On Transcendence of Values of Some Generalized Lacunary Power Series with Algebraic Coefficients for Some Algebraic Arguments in p-Adic Domain II ${ }^{\bullet}$

Fatma ÇALIŞSAN ${ }^{1}$

Abstract

Abstarct. In this paper, the theorem in Çalışkan's [6] paper is proved by using Mahler classification in p-adic domain.

Keywords: The Field of p-Adic Numbers, Generalized Lacunary Power Series, Algebraic Numbers, Transcendence, Mahler Classification.

AMS Subject Classification: 11D88, 11R04, 11J81.

1. INTRODUCTION

In this study, it is proved that the values of generalized lacunary power series with algebraic coefficients for some algebraic arguments belong to the p-adic U_{m}-subclass ($m \geq 1$). This theorem was proved by using Koksma classification in Çalışkan's [6] paper, but in present paper this theorem is proved by using Mahler classification. So Zeren's [5] paper is transferred to p-adic domain by using Mahler classification. In particular, this article benefited greatly from the papers of Cohn [1] and Zeren [4].

Basic information about the subject of theorem is given in Schneider [3]. In here, it is only expressed Mahler's classification in p-adic domain, which was introduced by Mahler [2].

2. PRELIMINARIES

$\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and p denotes natural numbers, integer numbers, rational numbers and a given prime number respectively. $|\cdot|_{p}$ and \mathbb{Q}_{p} denotes p-adic valuation on \mathbb{Q} and the field of p-adic numbers respectively.

[^0]
2.1. Mahler's Classification in $\mathbb{Q}_{p}{ }^{2}$

Let n be a natural number. The height of the polynomial

$$
P(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in \mathbb{Z}[x], a_{n} \neq 0
$$

denoted by $H(P)$, is the form

$$
H(P)=\max \left(\left|a_{n}\right|, \ldots,\left|a_{1}\right|,\left|a_{0}\right|\right) .
$$

The degree of the polynomial $P(x)$ is denoted with $\operatorname{deg}(P)$. Let ξ be an element of \mathbb{Q}_{p}. For given positive integer n and real number $H(\geq 1)$, we define the quantity

It is clear that

$$
0<w_{n}(H, \xi) \leq 1,
$$

since $|P(\xi)|_{p}=1$ for $P(x)=1 . w_{n}(H, \xi)$ is a non-increasing function of both n and H. Then we set

$$
w_{n}(\xi)=\varlimsup_{H \rightarrow+\infty} \frac{\log \frac{1}{w_{n}(H, \xi)}}{\log H} \quad \text { and } \quad w(\xi)=\varlimsup_{n \rightarrow+\infty} \frac{w_{n}(\xi)}{n} .
$$

$w_{n}(\xi)$ as a function of n is non-decreasing. The inequalities $0 \leq w_{n}(\xi) \leq+\infty$ and $0 \leq w(\xi) \leq+\infty(n \geq 1, H \geq 1)$ hold.

If $w_{n}(\xi)=+\infty$ for some integers n, let $\mu(\xi)(=\mu)$ be the smallest of such integers, and if $w_{n}(\xi)<+\infty$ for every n, put $\mu(\xi)=+\infty$. The two quantities $\mu(\xi), w(\xi)$ are never finite simultaneously. Then the number ξ is called an

[^1]\[

$$
\begin{aligned}
& A \text {-number if } w(\xi)=0, \mu(\xi)=+\infty, \\
& S \text {-number if } 0<w(\xi)<+\infty, \mu(\xi)=+\infty, \\
& T \text {-number if } w(\xi)=+\infty, \mu(\xi)=+\infty, \\
& U \text {-number if } w(\xi)=+\infty, \mu(\xi)<+\infty .
\end{aligned}
$$
\]

All p-adic numbers are distributed into the four classes A, S, T, U. With this classification:

1) A-numbers are exactly algebraic numbers ${ }^{3}$.
2) If two p-adic numbers are algebraically dependent, then they belong to the same class ${ }^{4}$.

Let ξ be a U-number such that $\mu(\xi)=m$, and let U_{m} denotes the set of all such numbers. For every natural m, U_{m}-class is a subclass of U, and $U_{m} \cap U_{n}=\varnothing$ if $m \neq n$. Therefore we have the partition $U=\bigcup_{m=1}^{\infty} U_{m}$.

Let ξ be a p-adic number and let m be a positive integer. The number ξ is called a U_{m}-number if $\mu(\xi)=m$, and $\mu(\xi)=m$ if the following conditions are satisfied:
i) For every $\omega>0$, if there are infinitely many polynomials P of degree m with integral coefficients such that

$$
0<|P(\xi)|_{p} \leq c H(P)^{-\omega},
$$

then

[^2]$$
\mu(\xi) \leq m \quad\left(\text { that is } \xi \in U_{1} \cup U_{2} \cup \ldots \cup U_{m}\right)
$$
where the positive constant c is independent of $H(P)$.
ii) If there exists constants $c^{\prime}>0$ and s depending only on ξ and m such that the relation
$$
|P(\xi)|_{p}>c^{\prime} H(P)^{-s}
$$
holds for every polynomial P of degree $<m$ with integral coefficients, then
$$
\mu(\xi) \geq m \quad\left(\text { that is } \xi \notin U_{1} \cup U_{2} \cup \ldots \cup U_{m-1}\right) \text {. }
$$

Let α be a algebraic number. The height of the p-adic number α, denoted by $H(\alpha)$, is the height of its minimal polynomial over \mathbb{Z}. The degree of the p -adic number α denoted by $\operatorname{deg}(\alpha)$ is the degree of its minimal polynomial.

For the proof of main result, we shall need the following lemma.

Lemma Let $P(x)$ be a polynomial of degree m with integral coefficients and let α be a algebraic number of degree n with $P(\alpha) \neq 0$. Then the relation

$$
|P(\alpha)|_{p} \geq \frac{p^{(n-1) t}}{(n+m)!H(\alpha)^{m} H(P)^{n}}
$$

holds, where $|\alpha|_{p}=p^{-h}, t=\min (0, h)$, and $H(P), H(\alpha)$ are the height of $P(x)$ and the height of the algebraic number α respectively.

Proof. See [2].

3. MAIN RESULT

Theorem Let $\left\{r_{n}\right\},\left\{s_{n}\right\}$ be two infinite sequence of integers satisfying

$$
0 \leq s_{0} \leq r_{1}<s_{1} \leq r_{2}<s_{2} \leq r_{3}<s_{3} \leq \ldots
$$

Let

$$
\begin{align*}
& F(z)=\sum_{h=0}^{\infty} c_{h} z^{h}=\sum_{k=0}^{\infty} P_{k}(z) \\
& P_{k}(z)=\sum_{h=s_{k}}^{r_{k+1}} c_{h} z^{h} \tag{3.1}
\end{align*}
$$

be a generalized lacunary power series such that

$$
\begin{array}{lll}
c_{h}=0, & r_{n}<h<s_{n} & n=1,2, \ldots, \\
c_{h} \neq 0, & h=r_{n} & n=1,2, \ldots, \\
c_{h} \neq 0, & h=s_{n} & n=0,1, \ldots,
\end{array}
$$

where the coefficients c_{h} are algebraic numbers in a constant number field $\mathrm{K}=\mathrm{K}(\theta)$ such that $[\mathrm{K}: \mathbb{Q}]=c$, and $c_{h}=0$ if $r_{n}<h<s_{n}$, but $c_{r_{n}} \neq 0, c_{s_{n}} \neq 0 \quad(n=1,2, \ldots)$, and let

$$
\begin{equation*}
\varlimsup_{i \rightarrow \infty} \sqrt[i]{\left|c_{i}^{\{j\}}\right|_{p}}<+\infty \quad(j=1, \ldots, c) \tag{3.2}
\end{equation*}
$$

where $c_{i}^{\{j\}}(j=1, \ldots, c)$ denote the conjugates of c_{i} over K . Furthermore, suppose that the following conditions hold:

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{s_{n}}{r_{n}}=+\infty, \tag{3.3}\\
& \varlimsup_{n \rightarrow \infty} \frac{r_{n}}{s_{n-1}}:=\tau<+\infty, \tag{3.4}\\
& \varlimsup_{n \rightarrow \infty} \frac{\log A_{n}}{n}:=\sigma<+\infty, \tag{3.5}\\
& \varlimsup_{n \rightarrow \infty} \frac{\log h_{n}}{n}:=l<+\infty \quad\left(h_{n}=H\left(c_{n}\right)\right), \tag{3.6}
\end{align*}
$$

where a_{v} is a suitable natural number such that $a_{v} c_{v}$ is an algebraic integer and $A_{v}=\left[a_{0}, \ldots, a_{v}\right]$ is the least common multiple of a_{0}, \ldots, a_{v}. Let α be an algebraic numbers of degree m satisfying $0<|\bar{\alpha}|_{p}<R$ such that $|\bar{\alpha}|_{p}=\max \left|\alpha^{(i)}\right|_{p}$ and $R=\min _{j=1}^{c} \frac{1}{{\underset{\lim }{i \rightarrow \infty}}^{i} \sqrt{\left|c_{i}^{\{j\}}\right|_{p}}}$. Then $F(\alpha) \in U_{t}$ for $z=\alpha$, where t is the maximum of the
degrees of the partial sums $F_{n}(\alpha)=\sum_{k=0}^{n-1} P_{k}(\alpha)$ and $t \leq[\mathbb{Q}(\theta, \alpha): \mathbb{Q}]:=g \leq c m$. Also, assume that $P_{n}(\alpha) \neq 0$ for infinitely many integers n.

Proof. $\mathbf{1}^{\circ}$) The radius of convergence of (3.1) is $\geq R$ (see [6]).
$\mathbf{2}^{\circ}$) Let's take $F(\alpha)=\beta$. We can write

$$
\begin{equation*}
\beta=\beta_{n}+\rho_{n}, \tag{3.7}
\end{equation*}
$$

such that

$$
\begin{align*}
& \beta_{n}=\sum_{k=0}^{n-1} P_{k}(\alpha)=\sum_{v=s_{0}}^{r_{n}} c_{v}(\theta) \alpha^{v}, \tag{3.8}\\
& \rho_{n}=\sum_{k=n}^{\infty} P_{k}(\alpha)=\sum_{v=s_{n}}^{\infty} c_{v}(\theta) \alpha^{v} . \tag{3.9}
\end{align*}
$$

Then we obtain an upper bound for the height $H\left(\beta_{n}\right)$ of β_{n} such that

$$
\begin{equation*}
H\left(\beta_{n}\right) \leq c_{0}^{r_{n}} \quad\left(n>N_{0}\right), \tag{3.10}
\end{equation*}
$$

where $c_{0}(>1)$ and N_{0} are sufficiently large numbers (see [6]).
3°) Let the minimal polynomial of the algebraic number β_{n} be

$$
\mathrm{P}_{n}(x)=f_{0}+f_{1} x+f_{2} x^{2}+\ldots+f_{l} x^{l} ; \quad l \leq m, f_{i} \in \mathbb{Z}(i=0,1, \ldots, l) .
$$

Now we shall give an upper bound for $\left|\mathrm{P}_{n}(\beta)\right|_{p}$.

From (3.7), we have

$$
\begin{aligned}
\mathrm{P}_{n}(\beta) & =f_{0}+f_{1}\left(\beta_{n}+\rho_{n}\right)+f_{2}\left(\beta_{n}+\rho_{n}\right)^{2}+\ldots+f_{l}\left(\beta_{n}+\rho_{n}\right)^{l} \\
& =\mathrm{P}_{n}\left(\beta_{n}\right)+\rho_{n} \gamma_{n}
\end{aligned}
$$

and so

$$
\begin{equation*}
\mathrm{P}_{n}(\beta)=\rho_{n} \gamma_{n} \tag{3.11}
\end{equation*}
$$

since $\mathrm{P}_{n}\left(\beta_{n}\right)=0$, where

$$
\begin{equation*}
\gamma_{n}=f_{1}+f_{2}\left(2 \beta_{n}+\rho_{n}\right)+\ldots+f_{l}\left(\binom{l}{1} \beta_{n}^{l-1}+\ldots+\binom{l}{l} \rho_{n}^{l-1}\right) . \tag{3.12}
\end{equation*}
$$

Using similar ideas as in [6], we obtain the inequalities

$$
\begin{equation*}
\left|c_{n}^{\{j\}}\right|_{p} \leq \frac{M^{*}}{\left(\rho^{*}\right)^{n}} \quad(j=1, \ldots, c)(n=0,1, \ldots) \tag{3.13}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left|\rho_{n}\right|_{p} \leq M *\left(\frac{|\bar{\alpha}|_{p}}{\rho^{*}}\right)^{s_{n}} \quad(n=1,2, \ldots), \tag{3.14}
\end{equation*}
$$

where $M^{*}, \rho^{*}\left(\frac{|\bar{\alpha}|_{p}}{\rho^{*}}<1\right)$ are sufficiently large numbers.

Since $\lim _{n \rightarrow \infty}\left|\beta_{n}\right|_{p}=|\beta|_{p}$, there is exits a number $M>0$ such that

$$
\begin{equation*}
\left|\beta_{n}\right|_{p} \leq M . \tag{3.15}
\end{equation*}
$$

Then from (3.12),(3.14) and (3.15) we have

$$
\begin{align*}
\left|\gamma_{n}\right|_{p} & =\left|f_{1}+f_{2}\left(2 \beta_{n}+\rho_{n}\right)+\ldots+f_{l}\left(\binom{l}{1} \beta_{n}^{l-1}+\ldots+\binom{l}{l} \rho_{n}^{l-1}\right)\right|_{p} \\
& \leq c_{1} \quad(n=0,1,2, \ldots), \tag{3.16}
\end{align*}
$$

where $c_{1}(>1)$ is a sufficiently large number. Hence from (3.11), (3.14) and (3.16), we write

$$
\begin{equation*}
\left|\mathrm{P}_{n}(\beta)\right|_{p}=\left|\rho_{n}\right|_{p}\left|\gamma_{n}\right|_{p} \leq \frac{c_{1} M^{*}}{\left(\frac{\rho^{*}}{|\bar{\alpha}|_{p}}\right)^{s_{n}}}=\frac{c_{1} M^{*}}{c_{2}^{s_{n}}} \quad(n=0,1, \ldots), \tag{3.17}
\end{equation*}
$$

where $c_{2}=\frac{\rho^{*}}{|\bar{\alpha}|_{p}}\left(c_{2}>1\right)$. Since the polynomial $\mathrm{P}_{n}(x)$ is the minimal polynomial of the algebraic number β_{n}, it is $H\left(\beta_{n}\right)=H\left(\mathrm{P}_{n}\right)$. Putting $\frac{\log c_{2}}{\log c_{0}}=c_{3}(>0), c_{1} M *=c_{4}$, we have from (3.10) and (3.17)

$$
\begin{equation*}
\left|\mathrm{P}_{n}(\beta)\right|_{p} \leq \frac{c_{4}}{\left(H\left(\beta_{n}\right)\right)^{\frac{s_{n}}{r_{n}}} c_{3}} \quad\left(n>N_{0}\right) \tag{3.18}
\end{equation*}
$$

From (3.3), we see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S_{n}}{r_{n}} c_{3}=+\infty \tag{3.19}
\end{equation*}
$$

4°) Now, we will examine the sequence of height $\left\{H\left(\mathrm{P}_{n}\right)\right\}$ and the sequence of degree $\left\{d\left(\mathrm{P}_{n}\right)\right\}$ of the polynomials P_{n}. These sequences provide the following conditions A, B, C.
А) $\left\{H\left(\mathrm{P}_{n}\right)\right\}$ is not bounded from above.

Proof. Firstly, the sequence $\left\{\beta_{n}\right\}$ contains infinitely many different elements (see [6]). Now let's show that the sequence $\left\{H\left(\mathrm{P}_{n}\right)\right\}$ is not bounded from above: If $\left\{H\left(\mathrm{P}_{n}\right)\right\}$ were bounded from above, then $\left\{\mathrm{P}_{n}\right\}$ would contain only finitely many different elements since the degrees of the polynomials P_{n} are bounded from above with m. Therefore the sequence $\left\{\beta_{n}\right\}$ corresponding to the roots of the polynomials P_{n} would contain finitely many different elements. But the sequence $\left\{\beta_{n}\right\}$ contains infinitely many different elements; hence the sequence $\left\{H\left(\mathrm{P}_{n}\right)\right\}$ is not bounded from above.
B) Starting from a suitable $n,\left\{d\left(\beta_{n}\right)\right\}$ (or $\left\{d\left(\beta_{n}\right)\right\}$) is a constant sequence.

Proof. As in [6], there are two different cases:
a) Let $d\left(\mathrm{P}_{n}\right)=1$ (or $d\left(\beta_{n}\right)=1$) as starting from a suitable n. Then the condition B) is satisfied.
b) Let $d\left(\mathrm{P}_{n}\right)>1$ (or $d\left(\beta_{n}\right)>1$) for infinitely many integers n. Using similar ideas as in [6], if $\beta_{n}^{\{i\}} \neq \beta_{n}^{\{j\}}$ for a fixed pair $(i, j)(i \neq j)$ and for any sufficiently large n, then $\beta_{n+1}^{\{i\}} \neq \beta_{n+1}^{\{i\}}$. In this case we have $\beta_{n}^{\{i\}} \neq \beta_{n}^{\{j\}}$ for all n which are larger than a suitable n. This is exactly valid, because, $\beta_{n}^{\{i\}} \neq \beta_{n}^{\{j\}}$ is satisfied for at least a pair (i, j) and for infinitely many integers n from the hypothesis b). This can also be provided for all pairs (i, j). Hence we have

$$
d\left(\beta_{N_{1}}\right) \leq d\left(\beta_{N_{1}+1}\right) \leq d\left(\beta_{N_{1}+2}\right) \leq \ldots
$$

for a sufficiently large N_{1}. Since $d\left(\beta_{n}\right) \leq g$, for a sufficiently large N_{2} we can write that

$$
d\left(\beta_{N_{2}}\right)=d\left(\beta_{N_{2}+1}\right)=d\left(\beta_{N_{2}+2}\right)=\ldots
$$

such that $N_{2} \geq N_{1}$. If the common value is shown by t, then

$$
\begin{equation*}
d\left(\beta_{n}\right)=t, \quad n \geq N_{2} . \tag{3.20}
\end{equation*}
$$

C) We can choose a subsequence of the sequence $\left\{\mathrm{P}_{n}\right\}$ such that
0) $\mathrm{P}_{n_{j}}(\beta) \neq 0 \quad(j=1,2, \ldots)$.

1) $\left\{H\left(\mathrm{P}_{n_{j}}\right)\right\}$ is the monotone increasing sequence of natural numbers, hence it is diverges to $+\infty$.
2) $\left\{d\left(\mathrm{P}_{n_{j}}\right)\right\}$ is a constant sequence.

Proof. The proof is obtained from the properties A) and B); the constant value of $d\left(\mathrm{P}_{n_{j}}\right)$ is t.

Also, the sequence $\left\{H\left(\beta_{n_{j}}\right)\right\}$, which is the sequence of the heights of the algebraic numbers $\beta_{n_{j}}$ corresponding to the polynomials $\mathrm{P}_{n_{j}}$, is the monotone increasing sequence which is diverges to $+\infty$: Since $\left\{H\left(\mathrm{P}_{n_{j}}\right)\right\}$ is the monotone increasing sequence of natural numbers, which is diverges to $+\infty, H\left(\mathrm{P}_{n_{k}}\right) \neq H\left(\mathrm{P}_{n_{l}}\right)$ for $k \neq l$, and since the polynomials $P_{n_{j}}$ are the irreducible polynomials, the polynomials $P_{n_{j}}$ are different from each other. Since $H\left(\beta_{n_{j}}\right)=H\left(\mathrm{P}_{n_{j}}\right)$, it is $H\left(\beta_{n_{k}}\right) \neq H\left(\beta_{n_{l}}\right)$ (for $k \neq l$), and the algebraic numbers $\beta_{n_{j}}$ are different from each other. Hence the sequence $\left\{H\left(\beta_{n_{j}}\right)\right\}$ is the monotone increasing sequence which is diverges to $+\infty$.
$\mathbf{5}^{\circ}$) We shall show that the number β is a U-number. To show this, we will use the subsequence $\left\{\mathrm{P}_{n_{j}}\right\}$ defined in C).

Putting $H_{n_{j}}=H\left(\mathrm{P}_{n_{j}}\right)$, from C)-0) and (3.18) we can write

$$
\begin{align*}
& w_{t}\left(H_{n_{j}}, \beta\right):= \min _{\substack{H(\mathrm{P}) \leq H_{n_{j}} \\
\operatorname{deg}(\mathrm{P}) \leq t \\
\mathrm{P}(\beta) \neq 0}}\left\{|\mathrm{P}(\beta)|_{p}\right\} \\
& \leq\left|\mathrm{P}_{n_{j}}(\beta)\right|_{p}<\frac{1}{H_{n_{n_{j}}}^{\frac{s_{n_{j}}}{n_{j}}}}, \quad n_{j}>\max \left(N_{0}, N_{2}\right) . \tag{3.21}
\end{align*}
$$

We have from (3.21)

$$
\begin{equation*}
\frac{-\log \left(w_{t}\left(H_{n_{j}}, \beta\right)\right)}{\log H_{n_{j}}}>\frac{s_{n_{j}}}{r_{n_{j}}} c_{3} \tag{3.22}
\end{equation*}
$$

and from (3.19) and (3.22)

$$
\begin{equation*}
\lim _{n_{j} \rightarrow \infty} \frac{-\log \left(w_{t}\left(H_{n_{j}}, \beta\right)\right)}{\log H_{n_{j}}}=+\infty . \tag{3.23}
\end{equation*}
$$

Finally, we obtain

$$
\begin{equation*}
w_{t}(\beta)=\varlimsup_{H_{n_{j}} \rightarrow \infty} \frac{-\log \left(w_{t}\left(H_{n_{j}}, \beta\right)\right)}{\log H_{n_{j}}}=+\infty . \tag{3.24}
\end{equation*}
$$

Thus it follows from the definition of $\mu(\beta)$ that

$$
\begin{equation*}
\mu(\beta) \leq t \tag{3.25}
\end{equation*}
$$

This shows that the number β is a U-number.
6°) Now we will show that $\mu(\beta)=t$.
a) If $t=1$, then $\mu(\beta)=1$ from (3.25). In this case $\beta \in U_{1}$.
b) If $t>1$, then we shall show that

$$
\begin{equation*}
w_{t-1}(\beta)<+\infty . \tag{3.26}
\end{equation*}
$$

Consider the polynomial

$$
\begin{equation*}
\mathrm{B}(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{\gamma} x^{\gamma} ; \quad 1 \leq \gamma<t, b_{i} \in \mathbb{Z}(i=0,1, \ldots, \gamma) . \tag{3.27}
\end{equation*}
$$

For $x=\beta$, we have from (3.7), (3.8) and (3.9)

$$
\begin{align*}
\mathrm{B}(\beta) & =\mathrm{B}\left(\beta_{l}\right)+\rho_{l} r_{l} \\
r_{l} & \left.=b_{1}+b_{2}\left(2 \beta_{l}+\rho_{l}\right)+\ldots+b_{\gamma}\binom{\gamma}{1} \beta_{l}^{\gamma-1}+\ldots+\rho_{l}^{\gamma-1}\right) . \tag{3.28}
\end{align*}
$$

By (3.4), we have the relation

$$
\begin{equation*}
\frac{r_{n}}{s_{n-1}}<\tau_{1} \tag{3.4'}
\end{equation*}
$$

for all sufficiently large n, where $\tau_{1}>\tau$.

The degree of β_{l} for $l \geq N_{2}$ is exactly t. Therefore, we can use Lemma, and so we obtain

$$
\begin{equation*}
\left|\mathrm{B}\left(\beta_{l}\right)\right|_{p} \geq \frac{c_{5}}{H\left(\beta_{l}\right)^{l-1} H(\mathrm{~B})^{t}} \tag{3.29}
\end{equation*}
$$

for $l>N_{2}$, where c_{5} is a positive constant independent of the polynomial B. For $l>\max \left(N_{0}, N_{2}\right)$, we obtain from (3.10) and (3.29)

$$
\left|\mathrm{B}\left(\beta_{l}\right)\right|_{p} \geq \frac{c_{5}}{c_{0}^{(t-1) r_{l}} H(\mathrm{~B})^{t}}
$$

and from (3.4')

$$
\begin{equation*}
\left|\mathrm{B}\left(\beta_{l}\right)\right|_{p} \geq \frac{c_{5}}{c_{0}^{(t-1) s_{l-l}}{ }^{1} H(\mathrm{~B})^{t}} \tag{3.30}
\end{equation*}
$$

since $c_{0}>1$. We see that from (3.14)

$$
\begin{equation*}
\left|\rho_{l}\right|_{p}=\left|\sum_{v=s_{l}}^{\infty} c_{v}\left(\frac{b}{a}\right)^{v}\right|_{p} \leq M *\left(\frac{|\bar{\alpha}|_{p}}{\rho^{*}}\right)^{s_{l}} \quad(l=1,2, \ldots) \tag{3.31}
\end{equation*}
$$

and from (3.28)

$$
\left.\left|r_{l}\right|_{p}=\left\lvert\, b_{1}+b_{2}\left(2 \beta_{l}+\rho_{l}\right)+\ldots+b_{\gamma}\binom{\gamma}{1} \beta_{l}^{\gamma-1}+\ldots+\rho_{l}^{\gamma-1}\right.\right)\left.\right|_{p} \leq c_{6},
$$

and so we have

$$
\begin{equation*}
\left|\rho_{l} r_{l}\right|_{p} \leq \frac{M * c_{6}}{\left(\frac{\rho^{*}}{|\bar{\alpha}|_{p}}\right)^{s_{l}}}=\frac{c_{7}}{c_{2}^{s_{l}}} \quad(l=1,2, \ldots) \tag{3.32}
\end{equation*}
$$

where $c_{7}=M * c_{6}$. Hence we obtain

$$
\begin{equation*}
\left|\rho_{l} r_{l}\right|_{p} \leq \frac{c_{7}}{c_{0}^{s_{c_{3}}}} \quad(l=1,2, \ldots) \tag{3.33}
\end{equation*}
$$

where $c_{3}=\frac{\log c_{2}}{\log c_{0}}\left(c_{3}>0\right)$.

Let's take a number λ such that

$$
\begin{equation*}
\lambda>1 \tag{3.34}
\end{equation*}
$$

(the value of λ will be announced later). Since $s_{n-1} \leq r_{n}$, we get from (3.3)

$$
\lim _{n \rightarrow+\infty} \frac{s_{n}}{s_{n-1}}=+\infty
$$

Therefore, for the number μ which is chosen such that

$$
\begin{equation*}
\mu>\lambda \tag{3.35}
\end{equation*}
$$

there exists $N_{3} \in \mathbb{N}$ such that

$$
\begin{equation*}
\frac{s_{n}}{s_{n-1}}>\mu \tag{3.36}
\end{equation*}
$$

for $n>N_{3}$ (the value of μ will be announced later).

Now let's consider the inequality

$$
\begin{equation*}
c_{0}^{s_{n-1}} \leq H(\mathrm{~B})<c_{0}^{s_{n}} \tag{3.37}
\end{equation*}
$$

for any polynomial B satisfying the relation

$$
\begin{equation*}
H(\mathrm{~B})>H_{0} \tag{3.38}
\end{equation*}
$$

such that

$$
\begin{equation*}
H_{0}=\max \left(c_{0}^{s_{N_{0}}}, c_{0}^{s_{N_{2}}}, c_{0}^{s_{N_{3}}},\left(\frac{2 c_{7}}{c_{5}}\right)^{1 / c_{3}}\right) \tag{3.39}
\end{equation*}
$$

There is exactly only one n satisfying the inequality (3.37) (see [6]).

From (3.37), (3.38) and (3.39), we have

$$
\begin{equation*}
n>\max \left(N_{0}, N_{2}, N_{3}\right) . \tag{3.40}
\end{equation*}
$$

We see that from (3.35), (3.36) and (3.40)

$$
\begin{equation*}
S_{n-1}<\frac{s_{n}}{\lambda} \tag{3.41}
\end{equation*}
$$

and from (3.34)

$$
\begin{equation*}
\frac{s_{n}}{\lambda}<s_{n} . \tag{3.42}
\end{equation*}
$$

In this case, the interval $\left[c_{0}^{s_{n-1}}, c_{0}^{s_{n}}\right)$ can be divided into two subintervals such that these subintervals are $\left[c_{0}^{s_{n-1}}, c_{0}^{s_{n}} / \lambda\right)$ and $\left[c_{0}^{s_{n} / 2}, c_{0}^{s_{n}}\right)$. Then $H(\mathrm{~B})$ satisfying the relation (3.37) belong to one of the following two subintervals:
I) $c_{0}^{s_{n-1}} \leq H(\mathrm{~B})<c_{0}^{s_{n} / \lambda}$,
II) $c_{0}^{s_{n}} / \lambda \leq H$ (B) $<c_{0}^{s_{n}}$.

Case I) If we write the relation (3.30) with l replaced by n, then we get

$$
\begin{equation*}
\left|\mathrm{B}\left(\beta_{n}\right)\right|_{p} \geq \frac{c_{5}}{H(\mathrm{~B})^{t+\tau_{1}(t-1)}} \tag{3.43}
\end{equation*}
$$

and we have from (3.33)

$$
\left|\rho_{n} r_{n}\right|_{p}<\frac{c_{7}}{H(\mathrm{~B})^{\lambda c_{3}}} .
$$

If we choose

$$
\begin{equation*}
\lambda:=\frac{t+\tau_{1}(t-1)}{c_{3}}+1, \tag{3.44}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|\rho_{n} r_{n}\right|_{p}<\frac{c_{7}}{H(\mathrm{~B})^{t+\tau_{1}(t-1)+c_{3}}} . \tag{3.45}
\end{equation*}
$$

From (3.38) and (3.39), we have

$$
\begin{equation*}
H(\mathrm{~B})>\left(\frac{2 c_{7}}{c_{5}}\right)^{1 / c_{3}} \Rightarrow c_{5}-\frac{c_{7}}{H(\mathrm{~B})^{c_{3}}}>\frac{c_{5}}{2}>0 \tag{3.46}
\end{equation*}
$$

Therefore we obtain

$$
\begin{equation*}
\frac{c_{5}}{H(\mathrm{~B})^{++\tau_{1}(t-1)}}>\frac{c_{7}}{H(\mathrm{~B})^{++\tau_{1}(t-1)+c_{3}}} . \tag{3.47}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|\mathrm{B}\left(\beta_{n}\right)\right|_{p}>\left|\rho_{n} r_{n}\right|_{p} . \tag{3.48}
\end{equation*}
$$

Hence we have from (3.28) and (3.48)

$$
\begin{equation*}
|\mathrm{B}(\beta)|_{p}=\left|\mathrm{B}\left(\beta_{n}\right)\right|_{p} \geq \frac{c_{5}}{H(\mathrm{~B})^{t+\tau_{1}(t-1)}} . \tag{3.49}
\end{equation*}
$$

Case II) If we write the relation (3.30) with l replaced by $n+1$, then we get

$$
\begin{equation*}
\left|\mathrm{B}\left(\beta_{n+1}\right)\right|_{p} \geq \frac{c_{5}}{H(\mathrm{~B})^{t+\lambda \tau_{1}(t-1)}}, \tag{3.50}
\end{equation*}
$$

and from (3.33) and (3.36), we obtain

$$
\begin{equation*}
\left|\rho_{n+1} r_{n+1}\right|_{p} \leq \frac{c_{7}}{c_{0}^{s_{n} \mu c_{3}}}<\frac{c_{7}}{H(\mathrm{~B})^{\mu c_{3}}} \tag{3.51}
\end{equation*}
$$

If we choose

$$
\begin{equation*}
\mu:=\frac{t+\lambda \tau_{1}(t-1)}{c_{3}}+1, \tag{3.52}
\end{equation*}
$$

then from (3.51)

$$
\begin{equation*}
\left|\rho_{n+1} r_{n+1}\right|_{p}<\frac{c_{7}}{H(\mathrm{~B})^{t+\lambda \tau_{1}(t-1)+c_{3}}} . \tag{3.53}
\end{equation*}
$$

Therefore we obtain from (3.46)

$$
\begin{equation*}
\frac{c_{5}}{H(\mathrm{~B})^{t+\lambda \tau_{1}(t-1)}}>\frac{c_{7}}{H(\mathrm{~B})^{t+\lambda \tau_{1}(t-1)+c_{3}}} . \tag{3.54}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|\mathrm{B}\left(\beta_{n+1}\right)\right|_{p}>\left|\rho_{n+1} r_{n+1}\right|_{p} . \tag{3.55}
\end{equation*}
$$

Hence we have from (3.28) and (3.55)

$$
\begin{equation*}
|\mathrm{B}(\beta)|_{p}=\left|\mathrm{B}\left(\beta_{n+1}\right)\right|_{p} \geq \frac{c_{5}}{H(\mathrm{~B})^{t+\lambda \tau_{1}(t-1)}} . \tag{3.56}
\end{equation*}
$$

The inequality (3.56) is also satisfied in case I), since $t+\lambda \tau_{1}(t-1)>t+\tau_{1}(t-1)$ from (3.34). Putting $x=t+\lambda \tau_{1}(t-1)$ in both cases, we have

$$
\begin{equation*}
|\mathrm{B}(\beta)|_{p} \geq \frac{c_{5}}{H(\mathrm{~B})^{x}} ; H(\mathrm{~B})>H_{0} . \tag{3.57}
\end{equation*}
$$

From 5°), we have

$$
\begin{equation*}
w_{t-1}\left(H_{0}, \beta\right)=\min _{\substack{\gamma \leq t-1 \\ H\left(\mathrm{~B} \leq H_{0} \\ \mathrm{~B}(\beta) \neq 0\right.}}\left\{|\mathrm{B}(\beta)|_{p}\right\} \leq|\mathrm{B}(\beta)|_{p} \tag{3.58}
\end{equation*}
$$

for all polynomials B with integer coefficients which have $\gamma \leq t-1$ and $H(\mathrm{~B}) \leq H_{0}$. Hence we can write

$$
\begin{equation*}
|\mathrm{B}(\beta)|_{p} \geq \frac{w_{t-1}\left(H_{0}, \beta\right)}{H(\mathrm{~B})^{x}} ; \quad \gamma \leq t-1, \quad H(\mathrm{~B}) \leq H_{0} . \tag{3.59}
\end{equation*}
$$

Putting $c_{8}=\min \left(c_{5}, w_{t-1}\left(H_{0}, \beta\right)\right)$, we obtain from (3.57), (3.59)

$$
\begin{equation*}
|\mathrm{B}(\beta)|_{p} \geq \frac{c_{8}}{H(\mathrm{~B})^{x}} \tag{3.60}
\end{equation*}
$$

for $\gamma \leq t-1$ and $H(\mathrm{~B})=1,2, \ldots$. We see from (3.60) that

$$
\begin{equation*}
|\mathrm{B}(\beta)|_{p} \geq \frac{c_{8}}{H(\mathrm{~B})^{x}} \geq \frac{c_{8}}{H^{x}} \tag{3.61}
\end{equation*}
$$

for all polynomials B which have $\gamma \leq t-1$ and $H(\mathrm{~B}) \leq H$ (where H is any positive integer). Thus

$$
\begin{equation*}
w_{t-1}(H, \beta) \geq \frac{c_{8}}{H^{x}} \quad \text { for all } H \tag{3.62}
\end{equation*}
$$

From (3.62), we obtain

$$
\begin{equation*}
\frac{-\log \left(w_{t-1}(H, \beta)\right)}{\log H} \leq x-\frac{\log c_{8}}{\log H} \tag{3.63}
\end{equation*}
$$

and so

$$
\begin{equation*}
w_{t-1}(\beta)=\varlimsup_{H \rightarrow \infty} \frac{-\log \left(w_{t-1}(H, \beta)\right)}{\log H} \leq x . \tag{3.64}
\end{equation*}
$$

Therefore it follows from definition of $\mu(\beta)$ that

$$
\begin{equation*}
\mu(\beta)>t-1, \quad \text { that is } \quad \mu(\beta) \geq t \tag{3.65}
\end{equation*}
$$

Finally, from (3.25) and (3.65), we have

$$
\begin{equation*}
\mu(\beta)=t, \quad t>1 \tag{3.66}
\end{equation*}
$$

In other words, $\beta \in U_{t}$. Hence we obtain $\beta \in U_{t}$ in both of the cases 6) a) and b).

REFERENCES

[1] Cohn, H., 1946, Note on almost algebraic numbers, Bull. Amer. Math. Soc. 52, 1042-1045.
[2] Mahler, K., 1935, Über eine Klassen-Einteilung der p-Adischen Zahlen, Mathematica Leiden, 3, 177-185.
[3] Schneider, T., 1957, Einführung in die Transzendenten Zahlen, SpringerVerlag, Berlin Göttingen Heidelberg.
[4] Zeren, B. M., 1980, Über einige komplexe und p-adische Lückenreihen mit Werte aus den Mahlerschen Unterklassen U_{m}, İstanbul Üniv. Fen Fak. Mec. Seri A, 45, 89-130.
[5] Zeren, B. M., 1988, Über die natur der transzendenz der Werte einer art verallgemeinerter Lückenreihen mit algebraischen Koeffizienten für algebraische Argument, Bull. Tech. Univ. Istanbul, 41, 569-588.
[6] Çalışkan, F., 2010, On Transcendence of Values of Some Generalized Lacunary Power Series With Algebraic Coefficients for Some Algebraic Arguments in p-Adic Domain I, İstanbul Üniv Fen Fak. Mat. Fiz. ve Astr. Dergisi, New Series, Vol. 3, (2008-2009), 33-58.

Fatma ÇALIŞKAN

Istanbul University, Faculty of Science, Department of Mathematics, 34134 Vezneciler, Istanbul, Turkey, E-mail: fatmac@istanbul.edu.tr

[^0]: - I would like to thank Prof. Dr. Bedriye M. ZEREN for her valuable comments and suggestions.
 ${ }^{1}$ Istanbul University, Faculty of Science, Department of Mathematics, Vezneciler, Istanbul, Turkey, e-mail: fatmac@istanbul.edu.tr.

[^1]: ${ }^{2}$ See [2].

[^2]: ${ }^{3}$ See [2].
 ${ }^{4}$ See [2].

