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1. INTRODUCTION 

In this study, it is proved that the values of generalized lacunary power series with 
algebraic coefficients for some algebraic arguments belong to the p -adic mU -subclass 
( 1)m≥ . This theorem was proved by using Koksma classification in Çalışkan’s [6] 
paper, but in present paper this theorem is proved by using Mahler classification. So 
Zeren’s [5] paper is transferred to p -adic domain by using Mahler classification. In 
particular, this article benefited greatly from the papers of Cohn [1] and Zeren [4]. 
 
Basic information about the subject of theorem is given in Schneider [3]. In here, it is 
only expressed Mahler’s classification in p -adic domain, which was introduced by 
Mahler [2]. 
 

2. PRELIMINARIES 

` , ] , _  and p  denotes natural numbers, integer numbers, rational numbers and a 

given prime number respectively. .
p
 and p_  denotes p -adic valuation on _  and the 

field of p -adic numbers respectively. 
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2.1. Mahler’s Classification in p_
2 

Let n  be a natural number. The height of the polynomial  

1 0( ) [ ], 0n
n nP x a x a x a x a= + + + ∈ ≠… ] , 

denoted by ( )H P , is the form 

( )1 0( ) max , , ,nH P a a a= … . 

The degree of the polynomial ( )P x  is denoted with deg ( )P . Let ξ  be an element of 

p_ . For given positive integer n  and real number ( 1 )H ≥ , we define the quantity 
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It is clear that  

0 ( , ) 1nw H ξ< ≤ , 

since ( ) 1
p

P ξ =  for ( ) 1P x = . ( , )nw H ξ  is a non-increasing function of both n  and 

H . Then we set  
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ξ
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( )nw ξ  as a function of n  is non-decreasing. The inequalities 0 ( )nw ξ≤ ≤+∞  and 
0 ( )w ξ≤ ≤+∞  ( 1n≥ , 1H ≥ ) hold. 

 

If ( )nw ξ =+ ∞  for some integers n , let ( ) ( )μ ξ μ=  be the smallest of such integers, 

and if ( )nw ξ < +∞  for every n , put ( )μ ξ =+ ∞ . The two quantities ( )μ ξ , ( )w ξ  are 
never finite simultaneously. Then the number ξ  is called an 
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A -number if ( ) 0, ( )w ξ μ ξ= = +∞ , 

                                         S -number if 0 ( ) , ( )w ξ μ ξ< <+∞ = +∞ , 

                                         T -number if ( ) , ( )w ξ μ ξ= +∞ = +∞ , 

                                         U -number if ( ) , ( )w ξ μ ξ= +∞ < +∞ . 

 

All p -adic numbers are distributed into the four classes A , S , T , U . With this 
classification: 

1) A -numbers are exactly algebraic numbers3. 

2) If two p -adic numbers are algebraically dependent, then they belong to the same 
class4. 

 

Let ξ  be a U -number such that ( ) mμ ξ = , and let mU  denotes the set of all such 

numbers. For every natural m , mU -class is a subclass of U , and m nU U∩ =∅  if m n≠ . 

Therefore we have the partition 
1 mm

U U
∞

=
= ∪ . 

 

Let ξ  be a p -adic number and let m  be a positive integer. The number ξ  is called a 

mU -number if ( ) mμ ξ = , and ( ) mμ ξ =  if the following conditions are satisfied: 
 
i) For every 0ω > , if there are infinitely many polynomials P  of degree m  with 
integral coefficients such that 

0 ( ) ( )
p

P c H P ωξ −< ≤ , 

then 

                                                            
3 See [2]. 
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( ) mμ ξ ≤      (that is 1 2 mU U Uξ∈ ∪ ∪ ∪… ) 

where the positive constant c  is independent of ( )H P . 

ii) If there exists constants 0c′>  and s  depending only on ξ  and m  such that the 
relation 

( ) ( ) s
p

P c H Pξ −′>  

holds for every polynomial P  of degree m<  with integral coefficients, then  

( ) mμ ξ ≥      (that is 1 2 1mU U Uξ −∉ ∪ ∪ ∪… ). 

 
Let α  be a algebraic number. The height of the p-adic number α , denoted by ( )H α , 
is the height of its minimal polynomial over ] . The degree of the p-adic number α  
denoted by deg ( )α  is the degree of its minimal polynomial. 
 
For the proof of main result, we shall need the following lemma. 
 

Lemma Let ( )P x  be a polynomial of degree m  with integral coefficients and let α  be 
a algebraic number of degree n  with ( ) 0P α ≠ . Then the relation  

( 1)

( )
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n t

m np
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n m H H P

α
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+

 

holds, where , min (0, )h
p

p t hα −= = , and ( ) , ( )H P H α  are the height of ( )P x  

and the height of the algebraic number α  respectively.  

Proof. See [2]. 

 

3. MAIN RESULT 

Theorem Let { }nr , { }ns  be two infinite sequence of integers satisfying 

0 1 1 2 2 3 30 s r s r s r s≤ ≤ < ≤ < ≤ < ≤… . 

Let 
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be a generalized lacunary power series such that 
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where the coefficients hc  are algebraic numbers in a constant number field ( )θΚ =Κ  

such that [ : ] cΚ =_ , and 0hc =  if n nr h s< < , but 0, 0
n nr sc c≠ ≠  ( 1,2, )n= … , and let 

{ }lim ( 1, , )j
i ii p

c j c
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<+∞ = … ,        (3.2) 

where { } ( 1, , )j
ic j c= …  denote the conjugates of ic  over Κ . Furthermore, suppose 

that the following conditions hold: 
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where va  is a suitable natural number such that v va c  is an algebraic integer and 

[ ]0 , ,v vA a a= …  is the least common multiple of 0 , , va a… . Let α  be an algebraic 

numbers of degree m  satisfying 0
p

Rα< <  such that ( )max i

pp
α α=  and 

{ }1

1min
lim

c

j j
i ii p

R
c=

→∞

= . Then ( ) tF Uα ∈  for z α= , where t  is the maximum of the 



degrees of the partial sums 
1

0

( ) ( )
n

n k
k

F Pα α
−

=

=∑  and [ ]( , ): :t g c mθ α≤ = ≤_ _ . Also, 

assume that ( ) 0nP α ≠  for infinitely many integers n . 

Proof. 1°) The radius of convergence of (3.1) is R≥  (see [6]). 

 

2°) Let’s take ( )F α β= . We can write  

n nβ β ρ= + ,         (3.7) 

such that 
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Then we obtain an upper bound for the height ( )nH β  of nβ  such that 

     0 0( ) ( )nr
nH c n Nβ ≤ > ,      (3.10) 

where 0 ( 1)c >  and 0N  are sufficiently large numbers (see [6]). 

 

3°) Let the minimal polynomial of the algebraic number nβ  be 

2
0 1 2( ) ; , ( 0,1, , )l

n l ix f f x f x f x l m f i lΡ = + + + + ≤ ∈ =… ] … . 

Now we shall give an upper bound for ( )n p
βΡ . 

 

From (3.7), we have 

2
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l
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n n n n
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and so 



( )n n nβ ρ γΡ =        (3.11) 

since ( ) 0n nβΡ = , where 

    1 1
1 2 ( 2 ) ( ).
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Using similar ideas as in [6], we obtain the inequalities  
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and so 

** ( 1, 2, )

ns

p
n p

M n
α

ρ
ρ

⎛ ⎞
⎜ ⎟≤ =⎜ ⎟⎜ ⎟
⎝ ⎠

… ,     (3.14) 
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ρ
<  are sufficiently large numbers. 

 

Since lim n p pn
β β

→∞
= , there is exits a number 0M >  such that 

n p
Mβ ≤ .       (3.15) 

Then from (3.12),(3.14) and (3.15) we have 
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where 1 ( 1)c >  is a sufficiently large number. Hence from (3.11), (3.14) and (3.16), we 
write 
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where 
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algebraic number nβ , it is ( ( )n nH Hβ )= Ρ . Putting 2
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From (3.3), we see that 
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4°) Now, we will examine the sequence of height { }( )nH Ρ  and the sequence of degree 

{ }( )nd Ρ  of the polynomials nΡ . These sequences provide the following conditions A, 

B, C. 

A) { }( )nH Ρ  is not bounded from above. 

Proof. Firstly, the sequence { }nβ  contains infinitely many different elements (see [6]). 

Now let’s show that the sequence { }( )nH Ρ  is not bounded from above: If { }( )nH Ρ  

were bounded from above, then { }nΡ  would contain only finitely many different 

elements since the degrees of the polynomials nΡ  are bounded from above with m . 

Therefore the sequence { }nβ  corresponding to the roots of the polynomials nΡ  would 

contain finitely many different elements. But the sequence { }nβ  contains infinitely 

many different elements; hence the sequence { }( )nH Ρ is not bounded from above.  



B) Starting from a suitable n , { }( )nd β  (or { }( )nd β ) is a constant sequence. 

Proof. As in [6], there are two different cases: 

a) Let ( ) 1nd Ρ =  (or ( ) 1nd β =  ) as starting from a suitable n . Then the condition B) is 
satisfied.  

 

b) Let ( ) 1nd Ρ >  (or ( ) 1nd β > ) for infinitely many integers n . Using similar ideas as in 

[6], if { } { }i j
n nβ β≠  for a fixed pair ( , )i j  ( i j≠ ) and for any sufficiently large n , then 

{ } { }
1 1

i j
n nβ β+ +≠ . In this case we have { } { }i j

n nβ β≠  for all n  which are larger than a suitable 

n . This is exactly valid, because, { } { }i j
n nβ β≠  is satisfied for at least a pair ( , )i j  and for 

infinitely many integers n  from the hypothesis b). This can also be provided for all 
pairs ( , )i j . Hence we have  

1 1 11 2( ) ( ) ( )N N Nd d dβ β β+ +≤ ≤ ≤…  

for a sufficiently large 1N . Since ( )nd gβ ≤ , for a sufficiently large 2N  we can write 
that 

2 2 21 2( ) ( ) ( )N N Nd d dβ β β+ += = =…  

such that 2 1N N≥ . If the common value is shown by t , then 

2( ) ,nd t n Nβ = ≥ .      (3.20) 

 

C) We can choose a subsequence of the sequence { }nΡ  such that 

0) ( ) 0 ( 1, 2, )
jn jβΡ ≠ = … . 

1) { }( )
jnH Ρ  is the monotone increasing sequence of natural numbers, hence it is 

diverges to +∞ .  

2) { }( )
jnd Ρ  is a constant sequence. 



Proof. The proof is obtained from the properties A) and B); the constant value of 
( )

jnd Ρ  is t . 

 

Also, the sequence { }( )
jnH β , which is the sequence of the heights of the algebraic 

numbers 
jnβ  corresponding to the polynomials 

jnΡ , is the monotone increasing 

sequence which is diverges to +∞ : Since { }( )
jnH Ρ  is the monotone increasing 

sequence of natural numbers, which is diverges to +∞ , ( ) ( )
k ln nH HΡ ≠ Ρ  for k l≠ , and 

since the polynomials 
jnΡ  are the irreducible polynomials, the polynomials 

jnΡ  are 

different from each other. Since ( ) ( )
j jn nH Hβ = Ρ , it is ( ) ( )

k ln nH Hβ β≠  (for k l≠ ), 

and the algebraic numbers 
jnβ are different from each other. Hence the sequence 

{ }( )
jnH β  is the monotone increasing sequence which is diverges to +∞ . 

 

5°) We shall show that the number β  is a U -number. To show this, we will use the 

subsequence { }jnΡ  defined in C).  

 

Putting ( )
j jn nH H= Ρ , from C)-0) and (3.18) we can write 
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Thus it follows from the definition of ( )μ β  that 

( ) tμ β ≤ .       (3.25) 

This shows that the number β  is a U -number. 

 

6°) Now we will show that ( ) tμ β = .  

a) If 1t = , then ( ) 1μ β =  from (3.25). In this case 1Uβ∈ . 

b) If 1t > , then we shall show that 
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For x β= , we have from (3.7), (3.8) and (3.9) 
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By (3.4), we have the relation  
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for all sufficiently large n , where 1τ τ> . 

 

The degree of lβ  for 2l N≥  is exactly t . Therefore, we can use Lemma, and so we 
obtain 
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for 2l N> , where 5c  is a positive constant independent of the polynomial Β . For 
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and from (3.4 )′  
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Let’s take a number λ  such that 

1λ >         (3.34) 

(the value of λ  will be announced later). Since 1n ns r− ≤ , we get from (3.3) 
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Therefore, for the number μ  which is chosen such that 
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there exists 3N ∈`  such that 
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Now let’s consider the inequality  

 1
0 0( )n ns sc H c− ≤ Β <        (3.37) 

for any polynomial Β  satisfying the relation  
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There is exactly only one n  satisfying the inequality (3.37) (see [6]). 

 

From (3.37), (3.38) and (3.39), we have 
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Case I) If we write the relation (3.30) with l  replaced by n , then we get 
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If we choose 

   1

3

( 1): 1t t
c

τλ + −
= + ,      (3.44) 

then 

  
1 3

7
( 1)( )n n t t cp

c
r

H τρ + − +<
Β

.      (3.45) 
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Case II) If we write the relation (3.30) with l  replaced by 1n+ , then we get 
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The inequality (3.56) is also satisfied in case I), since 1 1( 1) ( 1)t t t tλτ τ+ − > + −  from 
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Β
.     (3.57) 

From 5°), we have   

{ }
0

1 0 1
( )
( ) 0

( , ) min ( ) ( )t p pt
H H

w H
γ

β

β β β− ≤ −
Β ≤

Β ≠

= Β ≤ Β      (3.58) 

for all polynomials Β  with integer coefficients which have 1tγ ≤ −  and 0( )H HΒ ≤ . 
Hence we can write  

1 0
0

( , )
( ) ; 1, ( )

( )
t

xp

w H
t H H

H
β

β γ−Β ≥ ≤ − Β ≤
Β

.    (3.59) 

Putting ( )8 5 1 0min , ( , )tc c w H β−= , we obtain from (3.57), (3.59) 



8( )
( )xp

c
H

βΒ ≥
Β

      (3.60) 

for 1tγ ≤ −  and ( ) 1, 2,H Β = … . We see from (3.60) that 

8 8( )
( )x xp

c c
H H

βΒ ≥ ≥
Β

      (3.61) 

for all polynomials Β  which have 1tγ ≤ −  and ( )H HΒ ≤  (where H  is any positive 
integer). Thus  

            8
1 ( , )t x

c
w H

H
β− ≥      for all H .     (3.62) 

From (3.62), we obtain 

          1 8
log ( ( , ) ) log

log log
tw H c

x
H H

β−−
≤ −      (3.63) 

and so 

      1
1

log ( ( , ))
( ) lim

log
t

t H

w H
w x

H
β

β −
− →∞

−
= ≤ .     (3.64) 

Therefore it follows from definition of ( )μ β  that 

         ( ) 1tμ β > − ,     that is     ( ) tμ β ≥ .     (3.65) 

 

Finally, from (3.25) and (3.65), we have 

( ) , 1t tμ β = > .      (3.66) 

In other words, tUβ∈ . Hence we obtain tUβ∈  in both of the cases 6) a) and b). 
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