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1. INTRODUCTION

In this study, it is proved that the values of generalized lacunary power series with
algebraic coefficients for some algebraic arguments belong to the p -adic U, -subclass

(m=1). This theorem was proved by using Koksma classification in Caligkan’s [6]

paper, but in present paper this theorem is proved by using Mabhler classification. So
Zeren’s [5] paper is transferred to p -adic domain by using Mahler classification. In

particular, this article benefited greatly from the papers of Cohn [1] and Zeren [4].

Basic information about the subject of theorem is given in Schneider [3]. In here, it is
only expressed Mabhler’s classification in p -adic domain, which was introduced by

Mahler [2].

2. PRELIMINARIES

N, Z, Q and p denotes natural numbers, integer numbers, rational numbers and a

given prime number respectively. |.|p and Q, denotes p -adic valuation on Q and the

field of p -adic numbers respectively.
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! Istanbul University, Faculty of Science, Department of Mathematics, Vezneciler, Istanbul, Turkey,
e-mail: fatmac@istanbul.edu.tr.



2.1. Mahler’s Classification in Q pz

Let n be a natural number. The height of the polynomial
P(x)=a,x"+ ...+ ax+a,€ Z[x], a,#0,

denoted by H (P), is the form

H(P):max(

w|).

The degree of the polynomial P(x) is denoted with deg(P). Let & be an element of

a,l,....la,|,

Q, . For given positive integer n and real number H (>1), we define the quantity

w, (H, &)= min {[P(&)],}.
H(P)<H
deg(P)<n
P(&)=0

It is clear that
O<w, (H, £)<1,

since | P(&) |p =1 for P(x)=1. w,(H, &) is a non-increasing function of both n and

H . Then we set

1
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w, (&) as a function of n is non-decreasing. The inequalities 0<w, (&)<+o0 and
0<w(&)<+o0 (n21, H>1) hold.

If w,(£)=+0o for some integers n, let ©(&) (=x) be the smallest of such integers,
and if w, (&)<+oo for every n, put u(&)=+c. The two quantities ¢ (&), w(&) are

never finite simultaneously. Then the number ¢ is called an

% See [2].



A -number if w(&)=0, u(&)=+o,
S -number if O<w(&)<+o, u(&)=+oo,
T -number if w(&)=+0w0, u(&)=+x,

U -number if w(&)=+00, u(&)<+o.

All p-adic numbers are distributed into the four classes 4, S, 7, U. With this

classification:
1) 4 -numbers are exactly algebraic numbers’.

2) If two p -adic numbers are algebraically dependent, then they belong to the same

class®.

Let £ be a U -number such that x(&)=m, and let U, denotes the set of all such

numbers. For every natural m, U, -class is a subclass of U, and U, N"U, =< if m#n.

Therefore we have the partition U = Y U,.

Let & be a p-adic number and let m be a positive integer. The number & is called a
U, -number if px(&)=m,and u(&)=m if the following conditions are satisfied:

1) For every w>0, if there are infinitely many polynomials P of degree m with
integral coefficients such that

O<|P(§)|p£cH(P)"",

then

* See [2].
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u(&)<m (thatis SeU, VU, u...0U,)
where the positive constant ¢ is independent of H(P).

ii) If there exists constants ¢'>0 and s depending only on & and m such that the
relation

|P(&)|, > H(P)™
holds for every polynomial P of degree <m with integral coefficients, then

u(&)zm  (thatis SeU, LU, L...OUU, ).

Let o be a algebraic number. The height of the p-adic number «, denoted by H (),

is the height of its minimal polynomial over Z. The degree of the p-adic number o
denoted by deg () is the degree of its minimal polynomial.

For the proof of main result, we shall need the following lemma.

Lemma Let P (x) be a polynomial of degree m with integral coefficients and let o be
a algebraic number of degree n with P(«a)#0. Then the relation

| P(a)| 2 P
P (n+m)!H(a)" H(P)"

holds, where |a|p =p",t=min(0,4), and H(P), H(a) are the height of P (x)

and the height of the algebraic number & respectively.

Proof. See [2].

3. MAIN RESULT

Theorem Let {rn} , {sn} be two infinite sequence of integers satisfying
0<s5,<1,<s, <K, <s5,<1,<s;<....

Let



F()=3¢, 2" =Y R(2)

Tt

}1(2):¥§:chzh
h=s;

3.1)

be a generalized lacunary power series such that

c,=0, r <h<s, n=L2,..,
¢, 720, h=r, n=12,...,
c,#0, h=s, n=0,1,...,

where the coefficients ¢, are algebraic numbers in a constant number field K=K (&)

such that [K:Q]=c, and ¢, =0 if 7, <h<s,,but ¢, #0, ¢, #0 (n=12,...), and let

fimgl[ el | <o (j=1,...0), (3.2)
i—>o P
where cjj } (j=1,...,c) denote the conjugates of ¢, over K. Furthermore, suppose
that the following conditions hold:
.S
lim —— =+ oo, (3.3)
n—o n
-— 7
lim ——:=7<+o00, (3.4)
o &rl
— log 4
limb::a<+oo, (3.5)
n— n
— logh
lim =28 . _ 7 1o (h,=H (c,)), (3.6)
n—> 0 n

where a, is a suitable natural number such that a ¢, is an algebraic integer and

4:[a0,...,av] is the least common multiple of a,...,a,. Let a be an algebraic

numbers of degree m satisfying 0<‘E‘ <R such that ‘;
p

=max‘ a“" and
)4 4

R=min———————. Then F(a)eU, for z=a, where ¢ is the maximum of the




n—1

degrees of the partial sums F, (a)=ZPk () and ts[ Ql, «):Q ]:=g£cm . Also,
k=0

assume that P, (o )#0 for infinitely many integers » .

Proof. 1°) The radius of convergence of (3.1) is >R (see [6]).

2°) Let’s take F (a )=/ . We can write

B=B,+p, (3.7)

such that
p=Y B (a)=Yc(0)a, ()
=3P (@)=Y c,(0)a". (3.9)

Then we obtain an upper bound for the height 7 (3, ) of S, such that
H(B)<c (n>N,), (3.10)

where ¢, (>1) and N, are sufficiently large numbers (see [6]).

3°) Let the minimal polynomial of the algebraic number S, be
P (x)=fo+fix+f, X +..+fx; [<m, feZ(i=0,1,...,]).

Now we shall give an upper bound for | P (B) |,, .

From (3.7), we have

P (B)=fo+ L (B +p )+ [i(B,+p,) +..+ (B, +p,)
=P, (B,)+p,7,

and so



P.(B)=p,7, (3.11)

since P, (B,)=0, where

A .
v, =1, +f2(2,8n+pn)+...+fl((lj ! 1+...+(ij; b). (3.12)
Using similar ideas as in [6], we obtain the inequalities
) *
M < M — (j=l,e,€) (n=0,1,...) (3.13)
7 (p)
and so
al,f
| o, JSM (n=1,2,...), (3.14)

o
where M * | p’ (‘—*”<1) are sufficiently large numbers.

Since lim| B, , :| Yo . there is exits a number M >0 such that
n—0

| B,

<M. (3.15)

Then from (3.12),(3.14) and (3.15) we have

[
7/)1 1

l
- fl+f2(2ﬂn+pn)+...+fl(£ jﬂ,ﬁ“+...+[1jpf,“)

P
P

<c (n=0,1,2,...), (3.16)

=1

where ¢, (>1) is a sufficiently large number. Hence from (3.11), (3.14) and (3.16), we
write



M+ M+
P, =lp ] |7 ], < =Clcsn (n=0,1,...),  (3.17)
* 2

yo,

E

P

%

where ¢, =L (c,>1). Since the polynomial P, (x) is the minimal polynomial of the

3
p
. . . logec,
algebraic number g , itis H(f,)=H (P, ). Putting 1 =c;(>0), ¢ M *=c,, we
ogc,
have from (3. 10) and (3. 17)
c
[P, (B)],s————  (1>N,). (3.18)
(H(BN"
From (3.3), we see that
.S
lim ¢, =+00. (3.19)
n—o0 rn

4°) Now, we will examine the sequence of height {H (P, )} and the sequence of degree

{d (P, )} of the polynomials P, . These sequences provide the following conditions A,
B, C.

A) {H (P,)} is not bounded from above.

Proof. Firstly, the sequence { B, } contains infinitely many different elements (see [6]).
Now let’s show that the sequence {H (P, )} is not bounded from above: If {H (P, )}
were bounded from above, then {Pn } would contain only finitely many different
elements since the degrees of the polynomials P, are bounded from above with m .
Therefore the sequence { B, } corresponding to the roots of the polynomials P, would
contain finitely many different elements. But the sequence { B, } contains infinitely

many different elements; hence the sequence {H (P, )} is not bounded from above.



B) Starting from a suitable n, {d (3,)} (or {d(/3,)})is a constant sequence.

Proof. As in [6], there are two different cases:

a) Let d(P, )=1 (or d(f,)=1) as starting from a suitable n . Then the condition B) is

satisfied.

b) Let d(P,)>1 (or d(f,)>1) for infinitely many integers » . Using similar ideas as in
[6], if ,Bji} ;tﬂjj} for a fixed pair (7, j) (i# /) and for any sufficiently large n, then
,Bjif # j fl} . In this case we have ﬂi[} * ,Bjj ! for all n which are larger than a suitable

n . This is exactly valid, because, ﬂii} # ,Bj 7} is satisfied for at least a pair (7,/) and for

infinitely many integers n from the hypothesis b). This can also be provided for all
pairs (i, /). Hence we have

d(By)<d(By.)<d(Py o)<

for a sufficiently large N,. Since d(f,)<g, for a sufficiently large N, we can write
that

d(By)=d(By)=d( By ..)=-..

such that N, >N, . If the common value is shown by ¢, then

d(B)=t, n=N,. (3.20)

C) We can choose a subsequence of the sequence { P, } such that
0P, (B)=0 (j=1,2,...).

1) {H (P, )} is the monotone increasing sequence of natural numbers, hence it is

diverges to +o0.

2) { d (Pn/ ) } is a constant sequence.



Proof. The proof is obtained from the properties A) and B); the constant value of
d(P, )ist.

Also, the sequence {H (B, )} , which is the sequence of the heights of the algebraic

numbers S, corresponding to the polynomials P, ., is the monotone increasing

.
n./

sequence which is diverges to +oo: Since {H (Pn/ )} is the monotone increasing
sequence of natural numbers, which is diverges to +o, H (P, )#H (P, ) for k#I, and
since the polynomials P, are the irreducible polynomials, the polynomials P, are

different from each other. Since H ( ,Bn/_):H (Pnj), itis H(pB,)=H(p,) (for k=),

and the algebraic numbers f, are different from each other. Hence the sequence

{H (B, )} is the monotone increasing sequence which is diverges to + .

5°) We shall show that the number £ is a U -number. To show this, we will use the

nj

subsequence {P } defined in C).

Putting H , =H (Pnj ), from C)-0) and (3.18) we can write

Wz(Hn,-"B):: min {|P('B)|p}

H(P)<H,
deg (P)<t
P(B)#0
1
s‘Pn,(ﬁ)‘< — , n,>max(N,,N,). (3.21)
/ p T
HY

nj

We have from (3.21)

_log(wt (Hn/. ’ﬂ)) >Sn/.
logH, r

nj

¢ (3.22)

and from (3.19) and (3.22)



~log(w, (H, . /)
im ~ =+
n; o loanj_

Finally, we obtain

— -1
o ()= fim B

” logH,

Thus it follows from the definition of x(£) that

u(p)=t.

This shows that the number £ isa U -number.

6°) Now we will show that u(f)=t.
a) If r=1, then u(f)=1 from (3.25). In this case feU,.
b) If >1, then we shall show that

w,_, (f)<+oo0.

Consider the polynomial

B(x)=by+b x+b, X’ +..+b x"; 1<y<t, b eZ (i=0,1,....7).

For x=/, we have from (3.7), (3.8) and (3.9)

B(B)=B(B)+p

v - -
n=b+b, (2f,+p)+...+b, ((ljﬁf "ol h).

By (3.4), we have the relation

<7

n—1

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.4)



for all sufficiently large n, where 7,>7 .

The degree of B, for />N, is exactly ¢. Therefore, we can use Lemma, and so we
obtain

|B(S)], =2 & (3.29)

CH(p)" H(BY

for />N,, where ¢, is a positive constant independent of the polynomial B. For
[>max(N,, N,), we obtain from (3.10) and (3.29)

c
B > 5
| (ﬁ)l ) |p co(tfl)r[ H(B)t
and from (3.4")
CS
|B(B)|,2 (3.30)

co(ffl)splﬁ H (B )t

since ¢,>1. We see that from (3.14)

51

. o]
e (=) M —F| (I=1,2,.) (3.31)
a P

v=s

|pl|p:

P

and from (3.28)

4 _ _
%, = b1+b2(2ﬂl+P1)+...+b7((1]ﬂ,7 o] <c,,
p
and so we have
M*
o], s—-=L  (=12,.). (3.32)
14 i s C;I

o)
\E

p

where ¢, =M *c,. Hence we obtain



o], <= (=1,2,.)

¢,
where ¢, = loge, (¢;>0).
0
Let’s take a number A such that
A>1
(the value of A will be announced later). Since s, <7,

lim —*
n—-+w S

=+00.

n—1

Therefore, for the number g which is chosen such that

u>A,
there exists N, €N such that
Sn
> H
s

n—1

for n> N, (the value of ¢ will be announced later).

Now let’s consider the inequality
¢, <H(B)<c
for any polynomial B satisfying the relation
H(B)>H,

such that

we get from (3.3)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)



/
C
H, = e o [ 260 3.39
o=max| ¢, ,c,*, ¢, — . (3.39)

Cs

There is exactly only one n satisfying the inequality (3.37) (see [6]).

From (3.37), (3.38) and (3.39), we have
n>max(N,, N,, N;). (3.40)

We see that from (3.35), (3.36) and (3.40)
S
S, <= 341
1 (3.41)
and from (3.34)
<, . (3.42)

In this case, the interval [cg”" , Gy ) can be divided into two subintervals such that

these subintervals are {cg”‘ , COA j and |:COA , Gy j Then H (B) satisfying the

relation (3.37) belong to one of the following two subintervals:

D SH(B)<CO% ,

1) ¢/ <H(B)<c: .

Case I) If we write the relation (3.30) with / replaced by »n, then we get

CS
|B(ﬂ”)|p2 H(B)I+Tl(t71) (3.43)
and we have from (3.33)
c
raa .

<—ﬂ.
» " H(B)Y*



If we choose

l::M_FI, (344)

G
then

c7
p < t+(t-)+ ¢ °
H(B)

o, (3.45)

From (3.38) and (3.39), we have

l
2¢, J%‘ - c,

H(B)>( CS—W

>%>0. (3.46)

Cs
Therefore we obtain

Cs G

> . 3.47
H(B)t+ 7 (t-1) H(B)t+rl(t71)+ c ( )
Then
BB, >| o1 ], - (3.48)
Hence we have from (3.28) and (3.48)
c
|B(ﬂ)|p :|B(ﬂ”)|p2 H(B)tsﬁ-rl([—l) ' (3'49)
Case II) If we write the relation (3.30) with / replaced by n+1, then we get
B > & 3.50
‘ (IBn+l)‘p— H(B)tJrATl(t,l) b ( . )
and from (3.33) and (3.36), we obtain
c c
r <—" < z 3.51
‘pn+l n+l p 605”/_153 ]{(13)#33 ( )

If we choose



LY

G

, (3.52)

then from (3.51)

G
‘p’Hl Tasi P <H(B)t+ﬂr1(t—1)+c3 : (353)
Therefore we obtain from (3.46)
cS C7
H(B)tJrl‘rl(t—l) > H(B)t+/lrl(t—l)+ 2 (354)
Then
‘B(ﬂn+])‘ >‘pn+]rn+1 (355)
P P
Hence we have from (3.28) and (3.55)
_ Cs
B, =B, 2 By (3.56)

The inequality (3.56) is also satisfied in case I), since ¢+A7,(¢—1)>t+7,(t—1) from
(3.34). Putting x=t+A7,(¢t—1) in both cases, we have

Cs .
|B(ﬂ)|p2m ; H(B)>H,. (3.57)
From 5°), we have
W (Hy, )= min_ {[B(B)], }<|B(A)], (3.58)
H(B)<H,
B(8)=0

for all polynomials B with integer coefficients which have y<¢-1 and H(B)<H,.
Hence we can write

w_, (Hy.f) |

|B(ﬂ)|p2 HE)y y<t-1, H(B)<H,. (3.59)

Putting ¢, =min( ¢, w,_, (H,.) ), we obtain from (3.57), (3.59)



Cg

B > 3.60

B,z 5 (3.60)
for y<t—1and H(B)=1, 2,.... We see from (3.60) that
C c

B >—5 _>_% 3.61

B2 g0 (3.61)

for all polynomials B which have y<¢—1 and H(B)<H (where H is any positive
integer). Thus

w_ (H,p) z% for all H. (3.62)

From (3.62), we obtain

_1og(WH([7’,,3))<x_10gc8

< (3.63)
log H log H
and so
— —log(w,_,(H.,p))
w = lim <x. 3.64
o (P)=fim === (3.64)
Therefore it follows from definition of () that
u(p)>t—1, thatis wu(p)=t. (3.65)
Finally, from (3.25) and (3.65), we have
u(p)=t, t>l. (3.66)

In other words, f€U, . Hence we obtain feU, in both of the cases 6) a) and b).

t

REFERENCES

[1] Cohn, H., 1946, Note on almost algebraic numbers, Bull. Amer. Math. Soc. 52,
1042-1045.



[2] Mahler, K., 1935, Uber eine Klassen-Einteilung der p -Adischen Zahlen,

Mathematica Leiden, 3, 177-185.

[3] Schneider, T., 1957, Einfiihrung in die Transzendenten Zahlen, Springer-
Verlag, Berlin Gottingen Heidelberg.

[4] Zeren, B. M., 1980, Uber einige komplexe und p -adische Liickenreihen mit
Werte aus den Mahlerschen Unterklassen U, , Istanbul Univ. Fen Fak. Mec.
Seri 4, 45, 89-130.

[5] Zeren, B. M., 1988, Uber die natur der transzendenz der Werte einer art
verallgemeinerter Liickenreihen mit algebraischen Koeffizienten fiir
algebraische Argument, Bull. Tech. Univ. Istanbul, 41, 569-588.

[6] Calhiskan, F., 2010, On Transcendence of Values of Some Generalized Lacunary
Power Series With Algebraic Coefficients for Some Algebraic Arguments in
p-Adic Domain 1, Istanbul Univ Fen Fak. Mat. Fiz. ve Astr. Dergisi, New
Series, Vol. 3, (2008-2009), 33-58.

Fatma CALISKAN

Istanbul University, Faculty of Science,

Department of Mathematics, 34134 Vezneciler, Istanbul, Turkey,
E-mail: fatmac@istanbul.edu.tr



