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Abstract. In this work, some lacunary power series with algebraic coefficients are
considered and it is shown that under some conditions the values of the given series for
some Liouville number arguments belong to either a certain algebraic number field or

m
L_JUi in Mahler’s classification of complex numbers, where m denotes the degree of the
i=1
algebraic number field to which the coefficients of the series belong.
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1. INTRODUCTION

A power series F(z)= Z}/ni z" (yni eC, Yo # 0,i=0,1, 2,...) with a positive radius
i=0

of convergence, where {ni }i: , 1s a strictly increasing sequence of non-negative rational

. . . N . .
integers with lim—*. =0, is called a lacunary power series.
1—0 ni
Cohn [1] , in 1946, showed that a lacunary power series with rational coefficients, under

some conditions, takes transcendental values for non-zero algebraic number arguments.

Zeren [11] , in 1980, proved the following:

a) A lacunary power series with rational coefficients, under some conditions, takes
values belonging to the subclass U in Mahler’s classification of complex numbers for

non-zero algebraic number arguments of degree m .

b) A lacunary power series with algebraic coefficients from a certain algebraic number
field of degree m , under some conditions, takes values belonging to the subclass U, in

Mabhler’s classification of complex numbers for non-zero rational number arguments.
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In the present work, we will consider some lacunary power series with algebraic
coefficients from a certain algebraic number field K of degree m, treated by

Zeren [1 1] , and show that under some conditions these series take values belonging to

either the algebraic number field K or UUi in Mahler’s classification of complex
i-1

numbers for some Liouville number arguments.

2. BACKGROUND

Mabhler [6] , in 1932, divided the complex numbers into four classes, and called
numbers in these classes A—numbers, S —numbers, T —numbers and U — numbers as
follows.

We shall be concerned with polynomials P(z)=4a,z"+---+a, with rational integral
coefficients. The height H(P) of P is defined by H(P)= rnax(|an
shall denote the degree of P by deg(P).

geeey

a0|) , and we

Given a complex number & and natural numbers” n, H , Mahler [6] puts

w,(H,&) =min|P(¢)| .
deg(P)<n
H(P)<H, P(&)=0
The polynomial P(z)=1 is one of the polynomials which lie in the minimum, and so
we have O<w, (H ,& ) <I.w, (H ,& ) is a non-increasing function of both n, H . Next,
Mahler puts

——1 H
w(&) = Tm ogw, (H.¢)
" H—w logH

and

W(&) = Tim o)

nN—o0 n

* A natural number means a positive rational integer.



W, (&) is a non-decreasing function of n. Furthermore, the inequalities 0<w, (&) <o
and 0<w(&)<o hold. If W, ({)=co for some integer n, let x(&) be the smallest of
such integers. In this case, we have W (&) <o for n< u(&); W (&)= for n> u(s).
If w, (&)< forevery n, put u(&)=co.So (&) and w(&) are uniquely determined,
and are never finite simultaneously, for the finiteness of (&) implies that there is an
n<oo such that w (&) =00, whence W(&)=oo. Therefore there are the following four

possibilities for £. & is called

an A—number if  w)=0, u()=omw,
an S —number if  O0<w(&)<oo, p(&)=om,
a T —number if  w(é)=oo, u(&) =00,
a U —number if  w(&)=o, H1(E) <o

( for more information see Mahler [6] ). Every complex number ¢ is of precisely one

of these four types. A-—numbers are precisely the algebraic numbers (see
Schneider[S] ). So the transcendental numbers are distributed into the three ( disjoint )

classes S, T,U .Let & bea U —number such that #(£)=m and let U denote the
set of all such numbers, ie. U, ={SeU:u(&)=m}. Obviously, the set

U, (m=1,2,3,..) isasubclass of U and U is the union of all the disjoint sets U, .

m

Leveque [4] showed that U, is not empty for any m>1 .

Koksma [3] , In 1939, set up another classification of the complex numbers. He divided

the complex numbers into four classes A, S, T",U" as follows.

Suppose that « is an algebraic number and P(z) is the minimal defining polynomial of

a such that its coefficients are rational integers, relatively prime and its highest
coefficient is positive. Then the height H(e) of « is defined by H(a)=H(P) and

the degree deg(ar) of « is defined as the degree of P .

Given a complex number & and natural numbers n, H , Koksma [3] puts

Wi(H.&)=minfé—a]
a 1is algebraic
deg(a) <£n



H@)<H,a=#¢

W:(é)zﬂ—log(H w, (H.£))
H—o log H

9
and

W (&) = Tim M(e)
nN—o0 n
W, (H ,& ) is a non-increasing function of both n, H , and so W (&) is a non-decreasing
function of n. The functions W (&) and W'(£) satisfy the respective inequalities
0<W (E) <o, 0SW (&)<, If W (E)=oo for some integer N, let u (&) be the

smallest of such integers. In this case, we have W, (&) <o for n< 4 (£); W, (&) =oo for

n>u (). If w(E)<ow for every n, put ' (£)=w. So u (£) and W (&) are

uniquely determined, and are never finite simultaneously. Therefore there are the
following four possibilities for &. & is called

an A" —number if  w(£)=0, 1(E)=oo,
an S” —number if  0<w(&)<ow, u(&)=m,
a T —number if  w(&)=o, 1(E) =00,

a U —number if  w(&)=w, 1 (&)<

( for more information see Koksma [3] ). Every complex number & is of precisely one

of these four types. Hence, the complex numbers are distributed into the four (disjoint)
classes A, S",T,U". Let & bea U’ —number such that ' (£)=m and let U

denote the set of all such numbers, i.e. U, = {§ eU":u' (&)= m} . Obviously, the set

U, (m=123,..) isasubclass of U" and U" is the union of all the disjoint sets U, .

Wirsing [9] proved that both classifications are equivalent, i.e. A—, S—, T—,

U —numbers are the same as A" —, S —, T"—, U" —numbers respectively. Moreover,
U,=U, (m=12.3,..).



A real number & is called a Liouville number if to each natural number n there exists a
rational number 21 (P> G, €Z) such that the inequalities

n

1
<_

P,
‘T a qr

q,>1, 0<
el

hold. We deduce from the definition that a Liouville number is an irrational number.
The set of Liouville numbers is identical with the subclass U, in Mahler’s classification

(for more information about Liouville numbers see Perron [7], p. 178-190 and

Schneider [8] , Kapitel I).

We need the following two lemmas to prove the main result of this paper.

Lemma 1. Let «,...,a, (k=1) be algebraic numbers which belong to an algebraic
number field K of degree m, and let F (y, Xl,...,xk) be a polynomial with rational
integral coefficients and with degree at least 1 in y. If 7 is any algebraic number such

that F(7,a,,...,a,)=0, then
deg(n7)<dm
and
H () < 320 h0m ympy o Byl

where H is the height of the polynomial F, d is the degree of F in vy,
I, (i=1,...,k) is the degree of F in X (i=1L...,K).

Proof. See Igen [2].

Lemma 2. Let  be an algebraic number of degree m and o'’ =a, a'?,...,a™ be

its conjugates. Then

‘E‘S2H(a),

where ‘a‘:maXGa“) a? a(m)) .

Y geeey



Proof. See Leveque [4] .

3. THE MAIN RESULT

Theorem. Let K be an algebraic number field of degree m, and
F@ =Y 72" (i Ko7y #0,i=0,1,2,..] (1)
i=0
be a power series which satisfies the following conditions:

lim e = o | )
I—>00 ni

—_logH ()
lIim———<

I—00 n

o, 3)

where {ni }Z , 1s a strictly increasing sequence of positive rational integers.

Suppose that the radius of convergence R of the series z H (}/ni) AT positive
i=0

(R may be finite or infinite). Moreover, let & be a Liouville number satisfying the

following inequalities:

s% (pni,qni €Z, 0y >1,8, =—— (i=1,2,3,..); lims, :ooJ, @)

P
ni log qni

O,

£|<R. (5)

Then either F(&) is an algebraic number in K or F(&) e UUi .

i=1
Proof. We shall prove the theorem in four steps.
1) (1) is convergent for z=¢ . For since, by Lemma2,

‘7ni ‘ < ‘7_n.‘ <2H (;/ni) (1=0,1,2,...), the radius of convergence of (1)is >R.

2) Let us consider the polynomials



n

Fk(z)=Zynizi (k=1,2,3,...). (6)

Define the algebraic numbers

n _F[ﬂ]_iy [ﬂ]ieK (k=1,2,3,...) (7)
o = Fi 27|

Ny

Since M, € K (k=12,3,..), deg(nnk )<m (k=1,2,3,...) . By multiplying both sides

Ny n Ny
e gy " On, | O,

by qrr,]: , we obtain the equality

of the equality

n n,—n n n,—n n n
qn:nnk :(qn: ’ pns )7n0 +(qn: 1 pni )7/n1 ot pnlk(ynk :
We can assume that Pn, # 0 (k=1,2,3,...), since & is a Liouville number. Then the
polynomial
M=y

PCY, Xos X0 %) = Ay = (A ™ P )%, —( ™ byt )% == PR,

has rational integral coefficients and is of degree 1 in each Y, X;,X,,...,X, . Moreover,

P(nnk,yno,;/nl,...,ynk)=0. Denote the height of the polynomial P(Y,X,,X,....X,)
by H . Then, by Lemma 1, we obtain that

H (7 ) 3™ " H H (7 )" H (" H ()™ (K=123.) . (8)
By (4),
p
g+l (k=1,2,3,.), 9)
My

and hence,



Pr,| < n, (j€+1)  (k=1,2.3..). (10)

Now we shall examine H , the height of the polynomial P(Y,X,,X,...,X,) -

E

n
H :max( , , yeees “ q;‘: ) (11)

Ny
Ny

O PR | O Py || PRE]) < [P
By (10) and (11),
H < 2n, Ny
<ap " (l¢]+1) (12)

is obtained. Since & is a Liouville number, we can assume that I}im an =00, and shall
—0

do so. For (|§|+1) is independent of O, > We have

¢l +1<ap (13)

for sufficiently large k . Hence, by (12) and (13),

3n,
H <q (14)
| | logH(,)|"
for sufficiently large k. Since (3), the sequence — is bounded above.
i i=0

Then there exists a real number M~ > 0 such that

log H (7, .

MSM (i=0,1,2,..). (15)
From (15) it follows that

HOn) <A™ (i=0,1,2,..), (16)

where A=e" >1 is a positive real constant independent of n, . From (8), (14) and

(16), we have for sufficiently large k

2m+(k+1)m y3Nm A NgM A M n.m an.m _3n.m o (Ny+n+.+n Jm
H(, ) <3 +k) Op AT AT AKT <37 g, K Al )

(17)



. n . *
By (2), we have l11m —* =00, and therefore there is a natural number k™ such that
—>0 nk—l

D oo (18)
Ny
for k >k". From (18), it follows that
2n,,<n. (k=k’). (19)
Using (19), by induction,
Ne+N. +..+n<2n  (k>k’) (20)

is obtained. By (17) and (20), we have for sufficiently large k

[T‘IO +'"+nk*—l ]m A(nk* +...+nk )m

3n.m
Hm ) <3 g, A" A

(n0+...+nk*_l]nkm 3n,m

<3 Mg A AT = g kT 1)

Ny+.. 4N M
where C, =34 A[ Ck ’1] A’™ >0 is a real constant independent of n, and O, -

Since C, < O, for sufficiently large k and (21), we obtain

(Bm+1)n
Hi ) <0y ¥ (22)

for sufficiently large K .

3) We have

‘F(é)—nnk (k=1,2,3,...). (23)

<|F&)- @)+ [F@) -,

Now we shall determine an upper bound for |F & —-FK (§)| and ‘Fk (&)— M,

0

<3

i=k+1

" . (24)

IF(é)—Fk(f)Iz‘Z:: o "
1=k+1

7ni



Let us choose a real number p which satisfies the inequality
0<|é[<p<R (25)
( If R=oo, then p is chosen as p>|&| ). Since the radius of convergence of
F(z) is 2R, the series F(p) :i;yni pni is convergent. Thus }133 n ,oni =0, and so
iz

the sequence {7nipni }w is bounded, and therefore there is a real number M >0
i=0

such that

<M (i=0,1,2,..). (26)

n;

yni

From (24), (25) and (26), it follows that

0

FEO-RE@s Y lfi=m Y (@j
i=k+1 O i )

=k+ i=k+1

Ty [H]”m [H_(@J”m”m +(@Jnk+3_nk+l +J
p p p

IA
=
Y
o [
N——
>
z
VR
[—
+
D [
+
Y
S
N——
[\S)
+
;:/
Il
Y
SR
N——
7?3
+
[—
_ =
E
~~
[\
~J
p—

By (27), we have
C
FO-RE@Is55L k=123, (28)
2
where ¢, = % >0,¢, = é >1 are real numbers independent of n, and d, .
==
P
k p )"
X n
‘Fk(‘f)_nnk = Z7ni gn. _{_kJ
i=0 an



k

SZ‘%.‘

_ P

ni—l
: é“i1+§ni2ﬂ+...+[hJ : (29)
Ny

nk O,

By (26),

N

<M _MB"<MBY<MB" =M,
pl

(i=0,1,2,.), (30)

]/ni

where B = max (l,lj 21, M, =max(LM)>=1, M, =M ,B2>1 . Since (4), (9), (29), (30)
P

and the fact that |§| < |§| +1, it follows

K
<>m nksnk e +

i=0

Fe(©)-m, +lel" 2%'0 1 |p”k|

‘ ‘an‘

‘ nksnkzm n (1) < WZM n (1)

1 1
:an—snk(kﬂ)M g+ 1) ‘ansnk n2 M, (|g+1)™ 31

Ny Ny
On the other hand, for limn, =0, lim"%/n_=1, and so lim & n, =1 . Then there is a
k—>o0 k—o0 k—o0
real number C, >1 such that
n? <c (32)

for sufficiently large k . From (31) and (32),

| |
‘Fk(f) T, | < P kM, (|&]+1)" = s (33)
Ny Ny

where C, =C, M2(|§|+1)>1 is a real constant independent of n, and qp . For

sufficiently large K ,

C, <0 - (34)



By (33) and (34),

1
< - 35
M (Sn, 1) G3)
Ny

Fe(&)=m,

for sufficiently large k .

Now let us turn to (28). Let 4 be a positive real number which will be specified later.
For sufficiently large k, the inequality

C, 1
< (36)
C;kﬂ :k (snk —1)1
k

holds. For otherwise the inequality

C, 1

C?kﬂ > rr:k(snk—l)ﬁ
k

(37)

would hold for infinitely many k. Thus, if we denote the subsequence of natural

numbers formed by the numbers k satisfying (37) by {k j }w

=’

(j=1,2,3,..)
Cznijrl nkj [S”kj —lj/l

is obtained. From this and (4),

log C - nkj+1 log c, > _nkj (Snkj —1Alog anj

= logc, + n, (Snkj —1)Alog anj >Ny logc,

N
::>10gcl+nkj %—1 Alogq, >nkj+110gc2

= logc, +(nkj+l =Ny, log anj )/1 >Ny logc,



Ny, 10g Gy J’i + logc
- 2

= log, + [1

nkJ +1 nkJ+l

n. logq,
>mn-9§i+{1-—L——JlJz > limlogc,

J= nkJ +1 nkJ +1 J=

= A>logc, >0 .

Then if we choose the real number 4 as 0< A <logc, , the inequality (36) holds for
sufficiently large k. On the other hand, for 0 < 4 <1, the inequality

1 1
< 38
M (s -1) ~ Mi(Sn-1)2 (38)
M M

holds for sufficiently large k. Finally, if the real number A is chosen as
0<A<min(l,logc,) , it follows from (28) and (36) that

F& ROl —p (39)
O, "

for sufficiently large k , and from (35) and (38) that

1
AT -
M

Fe(©)-m,

for sufficiently large k . By (23), (39) and (40),

2 1
S ) “1)
M M

F&)-m,

for sufficiently large k. We deduce from (41) that {‘ F(&) ~1In,

} is a null sequence, for

lim _ =0. In other words,
K=o _ny(sn,-2)2

Ny



limzn, =F(S). (42)

It follows from (22) and (41) that

1
F&)-m, S— (43)
Ny
H (nnk ) 3m+1
.5y =2)4
for sufficiently large k. Note that lim —*——— =00, since lims, =, 4>0 and
k>  3m+1 k—ow 'k
(s, —2)A
3M+1>0.Put @, =—%*—— (k=1,2,3,...). Then from (43),
k 3m+1
1 .
FE@-m|s——F (ima, =) (44)
H(m, )

for sufficiently large k.

I

4) There exist the following two cases for the null sequence {‘ F(&)- M,

=0 from some k onward :

a) |F(&)-m,

In this case M, = F(£) from some k onward, that is, {nnk} is a constant sequence.

Since M, € K (k=1,2,3,..), in the case a) it is obtained that F(&) is an algebraic

number in K .

# 0 for infinitely many K :

b) |F(&)-m,

In this case the sequence {nnk } has an infinite number of different terms. For otherwise

}

# (0 for an infinite

{nnk } would have a finite number of different terms, and so the sequence {‘ F(&)- hn,

would have a finite number of different terms. Since |F(&)—7n
My

number of k, there is a non-zero term in the sequence {‘F(f)—?]nk } Then



(F&-m,

} would have only a finite number of different terms which are not zero.

Hence, let us denote the different and non-zero terms in the sequence {‘ F(&) ~1In,

J by
u,u,,...,u, (t>1) . Put ¢c=min(u,U,,...,u,). Note that C is a positive real number,

since all the u; (i =1,2,...,t) are positive real numbers. Thus, for any natural number k
cither ‘F(g)—nnk‘=o or ‘F(f)—nnk‘ZC. (45)

Since {‘ F(E)~7ln,

; is a null sequence, there exists a natural number K, such that

F&) -,

<c (46)

for k >k, . However, since ‘F (6) =71, | # 0 for an infinite number of k , there exists a

natural number K > k, for which ‘F (&)—- I, ‘ # 0. From (45), we have

F(&) -, |2 ¢

which contradicts (46). Therefore {nnk} must have an infinite number of different

terms.

The sequence {H (nnk)} of natural numbers, formed by the heights of the algebraic
numbers 77, -, is unbounded above. For otherwise there would be a real number M, >0
such that H (nnk )<M, for k=1,2,3,.. . Then since also deg(ﬂnk )<m (k=12,3,..),
the sequence {nnk} would have a finite number of different terms, contrary to the fact

that {nnk} has an infinite number of different terms. Thus @H(UHK):OO’ for

{H(77nk )} is unbounded above. Since @H(nnk):w, the sequence {H(nnk )} of

o0

natural numbers has a subsequence {H (nnk_ )} such that
] j=1

I<H@p )<HGOp )<H@p ) <., limH@, )= . (47)



o0

Since (47), the terms of the sequence {ﬂ”k-} are all different, i.e. if 1% j , then
J

i=l
©

TTn, # nnkj . So the sequence {nnkj } may have at most one term equal to F(&). If

i=1

there is a term equal to F(&) among the terms . (j=12,3,...), i.e. if there exists a
j

natural number j, for which My, = F(&), then we throw away the first j, terms
o

nnkl,nnkz,...,nnkj and renumber the terms of the sequence {nnkj}
0

(jy+1>1j,+2—>2,...), and so all the terms of the sequence {nnk_ } are now different
i

o0

has a subsequence {nnk_} for
J .

j=1

o0

from F(&). To summarize, the sequence {nnk}k
=1

which the following properties hold:

)y #FE@ (=123,

i) 1<H(@p, )<H@ )<H(y )< limH(p, )=0,
1 2 3 ]® ]

iii) deg(nnk. )<Sm (j=12,3,..), for My, € K (j=12,3,..).
j j

From (44) and i), we obtain for sufficiently large j that

<1 (lima, =o). (48)

0< y
Kk joo
H(g, ) |
j

F(E) -7,

J

Put H;=H (nnk_ )>1 (j=1,2,3,...). Since ii), {Hj}ojo is a strictly increasing
j
subsequence of natural numbers. By 1), ii), iii) and (48),

w,, (H;,F(&))=min|[F(&)-qf <

a is algebraic
deg(a) <m

F(&) =1t

H(a) < Hj,a;t F(&)



< 1 - (})”k (for sufficiently large j )

- g j
H (77nkj ) H.

]

:>0<W;(Hj,|:(§))£ C})ﬂk (for sufficiently large j )
]
Hj
= 0<H, W;(HJ,F(Q?))S% (for sufficiently large j )
k.
H,
1 ;!

= - >H, >0  (for sufficiently large j )

H,w, (H,.F©)

log !

H, W, (H,,F(®)) . _
2o, -1 (for sufficiently large j )
logH, Kj
log !

THw(HFQ)
= lim =00, since lim@, =oo.

joo IOgHJ— joo kj

— —log(HwW, (H,F
= lim g( ol (5)))=oo

H—>w logH

= F(£)eU” and ,u*(F(cf))S m

:>F(§)eLmJU: . (49)

From (49), we obtain that F (&) UUi ,since U is identical with U _ for any natural

i=1

number m . Hence, in the case b) F (&) e UUi .

i=1
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