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MATRIX TRANSFORMATION OF t (p,s) TO t ^(p) AND c 0 (p) 

Tunay BİLGİN* Ercan TUNÇ** 

Abstract: İn this paper we have determined necessary and sufficient contidions 

for an infinite matrix A=(an k ) to iransform l(p,s) into l^tp) andCo(p). 

1. Introduction 

Lat N and C denote the sets of natural numbers and complex numbers, respectively. 

X will denote a notrivial complex linear space of elements x, with zero element 9 and with 
paranorm g.A subset G of X is called a fundamental set in X if linear bull (G), the set of ail finite linear 
combinations of elements of G, is dense in X.A. sequence (b0 of elements of X is said to be a basis in X 

if for each xeX there is a unique complex sequence (X^) suhc that g j x - ^ ^ - k ^ k ~* 0 (n-»«0. Thus 

any basis in X is also a fundamental set in X. 

We denote the set of continuous linear functionals on X by X*. A linear functional A on X is an 
element of X* i f and only if 

l | A | | M = |lA(x)|:g(x) < ̂ -j <m for some M>1. 

I f x is a space of complex sequence x^x^-), then we denote the generalize K6the-Teop[itz dual 
o f X b y X + , i.e. 

X + = | ( a f c ) : ^ k

a k x k . converges for every x e x j . 

(Throughout 1^ denotes summation over k from k=] ot k=co). 

The following a paranormed p-space were defined by Maddox (İ974). Let ( X n ) be asequence of 
subsets of X such that 9eXj and such that if x ,yeX n tbenx±yeX n +i for neN; tehn ( X n ) is called an 

CO 

ct-space in X. i f we can write X = [Jxn ,, where ( X n ) İs an a-sequence in X and each X n is nowhere 
n=l 

dense in X, then X is called ct-space; otherwise X is a p-space, Clearly, every ct-space is of the first 
category, whence we see that any complete paranormed space is a p-space. 

We now list some sets of complex sequence due to Maddox (1967) and Bulut E. and Çakar ö 
(1979). I f p^CPk) is a sequence of strictly positive real numbers, then 

U ( p ) - { x : s u p k İ x k j ^ <ccj, 

c 0 (p) = j x : l i m k | x k ^ = û } , 
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!(p< s) = { x : X k

k " s i x k i P ı <«>. s> o| 

Now we collect some known results which will be useful in what follows. 

Lemma 1. i(p,s) is a linear space if and only if 

0<p k<sup k p]i=H<<» (Buiut E. and Çakar Ö. 1979). 

Lemma 2. I f 0<İnfj;pj.<pji<supıip|i=H<Go with M=max(H,l), 

then 

defines a paranorm on l(p,s), l(p,s) is complete under g, and (et k)) is a basis in l(p,s), where e^) is a 
sequence with 1 in the k th place and zero elsewhere (Bulut E. and Çakar Ö. 1979). 

Theorem 3. (i) I f 1 <p k<sup k pk=H<°o and p ^ ' + q ^ 1 =1 for each keN, then 

l ( p , s ) + - j a - C a t ^ ^ k ^ ^ ^ N ^ ^ P M a k l ^ , s>0, for some integer N > 1J 

(ii) i f 0<inf k p k <l for alî keN then 

l(p,s) +={a=(ai-):sup kk s |a kj^<ro, s>0} (Theorem 1 in Bulut E. and Çakar Ö. 1979). 

Theorem 4. i f either l<pk<supk=H<a> for ail k, or 0<inf k p k <p k <l for ail k, then every Ae 
l(p,s) may be written as A(x)=Z k a k >: k on l(p,s) for some (a k )e I(p,s} +, and conversely A f x ^ ^ a ^ - x ^ 
defines an element of l(p,s) for each (ct k)el(p,s) + (Theorem 2 in Bulut E. and Çakar Ö. 1979). 

Theorem 5. Let X be a paranormed space and let ( A n ) be a sequence elements of X*, and 
suppose r is bounded, where r is a sequence of strictly positive real numbers. Then 

(1) sup n(| |A||M) r" <=c for some M>1 

implies 

(2) (A n (x ) )e l 0 3 ( r ) for every xeX, 

and the converse is true if X is a p-space. (Theorem I in Maddox I.J. and Willey M.A.L. 1974). 

Theorem 6. Let X be a paranormed space and let ( A n ) be a sequence of elements of X s . 

(i) i f X has fundamental set G and i f r is bounded, then the fololwing propositions 

(3) (A n(b))ec()(r) for every beG, 

(4) l i m M limsupn ( | | A n | | M ) r " =0, 

together imply 

( 5 ) (An(x))ecQ(r) for every X E X . 

(i) I f rn->-0 (n-*co) then (4) implies (5). 

(iii) Let X be a P-space; tehn (5) implies (4) even if r is unbounded. (Theorem 2 in Maddox I.J. 
and Willey M.A.L. 1974). 
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Theorem 7. Let X be a paranormed space and let ( A n ) be a sequence of elements of X and 
suppose r İs bounded. 

(i) [f X has fundamental set G, and if there is an LeX* such that 

(A n(b)-L(b))ec 0(r) for all beG and 

(6) l i m M lim supn ( | | A n - L | | M ) r " =0, 

then 

(7) (A n(x))ec(r) on X. 

(İi) I f r n -»0 (n->co) and i f there is an LeX such that (6) holds, then (7) is true. 

(iti) I f X is a [i-space and i f (7) is true, then there is an LeX* such that (6) holds. (THeorem 3 
in Maddox I.J. and Wiliey M.A.L. 1974). 

Let Y and Z be sets of sequences. We shal write (Y, Z) for the class of matrices A=(a n y), 
n,k=l,2,... of complex numbers a n | i , such that for each y^fy^eY, 

A - n t y ^ k ^ k y k 

converges for each n, and (A n(y))eZ. The class (Y,Z) is said to be the set of matrices transforming Y 
into Z. 

Theorem 8. (i) I f Kp^sup^P^tiKco and P k ' + q k ! = l for every keN then AeOfos),!^) 
if and only if there exists an integer B>1 such that 

(ii) I f 0<inf k p | i ip k <l for each keN, then AeOCp^),!^,) if and only i f 

supn.k k S l a n , k l P t <°° • (Theorem 3 in Bulut B. and Çakar Ö. 1979) 

We shall frequently use the following inequalities. Take x, yeC; i f 0<p<) then 

|xiP-|y|P<|x+y|P<lx|P+|yjP, 

andfp>I a n d p - I + q - İ = [ then |xy|<|x[P+|yi(?. 

2. Matrix Tranfsormaiions 

In the profs of the following result, as in earlier ones, we may without loss of generality assume 
that r n < l for all neN, and we shall do so when convenient. 

Theorm 9. (i) Let ( K i n f ^ p i j i p ^ l and P k ' + q k ' = l for each keN, and let r be bounded. 
T h e n A e O f j v O , ] ^ ) ) i f and only i f 

(8) s u p n { s u p k k s / p * | a n j k | M _ 1 / p * j r ' ' <a> for some M>1. 

(Ü) Let K p [i<sup|ipi<=H<co and P k ' + q k I = l for each keN, and let r be bounded, Then 

AeOCp.sXl^Cr) ifandonlyif 

(9) T ( B ) = s u p n £ k k ^ ^ B " ^ " ^ ^ 1 <«> for some B>1. 
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Proof. Write, for each xe(l(p,s),I T O(r)}; then for each n, (a n i i > a I 1 ( 2.-)el(p,s) + . Also, by 
Theorem 4, A n el(p,s)* for each neN. We show that for each n, | | A J M = s u p k | a n ) k | k s / p , - M ~ , / p t for 
al M such that H A J M is defined. Choose any neN. First, if M is such that, for some sequence (k(i)) 
of integers, 

l a n k < i ) l k ( ' ) S / P k , i l M " 1 / p M i l for each ieN, then by defining 

x ( k ( U ) = ( M - l / P M . , s g n a n , k ( i )

s / P M , ) ) e ( ^ ) ) . 

i=l,2,..., we see that | | A N | | [ ^ is underfmed. Since (a n j ,an ?,...) e l(p,s}+there is an M n > I such that 

| a n k | P t k s < M n for all k. Choose M > M n . We have i f g(x) = ] T k k ~ s | x k | p * < 1 /M, since 

M I / P k k ~ s / P t j x k j < 1 for all k and since supk p k < I , 

= J^k k s / P * k " s / p ^ j x k | M 1 / p * M " ! / p M a n > k I 

< ^ k s / P k k - S | X k r M M - i / p k | a a i 

< M s u p k ( k s / p M a n ) k | M ~ i / p i ) ( 1 / M ) , 

whence ||An!|f4<supk k s ' P k ! a n ] £ | ] v F 1 / p l 1 . Given s>0 we can choose an m such that 

i a n j J M - 1 / p " m s / P " > s u P k | a n j k i M - 1 ^ k s / ^ - s . 

Defining x = (M~Vp* sgn a n m m s / p "< ) e ( m ) we have g(x)<l/M and 

A n ( x ) H a n , m ! M - 1 / p ™ m s / P ™ > s u p k | a a l M - , / ^ k s ^ - s , 

whence j | A n | | M = sup k |a n k | M - , / P t k s / p k as required. By the Lemma 2,1 (p,s) is complete, so it is a 

[3-space; tuhs by Theorem 5 we must have (8). 

Conversel let (8) hold. Then as above it follows that for each n, A n el(p,s)* with 
|iA n | |t vi=sup k |a I 1 k j M ~ I / p t k s / p * for all M such that j i A ^ ^ is defined. Then using Theorem 5 we obtain 
(AnixflelooCr).' 

(ii) For the sufficiency, let (9) hold. Then i f xe l(p,s) we have for each n, assuming r n < l for 
all n, 

|A n(x)| r"<|2 kla n, kx k |} r" 
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< { T ( B ) } r " + B H i g H ( x ) } r -

<T(B) + 1 + B H { g H ( x ) + l} 

which implies Ae(l(p,s),l T O(r)). 

Now let ae(J(p.s),loo(r)); ( a n > i , a n £ , . . ' ) e ! ( P ^ ) + for each n and so, by Theorems 3(i) 
and 4, A n el(p.s)* for ail n. By Theorem 5 there exist M>1 and G>1 such that | A n ( x ) | r " < G for all n 

and all xel(p,s) with g(x)<l/M. Then I k G - i / r " a „ , , x k 

<1 n=U,. . . , i f g(x)<l/M. Write 

T = (G 1 / r " a n k ) , and choose any xel(p,s). By the continuity of scaler multiplication on l(p,s) there 

is a K > l such that g(K _ 1 x)<l /M, whence J ] G 1 " a „ j k x k 
< K for all n. Thus we see that 

r€(l(p,s),loo) and so by Theorem 8(i) thereisaD>l such that 

s u PnSk k S i q t ' I ) D ~ q ^ G _ i / r ' ' a " . k ^ < 0 ° - W r i t i n § B = G D a t l d using the fact that 

D r - < D for all n, we obtain (9). 

Theorem 10. (i) Let 0<inf k p k <p k <l for each keN, and let r be bounded. Then 
AE(1(P,S), CQ(r)) i f and only i f 

CO |a n k l f - 0 ( n - > co) foreverykeN 

and, 

(12) I i m M lim sup n{sup k k ^ f a ^ f M " 1 ^ j ' " = 0. 

(ii) Let Kp k <sup k pk=H<co and P k ' + q k ' ~ ' f Q r e a c n keN, and let r be bounded. Then 

Ae(l(p,s), CQ(r)) if and only if (11) holds and, for every D>1> 

(13) l i m B l i m s u p ^ X . k ^ - ' ^ ^ B ^ I a ^ l ^ p . 

Proof, (i) Lat Ae(l(p,s), crj(r)); since (I(p,s),CQ(r))c(l(p,s),l r o(r)) then as above we have 
A n e X and 

l l A ni! lvr s u Pk ! a n , k l M " I / p t k s / p " whenever | |A n | | is defined, for each Q G N . Then, 

by Theorem 6 (iii), (12) must hold, also x=e( k)e I(p,s) (k=l,2,...) we obtain (J 1). 

Conversely i f (11) and (12) hold we can show that A n el(p,s)*. With 

i l A n!M = s u Pk! a n k! M ~ 1 / p t x s / p f c whenever | |A n | | is defined, for each neN; also (e( k)) is a basis in 
l(p,s) by Lemma 2. Then by Theorem 6(i) we can deduce that Ae(l(p,s), C(j(r)). 

(ii) Define A by (10) on l(p,s), for each neN. First we prove the necessety: let 
Ae(l(p,s), cg(r)). Obviously we must have (11) and as in Theorem 9 (ii) we see that A n e I(p,s) for all 
n. I f Ae(l(p,s), c 0(r)) then (D 1 / r "a n k ) e(l(p,s) , c 0(q)) for all D>I , so it is enough to show that (13) 
holds for D = l . Since CQiOcl^r) and using Theorem 8 (i) there isa B>1 such that 

T n s Z k k S t q ^ 1 ) B ~ H q k ' a n . k ' t l L f o r e v e r y n e K C h o o s e any n, and define 
x ( n ) = B - H q , s g n a n k l a n k | q i - l k S ( q i - l ) for g a c h k . ^ ^ 



g H ( x ( n ) ) = £ k k - s k s ( q ^ , ) p ' B - H i ' * p M a n , k l i , t P k 

= ^ k k s ( ^ ~ n B - H q ' ~ H p i | a n k l q > ; 

< B - H X k

k S ( q L * ' ) B " H t l l | an .k l q t 

<B"H 

and 

A n(xW)=Z ka n, kx k

n ) 

= Z k

a n , k k S ( q i - , , B - H i l M a r i , k | q ^ 1 s g n a n i l ; 

whence | |A n | |g>T n for each n. By Theorem 6(iii) we must have limg lim supn (|jA nj|j3) r" =0, 
whence (13) holds with D = l . 

For the sufficiency, let ( I I ) be true and let (13) hold for all D>1. It follows that A n el(p,s)* 
for ail neN. Since (e( k)) is a basis in l(p,s) and using Theorem 6(i) it is enough to show that 
limg Hm sup n ( | |A n | l B ) r " =0. Choose e,0<s<l, and D>2/e. There exist B>1 and m such that 

{ X k k s ( q ^ ! > D ^ / [ " B - c ' M a n i k | ^ } r n < B / 2 

ifn>m. Then ifg(x)<l/B and ifn>m we have 

| A n ( x ) | r - s { 2 j a B i k | D I / r - B - , B D - | / r » k ^ k - ^ | x k | } r " 

^ j E ^ K , ^ D ^ - B - ^ k ^ - ' i + D ^ ^ B ^ k ^ l x , . ^ ) | r ° 

£
 {Z ktl an,kl q f c D ^ B ^ k ^ Y + { D - ! / r " B H g H ( x ) j r " 

< e / 2 + { D - I / r - B H g H ( x ) } r ' 1 < E , 

and this completes the proof. 

272 



R E F E R E N C E S 

[1] Bulut E. and Cakar O. The sequence l(p,s) and related matrix transformation. Comm. 
Fac. Scie. Ankara University, Seri Aj.28, (1979), 33-44. 

[2] Maddux I.J. Spaces of strongly summable sequences, Quarterly J. Math. Oxford, (2) 18 
(1967). 345-355. 

.[3] Maddox l.J. and Willey M.A.L. Continuouse operators on paranormed spaces and matrix 
transformations, Paci. J. Math. (53) 1 (1974), 217-228. 

* Yüzüncü Yıl University ** 19 Mayıs University 

Departmen of Mathematics Department of Mathematics, 

VAN/TURKEY SAMSUN/TURKEY 

273 


