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ON THE EXISTENCE OF RELATIVE FIX POINTS
B. K. LAHIRI AND DIBYENDU BANERJEE

Abstract We introduce the idea of relative iterations of functions and using this,
extend a theorem on fix point of complex function involving exact order.
1. Introduction
A single valued function f(z) of the complex variable z is said to belong to (i) class
I if f(z) is entire transcendental, (ii) class II if it is regular in the plane punctured at a, b
{a = b) and has an essential singularity at b and a singularity at a and if f{z) omits the
values a and b except possibly at a.
The functions in class II may be normalised by taking a = 0 and b = . In future
we shall consider such normalised functions in class IL.
For arbitrary f{z), the iterations are defined inductively by
fo{z) = z and f,.,(2) = {6,{2), n=0,1,2, ....... :
A point « is called a fix point of {{z) of order n if a is a solution of f,(z) = z. It is
said to be of exact order n if o is a solution of fj(z) = z for j = n but not for j <n.

Regarding the existence of a fix point, Baker [1] proved the following theorem.

Theorem A. If f(z) belongs to class I, then f{(z) has fix points of exact order n, except for
atmost one value of n,

Bhattacharyya [2] extended Theorem A to functions in class II as follows.

Theorem B. If f{z) belongs to class II, then f{z) has an infinity of fix points of exact
order n, for every positive integer n.
In this paper we observe that Theorem B may be proved under more general

settings by using the concept of relative fix point {defined below).
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2. Preliminaries and Definitions
Let f(z) and ¢(z) be functions of the complex variable z. Let
fi(z) = f(z)
_B(2) = f(¢(z) = f($:(2))
f3(z) = f($(f(2))) = Hdx(2)) = (¢ (hi(2))
falz) = flo( {(§(2)))) = f(¢3(2)) = f(§(f2(2)))

£, (z) =fp(f....... (flz) or p(z).oenvnenen ))), according as n is odd or even
= (¢ - 1(2)) = {(p(fr-2(2)),
and so
¢1(2) = ¢(z)

$2(2) = 9(f(2)) = ¢(fi(2))

¢3(2) = §(f2(2)) = ¢(f($:(2)))

$a(2) = §(£21(2)) = $(H($n.2 (2))).

Clearly all f;{z) and ¢,(z) are functions in class II, if f(z) and $(z) are so.

A point o is called a fix point of f{(z) of order n with respect to §(z), if fu(c) = a
and a fix point of exact order n if f(a) =abut fila) z o, k=1,2, ...... , n — 1. Such
points o are also called relative fix points.

Let f(z) =2* — z and $(z) = z%. Then fi(z) =z* — 2%. S0, =0 is a fix point of f{z) of
order 2 with respect to ¢(z) which is not an exact fix point because z = 0 is a solution of
the equation f(z) = z also. It is clear that all the solutions of z’-z-1 = 0 are fix points of f(z)

of exact order 2 with respect to ¢(z).
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Let {{z) be meromorphic in g € |z [< og, rp > 0. We use the following notations [3] :

n(t, a, f) = number of roots of {z) =ainr, <|z| £ t,

N(r,a,f)= | dt.

Tn{t,a,f)
Iy t

If a = o, then we write n(t, e, f) = n(t, f) = the number of poles in ry <) z | £ t, counted

with due regard to multiplicity and N(r, o, f) = N(r, f). Also

] 2 + i9
m(r,fy=— {log™ |f(re™ )| d8,
2n 4]
1 2n . 1
m(r,a,f)=— [ log T ds.
2n o flre™)-a

With these notations, Jensen’s formula can be written as [3]
-m(r, f) + N(r, ) =m(r, Yoy + NG o) + O(logr).
Writing m(r, ) + N(r, f) = T(r, ), the above becomes
T(r, ) = T(r, ;) + Ollogr).
In this case the first fundamental theorem takes the form
m(r, a, f} + N(r, a, {) = T(r, f) + O(logr) (D

where the region is always ;< |z | <, 1> 0.
Suppose that f(z) is nonconstant. Let ay, az, .......... s 8 , @ > 2, be distinet finite

complex numbers, 8 > 0 and suppose that |a,-a, |28 forl <y <v <q. Then

m(r, )+ }%m(r,a\,,f)s2T(r,f)—N;(r)+S(r) (2)

v=l
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where N;(r) is positive and is given by

N(r) = N(r, %) +2N(r, = N(1, ')

f' q f'
and S(r) = m(r, ?J + Eim[r, e, )} + O(logr).

The proof of (2) can be carried out following the technique as given in {[4], p. 32} and

using the modified form as given in (1).

]

It has been obtained in [3] that m(r, %) and hence m(r,ff—] is

-a
O{max(log*T(r, f), log 1)} as r -»>oc outside a set of r intervals of finite measure. So; we
. have S(r) = O{max(log"T(r, £), log )} + O(log 1)
= O{max(iog 1, log T(r, )}.

q
Adding N(r, f) + 3 N(r,a,, f)to both sides of (2) and using (1) we obtain

v=]
(q- DT(r, £) < N(r, )+ %ﬁ(r,av,f)+si(r) (3)
v=l
where $;(r) = O (logT(, D).
%_lﬁ(r, 2y, ) (=T, H-Nir, £) -8, (1) @)

where i, N correspond to distinct roots. .
Further, because f, has an essential singularity at o, we have {[3], p. 90},

logr
T(r.fy)

—>0asr— .
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3. Lemma and Theorem
To prove our theorem, we need the following lemma.
Lemma. If n is any positive integer and f and ¢ are functions in class IT, then for any
rp > () and M, a positive constant
T(E, fpsp)
—_—
T(r,f,)

T
(r:¢n+p) > M

: T(r,f,)

1

according as p is even or odd, for all large r, except a set of r intervals of total finite

length.

Proof. Case §. pis even. In this case we consider the equation
fasp (Z)=a, where a=0,
e, f(f(z))=a.
This is equivalent to
f(w)=a atwy, wy, ......
and f(z)=w;(i=12,...... ).
We observe that because f,, is transcendental, f,(w) = a has infinitely many roots for every

complex number a with two exceptions a = 0, «.

From (1)

Odlog 1) + T(r, £+ p ) =m(r, a, £4) + N(1, 2, £y)
i€ T(E forp) =ML, 8, frup) + N(T, 8, £) + Olog 1)

2 N(t, 2, f,0) + Ollog 1)

2

(r, a, £up) + Olog 1)
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for a fixed M, say > M, + 3.
From (4) taking a, = w; , f= f, and g = M, we obtain

%ﬁ(r,wi,fn)z(M-l)T(r,fn)vﬁ(r,fn)mSl(r) (5)

i=]
where $,(r) = O (logT(r, £,)) and so for all large r

$1(0) S T(x, £,). ©
In view of (6) and using N(r,f,) < T(r, f, ) we have from (5)

M__

D N(r,w;, )2 M~-3)T(r, ).

i=]

T(r, farp) 2 M - 3)T(r, £,)

outside a set of r intervals of total finite length.

Case I1. p is odd. In this case we consider the equation
bnip(z) =a,220,
ie,  dfi(2) =a.
This is equivalent to

do(W)=2a at wi, W,

and f,(z)=w} (i=1,2, ... ).
From (1) O(log 1) + T(r, ¢uip) = mT, &, §nsp) + N(T, 3, $rap)
ie., T(T, Gneg) = 10(F, B, Gpip) + N(E, 2, G} + Olog 1)

> N(r, a, ¢yep) + Oflog 1)
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>N, a,¢,,,)+ Ollogn

N(r,w},fn)

M=

2
1

for a fixed M, say > M; + 3,

Now we have (as in (5))
gﬁ(r,wi,fn) >(M-DT(, £, )= N(r, £ ) - T(r, f, )
i=1

T(I’, ¢n+p) > (M - 3)T(I', fn)

outside a set of r intervals of fotal finite length and the lemma is proved.

Theorem, If f{z) and ¢(z) belong to class 11, then f(z) has an infinity of relative fix points

T(r,4y)
(ra

of exact order n for every positive integer n, provided is bounded.

n

Proof. We may assume that n > 1, because if n = 1, the theorem follows from Theorem B.
For a positive integer n ( > 1), we consider the function

:M’ r0<lz§<OC
z

g(z)

then T(r, g) = T (x, £,) + O(log 1). N

Assume that f{z) has only a finite number of relative fix points of exact order n.
Using (3) and then putting g =2, a; = 0, a; = 1, we obtain for g,
T(r,8) < N(r,0,8) + N(r,0, ) + N(r,L.g) + 5, (1. g)




where S, (r, g) = O(iog T(r, g)) outside a set of r intervals of finite total length {cf. [4],
p. 47}.

_ _ - r n(t,0,g)
Now we calculate N(r,0,g) and N(r,, g). We have N(r,0,g) = |

To

dt,

where 0(t,0.g) is the number of distinct roots of g(z) = 0 inry <| z | <t counted singly.

The distinct roots of g(z) =0 inrg<|zi<taretheroots of fi(z) =0 inrg<|z|<t. By the
definition of functions in class 11, {,(z) has a singularity at z = ( and essential singularity

at z = o and f,(z) omits the values 0 and o except possibly at 0. So n(t,0) = 0.
Consequently N(r,0,g) = 0. Arguing similarly we can say that N(r,«,g)= 0. So,
T(r, g) < N(r,1, 2)+ S (r, ). We now calculate N(r,1,g). If g(z) = 1, then f,(z) = z.

So,

— n-] __
N(r.l,8) < >:] N(r,0,f; - 2)+ O(log ).
=

The term O(iog r) arises due to the assumption that f{z) has only a finite number of

relative fix points of exact order n.
n~-1__
L T(g) < ¥ N@O, f;~2)+8; (r, g) + Ologr)
=l
n-1
< 3 [T £, - 2)+ Oog 0]+ 8, (r, ) + O(log 1)
j=l

=N, f;-2)+8; (r )+ Olog 1) -
j=

= “f T(r,£;) + Oiog T(r, 2)) + Olog 1)
=1




Tt {n-% L) Oiog T(r, ) . O(log r)}
=1 T, £y) T(r, 1) T(r,f,)
=T(r,f )[T(r’ fiv) + 1. fp) Foerrrereens + 1 fip) +{T(r, f) Foeeent Tl )} 1, 9n)
T(r.fp) T(rfy) T(r,fy) (T ¢n) T(r,é,)§ T(r,1;)
, Odog (1¢:,£,) + Ottgr)}) | Octog ) ] by (7
T(r,£,) T(r )
where iy, 2, ....... slpsdisfas coneenn , Jq are (n-1) distinet index together exhausting the set
{1,2, ........ , n-1} such that (n-i;)’s are even and (n-j,)’s are odd,
=T(r,f,) oG, o +T(r’fip)+ 1, f"]) ...... +T(r’ fi) | T(r:n)
T(r,£,) T(r,fy) | T ¢, ) T(r,¢p) | T(r,Ty)
Olog (165 1) 1+ 0”"% —oeny,
. f,) ", Ologn)
T, £,) | et
< T(r, fn)[n—_1—+£r+wl} for all large r, by the Lemma and since ( LY is
4n  4n T(r.f, )
bounded,
= }Z—T(r, £,).

ST, g) < %T(r, f,,) for all large r. This contradicts (7). Hence f{z) has infinitely

many relative fix points of exact order n (> 1).

This proves the theorem.

T(r, ¢5)

+in

Note. If «1)(2) f(z) then

is necessarily bounded and the theorem coincides with

Theorem B.
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