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1. INTRODUCTION 

Let { }nr  and { }ns  be two infinite sequences of non-negative integers satisfying the 

following condition 

0 1 1 2 2 3 30 s r s r s r s≤ ≤ < ≤ < ≤ < ≤…  . 

Let’s consider the power series  
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This power series can also be written as 
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A power series with these properties is called generalized lacunary power series. If 
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A power series with these properties is called simple lacunary power series for it 
separates from generalized lacunary power series.  

 

In this paper we shall be concerned with generalized lacunary power series.  

 

Chon [1] in 1946 showed that the values of simple lacunary power series with rational 
coefficients are transcendental for some algebraic arguments. The paper was transferred 
to p -adic domain by Şenkon [2] in 1977. In 1946, Mahler [3] obtained that the values 
of generalized lacunary power series with rational coefficients are transcendental for 
some algebraic arguments. In 1977, Braune [4] obtained further results about the values 
of generalized lacunary power series with algebraic coefficients. In 1980, Zeren [5] 
showed that the values of simple lacunary power series with rational coefficient for 
some algebraic arguments and the values of simple lacunary power series with algebraic 
coefficient for some rational arguments belong to the Mahler’s mU -subclass ( 1)m≥ . In 
the same paper, the results were transferred to p -adic domain. In 1988, Zeren [6] 
obtained that the values of generalized lacunary power series with algebraic coefficient 
for some algebraic arguments belong to Mahler’s mU -subclass ( 1)m≥ . 

 



With this paper, it is proved that the values of generalized lacunary power series with 
algebraic coefficients for some algebraic arguments belong to the p -adic mU -subclass 
( 1)m≥  in p -adic domain, and so Zeren’s [6] paper is transferred to p -adic domain by 
using Koksma classification in p -adic domain.  

 

2. PRELIMINARIES 

` , ] , _  and p  denotes natural numbers, integer numbers, rational numbers and a 

given prime number respectively. .
p
 and p_  denotes p -adic valuation on _  and the 

field of p -adic numbers respectively. 

 

2.1. Mahler’s Classification in p_
2 

Let n  be a natural number. The height of the polynomial  

1 0( ) [ ], 0n
n nP x a x a x a x a= + + + ∈ ≠… ] , 

denoted by ( )H P , is the form 

( )1 0( ) max , , ,nH P a a a= … . 

The degree of the polynomial ( )P x  is denoted with deg ( )P . Let ξ  be an element of 

p_ . For given positive integer n  and real number ( 1 )H ≥ , we define the quantity 
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since ( ) 1
p

P ξ =  for ( ) 1P x = . ( , )nw H ξ  is a non-increasing function of both n  and 

H . Then we set  
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( )nw ξ  as a function of n  is non-decreasing. The inequalities 0 ( )nw ξ≤ ≤+∞  and 
0 ( )w ξ≤ ≤+∞  ( 1n≥ , 1H ≥ ) hold. 

 

If ( )nw ξ =+ ∞  for some integers n , let ( ) ( )μ ξ μ=  be the smallest of such integers, 

and if ( )nw ξ < +∞  for every n , put ( )μ ξ =+ ∞ . The two quantities ( )μ ξ , ( )w ξ  are 
never finite simultaneously. Then the number ξ  is called an 

 

A -number if ( ) 0, ( )w ξ μ ξ= = +∞ , 

                                         S -number if 0 ( ) , ( )w ξ μ ξ< <+∞ = +∞ , 

                                         T -number if ( ) , ( )w ξ μ ξ= +∞ = +∞ , 

                                         U -number if ( ) , ( )w ξ μ ξ= +∞ < +∞ . 

 

All p -adic numbers are distributed into the four classes A , S , T , U . With this 
classification: 

1) A -numbers are exactly algebraic numbers3. 

2) If two p -adic numbers are algebraically dependent, then they belong to the same 
class4. 

                                                            
3 See [7]. 
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Let ξ  be a U -number such that ( ) mμ ξ = , and let mU  denotes the set of all such 

numbers. For every natural m , mU -class is a subclass of U , and m nU U∩ =∅  if m n≠ . 

Therefore we have the partition 
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=
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2.2. Koksma’s Classification in p_
5: 

Let α  be a p -adic number. The height of the p -adic number α , denoted by ( )H α , 
is the height of its minimal polynomial over ] . The degree of the p -adic number α  is 
denoted by deg ( )α . 

 

Let ξ  be a p -adic number. For given positive integer n  and real number ( 1 )H ≥ , we 
define the quantity 
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The inequalities *0 ( )nw ξ≤ ≤+∞  and *0 ( )w ξ≤ ≤+∞  hold. 

 

If * ( )nw ξ =+ ∞  for some integers n , let * *( ) ( )μ ξ μ=  be the smallest of such integers, 

if * ( )nw ξ < +∞  for every n , put * ( )μ ξ =+ ∞ . The two quantities * ( )μ ξ , * ( )w ξ  are 
never finite simultaneously. Then the number ξ  is called an 
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A∗ -number if ( ) 0, ( )w ξ μ ξ∗ ∗= = +∞ , 

                                       S ∗ -number if  0 ( ) , ( )w ξ μ ξ∗ ∗< <+∞ = +∞ , 

                                       T ∗ -number if  ( ) , ( )w ξ μ ξ∗ ∗= +∞ = +∞ , 

                                       U ∗ -number if ( ) , ( )w ξ μ ξ∗ ∗= +∞ < +∞ . 

Hence, all p -adic numbers are distributed into the four classes A∗ , S ∗ , T ∗ , U ∗ . 

 

Let ξ  be a *U -number such that * ( ) mμ ξ = , and let *
mU  denotes the set of all such 

numbers. For every natural m , *
mU -class is a subclass of *U , and * *

m nU U∩ =∅  if m n≠ . 

Therefore we have the partition * *
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=
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Schlikewei [8] proved that p -adic T -numbers exist. It follows from the results of 
Schlikewei [8] and Long [9] that the classifications of Mahler and of Koksma are 
equivalent. 

 

Let ξ  be a p -adic number and let m  be a positive integer. The number ξ  is called a 
*
mU -number if * ( ) mμ ξ = , and * ( ) mμ ξ =  if the following conditions are satisfied: 

 

i) For every 0ω > , if there are infinitely many algebraic numbers η  of degree m  such 
that 
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where the positive constant c  is independent of ( )H η . 



ii) If there exists constants 0c′>  and s  depending only on ξ  and m  such that the 
relation 

( ) s
p
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holds for every algebraic number β  of degree m< , then  

* ( ) mμ ξ ≥      (that is * * *
1 2 1mU U Uξ −∉ ∪ ∪ ∪… ). 

 

For the proof of main result, we shall need the following lemmas. 

 

Lemma 2.1 Let 1 , , ( 1)k kα α ≥…  be algebraic numbers in p_  with 

1[ ( , , ): ]k gα α =_ … _  and let 1( , , , )kF y x x…  be a polynomial with integral 
coefficients, whose degree in y  is at least one. If η  is an algebraic number such that 

1( , , , ) 0kF η α α =… , then the degree of η  dg≤  and  

1 12 ( )
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where ( )H η  is the height of η , ( )iH α  is the height of iα  ( 1, , )i k= … , H  is the 

maximum of the absolute values of the coefficients of F , il  is the degree of F  in 

ix ( 1, , )i k= …  and d  is the degree of F  in y . 

Proof. See [10]. 

 

Lemma 2.2 Let ( )P x  be a polynomial of degree n  with rational integer coefficients, 
and let ( )H P denote the height of ( )P x  and let ( 1, , )i i nα = …  denote the roots of 

( )P x . Then for ( )i j i jα α≠ ≠  

1( )i j np

c
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where c  is a positive constant depending on n  but not on ( )H P . 



Proof. See [11]. 

 

Lemma 2.3 Let α , β  be two p -adic algebraic numbers such that they have different 
minimal polynomials and let t , k  be degrees of α , β  respectively. Then for 
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3. MAIN RESULT 

Theorem Let { }nr , { }ns  be two infinite sequence of integers satisfying 
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be a generalized lacunary power series such that 
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where the coefficients hc  are algebraic numbers in a constant number field ( )θΚ =Κ  

such that [ : ] cΚ =_ , and 0hc =  if n nr h s< < , but 0, 0
n nr sc c≠ ≠  ( 1, 2, )n= … , and let 
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where va  is a suitable natural number such that v va c  is an algebraic integer and 

[ ]0 , ,v vA a a= …  is the least common multiple of 0 , , va a… . Let α  be an algebraic 

numbers of degree m  satisfying 0
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assume that ( ) 0nP α ≠  for infinitely many integers n . 

Proof. 1°) The radius of convergence of (3.1) is R≥  from the condition (3.2), since the 

series 
0

h
h p

h
c z

∞

=
∑  is majorant of the series 

0

h
h

h
c z

∞

=
∑ . 

 

2°) Let’s take ( )F α β= . We can write  

n nβ β ρ= + ,         (3.7) 

such that 
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Now, we will find an upper bound for the height ( )nH β  of nβ . 

 

If both sides of the equality (3.8) are multiplied by 
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By using (3.10) and (3.11), it follows that 
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D A  and ( ) ( 0, 1, , 1)v cμξ μ = −…  are rational integers. 

 

Let’s consider the polynomial  
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The value of the polynomial 1 2( , , )P y x x  for 1 2, ,ny x xβ θ α= = =  is the left side of the 
equality (3.12). 

 

Now, we would like to obtain the quantity ( )v
μξ . We put 
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where ˆ ( )C Κ  is a positive constant in the number field Κ . 

 

By using (3.4) and (3.5), we have the relations  
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where ˆ( ) max ( , ( )) 2C K D C K K=  (>1) is a positive constant in the number field Κ  
( H  denotes the height of the polynomial P ). 

 

We can use Lemma 2.1 with 1 21, , 1nl c l r d= − = = , from (3.19) and (3.5 )′ , we obtain 
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If R=+∞ , then we can choose any arbitrary number ρ  which is 
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4°) Now, we will examine the sequence of height { }( )nH β  and the sequence of degree 

{ }( )nd β  of the algebraic numbers nβ . These sequences provide the following 

conditions A, B, C. 

 

A) { }( )nH β  is not bounded from above. 

Proof. If { }( )nH β  were bounded from above, then { }nβ  would contain only finitely 

many different elements since the degrees of the algebraic numbers nβ  are bounded 

from above with g . But the sequence { }nβ  contains infinitely many different 

elements: Since there are infinitely many non-zero polynomials ( )kP α , we have  
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B) Starting from a suitable n , { }( )nd β  is a constant sequence. 

Proof. There are two different cases: 

a) Let ( ) 1nd β =  as starting from a suitable n . Then the condition B) is satisfied.  

 

b) Let ( ) 1nd β >  for infinitely many integers n . If { } { }i j
n nβ β≠  for a fixed pair ( , )i j  

( i j≠ ) and for any sufficiently large n , then { } { }
1 1

i j
n nβ β+ +≠ : from (3.8), we write 

          1

11
n n

n n

s r
n n s rc cβ β α α +

++ = + + +… .     (3.30) 

Therefore 

{ } { } { } { }( ) { } { }( )
{ } { } { } { }( ) { } { }( )

1

1

1

1

1

1

,
n n

n n

n n

n n

s ri ii i i i
n n s r

s rj jj j j j
n n s r

c c

c c

β β α α

β β α α

+

+

+

+

+

+

= + + +

= + + +

…

…
 

for i j≠ . Hence 

        

{ } { } { } { } { } { } { } { }

{ } { } { } { }1 1

1 1

1 1 ( ) ( ( ) ( ) )

( ( ) ( ) ) .

n n

n n

n n

n n

i ji j i j i js s
n n n n s sp

r ri ji j
r r p

c c

c c

β β β β α α

α α+ +

+ +

+ +− = − + −

+ + −…    (3.31) 

If 

  { } { } { } { } { } { } { } { } { } { }1 1

1 1
( ( ) ( ) ) ( ( ) ( ) )n nn n

n n n n

r ri j i i j j i i j js s
n n s s r rp p

c c c cβ β α α α α+ +

+ +
− > − + + −… ,   (3.32) 

then 

{ } { } { } { }
1 1

i j i j
n n n np p

β β β β+ +− = − .      (3.33) 

 

Now, we shall show that the inequality (3.32) is valid for all sufficiently large n . 

 

If the degree of nβ  is denoted by q , then 2 q g≤ ≤ . Using Lemma 2.2, we have  



{ } { } 4
1( )

i j
n n qp

n

c
H

β β
β −− > , 

where 4c  is a positive constant independent of ( )nH β . Hence  

    { } { } 4
1( )

i j
n n gp

n

c
H

β β
β −− > .      (3.34) 

Combining the relations (3.20) and (3.34), we obtain 

            { } { } 4
0( 1)

0

( )
n

i j
n n r gp

c n N
c

β β −− > > .     (3.35) 

Now, let’s consider the right side of the inequality (3.32). From (3.25), we obtain  

{ } { } { } { } { } { } { } { }1 1

1 1

1
1 *

2

( ( ) ( ) ) ( ( ) ( ) )

,

n nn n

n n n n

n

n

r ri j i ji j i js s
s s r r p

s

p
s

c c c c

c
c

c

α α α α

α

ρ

+ +

+ +
− + + −

⎛ ⎞
⎜ ⎟≤ =⎜ ⎟⎜ ⎟
⎝ ⎠

…

   (3.36) 

where 
*

2 ( 1)
p

c ρ
α

= > . For a sufficiently large 0n , we have  

    1 4
0( 1)

2 0

( )
n ns r g

c c n n
c c −< > .      (3.37) 

Then we see from (3.35), (3.36) and (3.37) that 

{ } { }

{ } { } { } { } { } { } { } { }1 1

1 1

4 1
( 1)

0 2

( ( ) ( ) ) ( ( ) ( ) )

n n

n nn n

n n n n

i j
n n r g sp

r ri i j j i i j js s
s s r r p

c c
c c

c c c c

β β

α α α α+ +

+ +

−− > >

≥ − + + −…
 

for all sufficiently large n . Finally, the inequality (3.32) is satisfied for all sufficiently 
large n . In this case we have { } { }i j

n nβ β≠  for all n  which are larger than a suitable n . 

This is exactly valid, because { } { }i j
n nβ β≠  is satisfied for at least a pair ( , )i j  and for 

infinitely many integers n  from the hypothesis b). This case can also be provided for all 
pairs ( , )i j . Hence we have  



1 1 11 2( ) ( ) ( )N N Nd d dβ β β+ +≤ ≤ ≤…  

for a sufficiently large 1N . Since ( )nd gβ ≤ , for a sufficiently large 2N  we can write 
that 

2 2 21 2( ) ( ) ( )N N Nd d dβ β β+ += = =… , 

such that 2 1N N≥ . If the common value is shown by t , then 

         2( ) ,nd t n Nβ = ≥ .      (3.38) 

C) We can choose a subsequence of the sequence { }nβ  such that 

0) ( 1, 2, )
jn jβ β≠ = … . 

1) { }( )
jnH β  is the monotone increasing sequence of natural numbers, hence it is 

diverges to +∞ .  

2) { }( )
jnd β  is a constant sequence. 

Proof. The proof is obtained from the properties A) and B); also the constant value of 
( )

jnd β  is t . 

 

5°) We shall show that the number β  is a *U -number. To show this, we will use the 

subsequence { }jnβ  defined in C).  

 

Putting ( )
j jn nH H β= , from C)-0) and (3.28), we can write  

{ }

3

*

deg( )
( )

0 2

( , ): min

1 , max ( , ) .

j

n j

j n j

n j

j

t n pt
H H

n jsp c
r

n

w H

n N N

H

η
η
η β

β β η

β β

≤
≤
≠

= −

≤ − < >    (3.39) 



We have from (3.39) 

*

3

log ( ( , ) )

log
j j

j j

t n n

n n

w H s
c

H r

β−
> ,      (3.40) 

and from (3.29) and (3.40) 

         
*log ( ( , ) )

lim
log

j

j
j

t n

n
n

w H

H

β
→∞

−
=+∞ .      (3.41) 

Finally, we obtain  

*
*

log ( ( , ) )
( ) lim

log
j

j
j

t n
t n

n

w H
w

H

β
β

→∞

−
= =+∞ .     (3.42) 

Thus, it follows from the definition of * ( )μ β  that 

* ( ) tμ β ≤ .       (3.43) 

This shows that the number β  is a *U -number. 

 

6°) Now, we will show that * ( ) tμ β = . 

 

a) If 1t = , then * ( ) 1μ β =  from (3.43). In this case *
1Uβ∈ . 

 

b) If 1t > , then we shall show that 

           *
1 ( )tw β− <+∞ .       (3.44) 

Consider  

l lp p p
β γ β γ β β− ≥ − − − ,     (3.45) 



where γ  is a algebraic number of degree t< . We would like to find an upper bound for 

l p
β β−  and a lower bound for l p

β γ− .  

 

Let ( )lH β  be the height of lβ , and let ( )H γ  and s  be the height and the degree of γ  

respectively. It is satisfied the inequality 1 1s t≤ ≤ − . The degree of lβ  is exactly t  for 

2l N≥ . Therefore we can use Lemma 2.3, and so we obtain 

5
1( ) ( )l M Mp

l

c
H H

β γ
β γ−− >      (3.46) 

for M t>  and 2l N≥ , where 5c  is a positive constant independent of γ . For 

0 2max ( , )l N N> , we have from (3.20), (3.46) 

5
( 1)

0( ) ll r MMp

c
H c

β γ
γ −− > , 

and from (3.4 )′  

1 1

5
( 1)

0( ) ll s Mp M

c
H c τβ γ

γ − −− >      (3.47) 

since 0 1c > . From (3.27), (3.45) and (3.47), we have 

1 1

5 1
( 1)

20( ) l ls M sp M

c c
cH c τβ γ

γ − −− ≥ − , 

and so  

       
1 1 3

5 1
( 1)

00( ) l ls M s cp M

c c
cH c τβ γ

γ − −− ≥ − .     (3.48) 

Let’s take a number λ  such that  

        1λ >        (3.49) 

(the value of λ  will be announced later). Since 1n ns r− ≤ , we get from (3.3) 



1

lim n

n n

s
s→+∞ −

=+∞ . 

Therefore, for the number μ  which is chosen such that 

     μ λ> ,       (3.50) 

there exists 3N ∈`  such that 

   
1

n

n

s
s

μ
−

>        (3.51) 

for 3n N>  (the value of μ  will be announced later). 

 

Now let’s consider the inequality  

       1
0 0( )n ns sc H cγ− ≤ <        (3.52) 

for any algebraic number γ  satisfying the relation  

0( )H Hγ > ,       (3.53) 

such that 

3
0 32

1

1
0 0 0 0

5

2max , , ,N NN
c

s ss cH c c c
c

⎛ ⎞⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
.     (3.54) 

There is exactly only one n  satisfying the inequality (3.52): since 0lim ls

l
c

→∞
=+∞ , there 

are infinitely many indexes l  such that 0 ( )lsc H γ> . Also, from (3.54) and (3.53) there 

are indexes l  such that 0 ( )lsc H γ≤ , but the number of these indexes l  is finite. Let the 
maximum of these indexes l  be 1n− . In this case it can be seen easily that 

1
0 0( )n ns sc H cγ− ≤ < . Now we shall show that there is only one n  satisfying the inequality 

(3.52): If two solutions of (3.52) were 1n , 2n , then it would have  



1 11 1 1 2

11 2 12 2

0 0 0 0 1 2 1 2
1 2

0 0 2 1 2 10 0

( ) ( ) 1

( ) 1( )

n n n n

n nn n

s s s s

s ss s

c H c c H c n n n n
n n

c H c n n n nc H c

γ γ

γγ

− −

−−

⎫ ⎫≤ < ≤ < ⇒ − < ⇒ ≤⎪ ⎪ ⇒ =⎬ ⎬
≤ < ⇒ − < ⇒ ≤≤ < ⎪⎪ ⎭⎭

. 

From (3.50), (3.53) and (3.52), we have  

0 2 3max ( , , )n N N N> .      (3.55) 

We see that from (3.50), (3.51) and (3.55) 

1
n

n
ss
λ− < ,       (3.56) 

and from (3.49) 

n
n

s
s

λ
< .       (3.57) 

In this case, the interval )1
0 0,n ns sc c−⎡

⎣  can be divided into two subintervals such that 

these subintervals are 1
0 0,

n
n

ssc c λ−⎡ ⎞
⎟⎢⎣ ⎠

 and 0 0,
n

n
s

sc cλ⎡ ⎞
⎟⎢⎣ ⎠

. Then ( )H γ  satisfying the 

relation (3.52) belong to one of the following two subintervals:  

 

I) 1
0 0( )

n
n

ssc H c λγ− ≤ < , 

II) 0 0( )
n

n
s

sc H cλ γ≤ <  . 

 

Case I) If we write the relation (3.48) with l  replaced by n , then we get 

     
31

5 1
( 1)( ) ( ) cM Mp

c c
H H λτβ γ

γ γ+ −− ≥ − .     (3.58) 

If we choose 

     1

3

( 1): 1M M
c

τλ + −
= + ,      (3.59) 



then from (3.58) 

31

1
5 0( 1)

1 ; ( )
( ) ( ) cM Mp

cc H H
H Hτβ γ γ

γ γ+ −

⎧ ⎫
− ≥ − >⎨ ⎬

⎩ ⎭
.    (3.60) 

From (3.54) and (3.53), we have 

        
3

3

1

51 1
5

5

2( ) 0
( ) 2

c

c

cc cH c
c H

γ
γ

⎛ ⎞
> ⇒ − > >⎜ ⎟
⎝ ⎠

.     (3.61) 

Hence from (3.60) and (3.61), we obtain 

1

5

0( 1)
2 ; ( )

( )M Mp

c
H H

H τβ γ γ
γ + −− ≥ > .     (3.62) 

 

Case II) If we write the relation (3.48) with l  replaced by 1n+ , then we get 

1
3

1

5 1

( 1)( ) ( )
n

n

sp
c

M M s

c c

H Hλτ

β γ

γ γ
+

+ −

− ≥ − ,     (3.63) 

and using the inequality (3.51), we obtain 

31

5 1
( 1)( ) ( ) cM Mp

c c
H H μλτβ γ

γ γ+ −− ≥ − .     (3.64) 

If we choose 

1

3

( 1): 1M M
c

λτμ + −
= + ,      (3.65) 

then from (3.64) 

31

1
5 0( 1)

1 ; ( )
( ) ( )cM Mp

cc H H
H Hλτβ γ γ

γ γ+ −

⎧ ⎫
− ≥ − >⎨ ⎬

⎩ ⎭
.    (3.66) 

Hence we write from (3.61) 



1

5

0( 1)
2 ; ( )

( )M Mp

c
H H

H λτβ γ γ
γ + −− ≥ > .     (3.67) 

The inequality (3.67) is also satisfied in case I), since 1 1( 1) ( 1)M M M Mλτ τ+ − > + −  

from (3.49). Putting 1 ( 1)x M Mλτ= + −  in both cases, we have 

    
5

0
2 ; ( )

( )xp

c
H H

H
β γ γ

γ
− ≥ > ,                (3.68) 

since M t> , x t> . 

 

From 5°), we have  

{ }
0

*
1 0 1

( )

( , ) mint p ps t
H H

w H
γ
γ β

β β γ β γ− ≤ −
≤
≠

= − ≤ −      (3.69) 

for all γ  which have 1s t≤ −  and 0( )H Hγ ≤ . Hence we can write  

       
*

1 0*
1 0 0

( , )
( , ) ; 1, ( )

( )
t

t xp

w H
w H s t H H

H
β

β γ β γ
γ

−
−− ≥ ≥ ≤ − ≤ .    (3.70) 

Putting  

           *5
6 1 0min , ( , )

2 t
cc w H β−

⎛ ⎞= ⎜ ⎟
⎝ ⎠

,      (3.71) 

we obtain from (3.68), (3.70) 

     6

( )xp

c
H

β γ
γ

− ≥        (3.72) 

for 1s t≤ −  and ( ) 1, 2,H γ = … . We see from (3.72) that 

       6
xp

c
H

β γ− ≥        (3.73) 

for all γ  which have 1s t≤ −  and ( )H Hγ ≤  (where H  is any positive integer). Thus  



               * 6
1 ( , )t x

cw H
H

β− ≥       for all H ,     (3.74) 

since  

               { }*
1 1

( )

( , ) mint ps t
H H

w H
γ
γ β

β β γ− ≤ −
≤
≠

= − .     (3.75) 

From (3.74), we obtain  

         
*

1 6
log ( ( , ) ) log

log log
tw H cx

H H
β−−

≤ −      (3.76) 

and then  

      
*

1*
1

log ( ( , ) )
( ) lim

log
t

t H

w H
w x

H
β

β −
− →∞

−
= ≤ .     (3.77) 

Therefore it follows from definition of * ( )μ β  that 

      * ( ) 1tμ β > − ,     that is      * ( ) tμ β ≥ .     (3.78) 

Finally, from (3.43) and (3.78), we have  

         * ( ) , 1t tμ β = > .      (3.79) 

In other words, *
tUβ∈ . Hence we obtain *

tUβ∈  in both of the cases 6) a) and b), and so 

tUβ∈ . 
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