.

<u>en les benes a states des companys esse</u>sses

227 - State -

(i) If X has fundamental set G, and if there is an $L \in X^*$ such that

 $(A_n(b)-L(b)) \in c_0(r)$ for all $b \in G$ and

(6) $\lim_{M} \limsup_{n \to \infty} (\|A_n - L\|_M)^{r_n} = 0,$

then

(7) $(A_n(x)) \in c(r)$ on X.

(ii) If $r_n \rightarrow 0$ $(n \rightarrow \infty)$ and if there is an $L \in X^*$ such that (6) holds, then (7) is true.

(iii) If X is a β -space and if (7) is true, then there is an $L \in X^*$ such that (6) holds. (THeorem 3 in Maddox I.J. and Wiley M.A.L. 1974).

Let Y and Z be sets of sequences. We shal write (Y, Z) for the class of matrices $A=(a_{n,k})$, n,k=1,2,... of complex numbers $a_{n,k}$, such that for each $y=(y_k)\in Y$,

 $A_n(y) = \sum_k a_{n,k} y_k$

converges for each n, and $(A_n(y)) \in Z$. The class (Y,Z) is said to be the set of matrices transforming Y into Z.

Theorem 8. (i) If $1 \le p_k \le up_k p_k = H \le \infty$ and $p_k^{-1} + q_k^{-1} = 1$ for every $k \in \mathbb{N}$ then $A \in (1(p,s), 1_{\infty})$ if and only if there exists an integer B>1 such that

 $\sup_k \sum_k k^{s(q_k-1)} B^{-q_k} |a_{n,k}|^{q_k} < \infty$.

(ii) If $0 \le \inf_k p_k \le p_k \le 1$ for each $k \in \mathbb{N}$, then $A \in (1(p,s), 1_{\infty})$ if and only if

 $\sup_{n,k} k^{s} |a_{n,k}|^{p_{k}} < \infty$. (Theorem 3 in Bulut B. and Çakar Ö. 1979)

We shall frequently use the following inequalities. Take x, $y \in C$; if $0 \le j \le 1$ then

 $|x|^{p}-|y|^{p}\leq |x+y|^{p}\leq |x|^{p}+|y|^{p}$

and f p > I and $p^{-I} + q^{-1} = I$ then $|xy| \le |x|^p + |y|^q$.

2. Matrix Tranfsormations

In the profs of the following result, as in earlier ones, we may without loss of generality assume that $r_n \le 1$ for all $n \in N$, and we shall do so when convenient.

Theorm 9. (i) Let $0 \le \inf_{k \ge p_k} \le p_k \le 1$ and $p_k^{-1} + q_k^{-1} = 1$ for each $k \in \mathbb{N}$, and let r be bounded. Then $A \in (1(p,s), 1_{\infty}(r))$ if and only if

(8) $\sup_{n} \left\{ \sup_{k} k^{s/p_{k}} |a_{n,k}| M^{-1/p_{k}} \right\}^{r_{n}} < \infty \text{ for some } M \ge 1.$

(ii) Let $1 \le p_k \le \sup_k p_k = H \le \infty$ and $p_k^{-1} + q_k^{-1} = 1$ for each $k \in \mathbb{N}$, and let r be bounded, Then $A \in (1(p,s), 1_{\infty}(r) \text{ if and only if } r)$

(9) $T(B) = \sup_{n \to \infty} \sum_{k} k^{s(q_k-1)} B^{-q_k/r_n} |a_{n,k}|^{q_k} < \infty \text{ for some } B > 1.$

Proof. Write, for each $x \in (1(p,s), 1_{\infty}(r))$; then for each n, $(a_{n,1}, a_{n,2}, ...) \in 1(p,s)^+$. Also, by Theorem 4, $A_n \in 1(p,s)^*$ for each $n \in N$. We show that for each n, $||A_n||_M = \sup_k |a_{n,k}| k^{s/p_k} M^{-1/p_k}$ for al M such that $||A_n||_M$ is defined. Choose any $n \in N$. First, if M is such that, for some sequence (k(i)) of integers,

$$\begin{split} |a_{n,k(i)}|k(i)^{s/p_{k(i)}} M^{-l/p_{k(i)}} &\geq i \text{ for each } i \in \mathbb{N}, \text{ then by defining} \\ x^{(k(i))} &= (M^{-l/p_{k(i)}} \operatorname{sgn} a_{n,k(i)}^{s/p_{k(i)}}) e^{(k(i))}. \end{split}$$

i=1,2,..., we see that $||A_n||_M$ is underfined. Since $(a_{n,1},a_{n,2},...) \in l(p,s)^+$ there is an $M_n \ge l$ such that $|a_{n,k}|^{p_k} k^s \le M_n$ for all k. Choose $M \ge M_n$. We have if $g(x) = \sum_k k^{-s} |x_k|^{p_k} \le l/M$, since $M^{1/p_k} k^{-s/p_k} |x_k| \le l$ for all k and since $\sup_k p_k \le l$,

$$\begin{split} |A_{n}(x)| &\leq \sum_{k} |a_{n,k} x_{k}| \\ &= \sum_{k} k^{s/p_{k}} k^{-s/p_{k}} |x_{k}| M^{1/p_{k}} M^{-1/p_{k}} |a_{n,k}| \\ &\leq \sum_{k} k^{s/p_{k}} k^{-s} |x_{k}|^{p_{k}} M M^{-1/p_{k}} |a_{n,k}| \\ &\leq M \sup_{k} (k^{s/p_{k}} |a_{n,k}| M^{-1/p_{k}}) (1/M) , \end{split}$$

whence $\|A_n\|_{M \le \sup_k} k^{s/p_k} |a_{n,k}| M^{-1/p_k}$. Given $\varepsilon > 0$ we can choose an m such that

 $|a_{n,m}|M^{-l/p_m}m^{s/p_m}> sup_k|a_{n,k}|M^{-l/p_k}k^{s/p_k}-\epsilon\,.$

Defining $x = (M^{-1/p_m} \operatorname{sgn} a_{n,m} m^{s/p_m})e^{(m)}$ we have $g(x) \le 1/M$ and

$$A_n(x) = |a_{n,m}| M^{-l/p_m} m^{s/p_m} > \sup_k |a_{n,k}| M^{-l/p_k} k^{s/p_k} - \varepsilon$$

whence $||A_n||_M = \sup_k |a_{n,k}| M^{-1/p_k} k^{s/p_k}$ as required. By the Lemma 2,1 (p,s) is complete, so it is a β -space; tubs by Theorem 5 we must have (8).

Conversel let (8) hold. Then as above it follows that for each n, $A_n \in I(p,s)^*$ with $||A_n||_M = \sup_{k \to \infty} ||A_n||_M ||A_n||_M$ is defined. Then using Theorem 5 we obtain $(A_n(x)) \in I_{\infty}(r)$.

(ii) For the sufficiency, let (9) hold. Then if $x \in I(p,s)$ we have for each n, assuming $r_n \leq I$ for all n,

$$\begin{split} |A_{n}(x)|^{r_{n}} &\leq \left\{ \sum_{k} |a_{n,k} x_{k}| \right\}^{r_{n}} \\ &= \left\{ \sum_{k} k^{s/\dot{p}_{k}} \dot{k}^{-s/\dot{p}_{k}} |x_{k}| B^{1/r_{n}} B^{-1/r_{n}} |a_{n,k}| \right\}^{r_{n}} \\ &\leq \left\{ \sum_{k} k^{s(q_{k}-1)} |a_{n,k}|^{q_{k}} B^{-q_{k}/r_{n}} + \sum_{k} B^{p_{k}/r_{n}} k^{-s} |x_{k}|^{p_{k}} \right\}^{r_{n}} \end{split}$$

$$\leq \{T(B)\}^{r_{n}} + B^{H} \{g^{H}(x)\}^{r_{n}}$$
$$\leq T(B) + l + B^{H} \{g^{H}(x) + l\}$$

which implies $A \in (l(p,s), l_{\infty}(r))$.

Now let $a \in (1(p,s), 1_{\infty}(r))$; then $(a_{n,1}, a_{n,2}, ...) \in 1(p,s)^+$ for each n and so, by Theorems 3(i) and 4, $A_n \in 1(p,s)^*$ for all n. By Theorem 5 there exist M>1 and G≥1 such that $|A_n(x)|^{r_n} \leq G$ for all n and all $x \in 1(p,s)$ with $g(x) \leq 1/M$. Then $\left| \sum_k G^{-1/r_n} a_{n,k} x_k \right| \leq 1$ n=1,2,..., if $g(x) \leq 1/M$. Write $\Gamma = (G^{-1/r_n} a_{n,k})$, and choose any $x \in 1(p,s)$. By the continuity of scaler multiplication on 1(p,s) there is a K≥1 such that $g(K^{-1}x) \leq 1/M$, whence $\left| \sum_k G^{-1/r_n} a_{n,k} x_k \right| \leq K$ for all n. Thus we see that $\Gamma \in (1(p,s), 1_{\infty})$ and so by Theorem 8(i) there is a D>1 such that

 $\sup_{n} \sum_{k} k^{s(q_{k}-1)} D^{-q_{k}} |G^{-1/r_{n}} a_{n,k}|^{q_{k}} < \infty.$ Writing B=GD and using the fact that $D^{r_{n}} \le D$ for all n, we obtain (9).

New States and the second second second second second second second second second second second second second s

Theorem 10. (i) Let $0 \le \inf_{k \ge k} \le p_k \le 1$ for each $k \in \mathbb{N}$, and let r be bounded. Then $A \in (1(p,s), c_0(r))$ if and only if

(11)
$$|a_{n,k}|^{r_n} \to 0 (n \to \infty)$$
 for every $k \in \mathbb{N}$

and,

(12)
$$\lim_{M} \lim \sup_{n \in \mathbb{N}} \left\{ \sup_{k \in \mathbb{N}} k^{s/p_{k}} |a_{n,k}| M^{-1/p_{k}} \right\}^{r_{n}} = 0.$$

(ii) Let $1 \le p_k \le \sup_k p_k = H \le \infty$ and $p_k^{-1} + q_k^{-1} = 1$ for each $k \in \mathbb{N}$, and let r be bounded. Then $A \in (1(p,s), c_0(r))$ if and only if (11) holds and, for every $D \ge 1$,

(13)
$$\lim_{\mathbf{B}} \limsup_{n} \left\{ \sum_{k} k^{s(q_{k}-1)} D^{-q_{k}/r_{k}} B^{-q_{k}} |a_{n,k}|^{q_{k}} \right\}^{r_{n}}$$

Proof: (i) Lat $A \in (1(p,s), c_0(r))$; since $(1(p,s),c_0(r)) \subseteq (1(p,s),1_{\infty}(r))$ then as above we have $A_n \in X^*$ and

 $\|A_n\|_{M} \approx \sup_k |a_{n,k}| M^{-1/p_k} k^{s/p_k}$ whenever $\|A_n\|$ is defined, for each $n \in \mathbb{N}$. Then, by Theorem 6 (iii), (12) must hold, also $x = e^{(k)} \in l(p,s)$ (k = 1, 2, ...) we obtain (11).

Conversely if (11) and (12) hold we can show that $A_n \in 1(p,s)^*$. With $||A_n|_M \approx \sup_k |a_{n,k}| M^{-1/p_k} x^{s/p_k}$ whenever $||A_n||$ is defined, for each $n \in \mathbb{N}$; also $(e^{(k)})$ is a basis in 1(p,s) by Lemma 2. Then by Theorem 6(i) we can deduce that $A \in (1(p,s), c_0(r))$.

(ii) Define A by (10) on l(p,s), for each $n \in \mathbb{N}$. First we prove the necessety: let $A \in (l(p,s), c_0(r))$. Obviously we must have (11) and as in Theorem 9 (ii) we see that $A_n \in I(p,s)^*$ for all n. If $A \in (l(p,s), c_0(r))$ then $(D^{1/r_n}a_{n,k}) \in (l(p,s), c_0(q))$ for all D>1, so it is enough to show that (13) holds for D=1. Since $c_0(r) \subseteq I_{\infty}(r)$ and using Theorem 8 (i) there is a B>1 such that

 $T_{n} = \sum_{k} k^{s(q_{k}-1)} B^{-Hq_{k}} |a_{n,k}|^{q_{k}} \le 1 \quad \text{for every } n \in \mathbb{N}. \text{ Choose any n, and define}$ $x_{k}^{(n)} = B^{-Hq_{k}} \operatorname{sgn} a_{n,k} |a_{n,k}|^{q_{k}-1} k^{s(q_{k}-1)} \quad \text{for each } k; \text{ then}$

$$\begin{split} g^{H}(x^{(n)}) &= \sum_{k} k^{-s} k^{s(q_{k}-1)p_{k}} B^{-Hq_{k}p_{k}} |a_{n,k}|^{q_{k}} \\ &= \sum_{k} k^{s(q_{k}-1)} B^{-Hq_{k}-Hp_{k}} |a_{n,k}|^{q_{k}} \\ &\leq B^{-H} \sum_{k} k^{s(q_{k}-1)} B^{-Hq_{k}} |a_{n,k}|^{q_{k}} \\ &\leq B^{-H} \end{split}$$

anđ

$$A_{n}(x^{(n)}) = \sum_{k} a_{n,k} x_{k}^{(n)}$$

= $\sum_{k} a_{n,k} k^{s(q_{k}-1)} B^{-Hq_{k}} |a_{n,k}|^{q_{k}-1} \operatorname{sgn} a_{n,k}$
= T_{n} ,

whence $||A_n||_B \ge T_n$ for each n. By Theorem 6(iii) we must have $\lim_B \lim \sup_n (||A_n||_B)^r = 0$, whence (13) holds with D=1.

For the sufficiency, let (11) be true and let (13) hold for all $D \ge 1$. It follows that $A_n \in 1(p,s)^*$ for all $n \in \mathbb{N}$. Since $(e^{(k)})$ is a basis in 1(p,s) and using Theorem 6(i) it is enough to show that $\lim_{B \to \infty} \lim_{n \to \infty} \sup_{n \to \infty$

$$\left\{ \sum_{k} k^{s(q_k-l)} D^{-q_k/r_n} B^{-q_k} |a_{n,k}|^{q_k} \right\}^{r_n} < \epsilon / 2$$

if $n \ge m$. Then if $g(x) \le 1/B$ and if $n \ge m$ we have

$$\begin{split} &|A_{n}(x)|^{r_{n}} \leq \left\{ \sum_{k} |a_{n,k}| D^{1/r_{n}} B^{-1} B D^{-l/r_{n}} k^{s/p_{k}} k^{-s/p_{k}} |x_{k}| \right\}^{r_{n}} \\ &\leq \left\{ \sum_{k} (|a_{n,k}|^{q_{k}} D^{q_{k}/r_{n}} B^{-q_{k}} k^{s(q_{k}-1)} + D^{-p_{k}/r_{n}} B^{p_{k}} k^{-s} |x_{k}|^{p_{k}}) \right\}^{r_{n}} \\ &\leq \left\{ \sum_{k} (|a_{n,k}|^{q_{k}} D^{q_{k}/r_{n}} B^{-q_{k}} k^{s(q_{k}-1)} \right\}^{r_{n}} + \left\{ D^{-l/r_{n}} B^{H} g^{H}(x) \right\}^{r_{n}} \\ &\leq \epsilon / 2 + \left\{ D^{-l/r_{n}} B^{H} g^{H}(x) \right\}^{r_{n}} < \epsilon \,, \end{split}$$

and this completes the proof.

REFERENCES

- Bulut E. and Cakar O. The sequence 1(p,s) and related matrix transformation, Comm. Fac. Scie. Ankara University, Seri A₁, 28, (1979), 33-44.
- [2] Maddux I.J. Spaces of strongly summable sequences, Quarterly J. Math. Oxford, (2) 18 (1967), 345-355.
- [3] Maddox I.J. and Willey M.A.L. Continuouse operators on paranormed spaces and matrix transformations, Paci. J. Math. (53) 1 (1974), 217-228.

Yüzüncü Yıl University
Departmen of Mathematics
VAN/TURKEY

** 19 Mayıs Üniversity
Department of Mathematics,
SAMSUN/TURKEY