Existence of Positive Solutions for a Discrete Boundary Value Problem

Rodica LUCA ${ }^{1}$

Abstract

In this paper we study the existence and nonexistence of positive solutions for a class of nonlinear difference systems subject to some $m+1$-point boundary conditions. The arguments for existence of solutions are based upon the Schauder fixed point theorem.

Keywords: Difference equations, multi-point boundary value problem, positive solution, fixed point theorem.

AMS Subject Classification: 39A10.

1. Introduction

We consider the discrete system with second-order differences

$$
\begin{cases}\Delta^{2} u_{n-1}+b_{n} f\left(v_{n}\right)=0, & n=\overline{1, N-1} \tag{S}\\ \Delta^{2} v_{n-1}+c_{n} g\left(u_{n}\right)=0, & n=\overline{1, N-1}, \quad(N \geq 2),\end{cases}
$$

with $m+1$-point boundary conditions

$$
\left\{\begin{array}{l}
\beta u_{0}-\gamma \Delta u_{0}=0, u_{N}-\sum_{i=1}^{m-2} a_{i} u_{\xi_{i}}=b \tag{BC}\\
\beta v_{0}-\gamma \Delta v_{0}=0, v_{N}-\sum_{i=1}^{m-2} a_{i} v_{\xi_{i}}=b, \quad m \geq 3
\end{array}\right.
$$

where Δ is the forward difference operator with stepsize $1, \Delta u_{n}=u_{n+1}-u_{n}$ and $b>0$.
The above problem is equivalent to

$$
\left\{\begin{array}{l}
u_{n+1}-2 u_{n}+u_{n-1}+b_{n} f\left(v_{n}\right)=0 \\
v_{n+1}-2 v_{n}+v_{n-1}+c_{n} g\left(u_{n}\right)=0, \quad n=\overline{1, N-1},
\end{array}\right.
$$

with the conditions

$$
\left\{\begin{array}{l}
(\beta+\gamma) u_{0}=\gamma u_{1}, u_{N}-\sum_{i=1}^{m-2} a_{i} u_{\xi_{i}}=b \\
(\beta+\gamma) v_{0}=\gamma v_{1}, v_{N}-\sum_{i=1}^{m-2} a_{i} v_{\xi_{i}}=b
\end{array}\right.
$$

In this paper we shall investigate the existence and nonexistence of positive solutions of $(S),(B C)$. In the case $b=0$ and $b_{n}=\lambda \widetilde{b}_{n}, c_{n}=\mu \widetilde{c}_{n}, \lambda, \mu>0$, the existence of positive solutions with respect to a cone has been studied in [11]. In [10] the authors studied the

[^0]existence and nonexistence of positive solutions for the m-point boundary value problem on time scales
\[

\left\{$$
\begin{array}{l}
u^{\Delta \nabla}(t)+a(t) f(u(t))=0, \quad t \in(0, T) \\
\beta u(0)-\gamma u^{\Delta}(0)=0, u(T)-\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right)=b, \quad m \geq 3, \quad b>0 .
\end{array}
$$\right.
\]

In recent years the existence of positive solutions of multi-point boundary value problems for second-order or higher-order differential or difference equations has been the subject of investigations by many authors (see also [1]-[9], [12]-[15]).

We shall suppose that the following conditions are verified
(A1) $b_{n}, c_{n} \geq 0$ for $n=\overline{1, N-1} ; \beta, \gamma \geq 0, \beta+\gamma>0 ; a_{i}>0, i=\overline{1, m-2}$, $a_{m-2} \geq 1 ; 0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<N ; b>0, N>\sum_{i=1}^{m-2} a_{i} \xi_{i}, d=\beta\left(N-\sum_{i=1}^{m-2} a_{i} \xi_{i}\right)+$ $\gamma\left(1-\sum_{i=1}^{m-2} a_{i}\right)>0$.
(A2) There exist $n_{0}, \widetilde{n}_{0} \in\left\{\xi_{m-2}, \ldots, N\right\}$ such that $b_{n_{0}}>0, c_{\tilde{n}_{0}}>0$.
(A3) $f, g:[0, \infty) \rightarrow[0, \infty)$ are continuous functions that satisfy the conditions
a) There exists $c>0$ such that $f(u)<\frac{c}{L}, g(u)<\frac{c}{L}$, for all $u \in[0, c]$;
b) $\lim _{u \rightarrow \infty} \frac{f(u)}{u}=\infty, \lim _{u \rightarrow \infty} \frac{g(u)}{u}=\infty$,
where $L=\max \left\{\frac{\beta N+\gamma}{d} \sum_{i=1}^{N-1}(N-i) b_{i}, \frac{\beta N+\gamma}{d} \sum_{i=1}^{N-1}(N-i) c_{i}\right\}$.

2. Preliminaries

In this section we shall present some auxiliary results from [10] and [11], related to the following second-order difference system with boundary conditions

$$
\begin{gather*}
\Delta^{2} u_{n-1}+y_{n}=0, \quad n=\overline{1, N-1} \tag{1}\\
\beta u_{0}-\gamma \Delta u_{0}=0, \quad u_{N}-\sum_{i=1}^{m-2} a_{i} u_{\xi_{i}}=0 . \tag{2}
\end{gather*}
$$

Lemma 2.1. ([10], [11]) If $\beta+\gamma \neq 0,0<\xi_{1}<\cdots<\xi_{m-2}<N$ and $d \neq 0$, then the solution of (1), (2) is given by

$$
\begin{gather*}
u_{n}=\frac{n \beta+\gamma}{d} \sum_{i=1}^{N-1}(N-i) y_{i}-\frac{n \beta+\gamma}{d} \sum_{i=1}^{m-2} a_{i} \sum_{j=1}^{\xi_{i}-1}\left(\xi_{i}-j\right) y_{j} \tag{3}\\
-\sum_{i=1}^{n-1}(n-i) y_{i}, \quad i=\overline{0, N} .
\end{gather*}
$$

We use the conventions $\sum_{i=1}^{0} z_{i}=0$ and $\sum_{i=1}^{-1} z_{i}=0$.
Lemma 2.2. ([11]) Under the assumptions of 2.1, the Green function for the boundary value problem (1), (2) is given by

$$
G(n, i)=\left\{\begin{array}{l}
\frac{n \beta+\gamma}{d}(N-i)-\frac{n \beta+\gamma}{d} \sum_{k=1}^{m-2} a_{k}\left(\xi_{k}-i\right)-(n-i), \\
\quad \text { if } i<\xi_{1}, n \geq i, \\
\quad(\text { for } n=0 \text { or } n=1 \text { without term }(n-i)), \\
\frac{n \beta+\gamma}{d}(N-i)-\frac{n \beta+\gamma}{d} \sum_{k=1}^{m-2} a_{k}\left(\xi_{k}-i\right), \text { if } n \leqslant i<\xi_{1}, \\
\frac{n \beta+\gamma}{d}(N-i)-\frac{n \beta+\gamma}{d} \sum_{k=j}^{m-2} a_{k}\left(\xi_{k}-i\right)-(n-i), \\
i f \xi_{j-1} \leqslant i<\xi_{j}, n \geq i, j=\overline{2, m-2}, \\
\frac{n \beta+\gamma}{d}(N-i)-\frac{n \beta+\gamma}{d} \sum_{k=j}^{m-2} a_{k}\left(\xi_{k}-i\right), \\
i f \xi_{j-1} \leqslant i<\xi_{j}, n \leqslant i, \quad j=\overline{2, m-2}, \\
\frac{n \beta+\gamma}{d}(N-i)-(n-i), \quad \text { if } \xi_{m-2} \leqslant i \leqslant n, \\
\frac{n \beta+\gamma}{d}(N-i), \text { if } i \geq \xi_{m-2}, \quad n \leqslant i,
\end{array}\right.
$$

and we have $u_{n}=\sum_{i=1}^{N-1} G(n, i) y_{i}, \quad n=\overline{0, N}$.
Lemma 2.3. ([10], [11]) If $d>0, \beta, \gamma \geq 0, \beta+\gamma>0, a_{i}>0$ for all $i=\overline{1, m-2}$, $0<\xi_{1}<\cdots<\xi_{m-2}<N, \sum_{i=1}^{m-2} a_{i} \xi_{i} \leqslant N$ and $y_{n} \geq 0$, for all $n=\overline{1, N-1}$, then the solution $u_{n}, n=\overline{0, N}$ of problem (1), (2) satisfies $u_{n} \geq 0$, for all $n=\overline{0, N}$.

Lemma 2.4. ([11]) If $d>0, \beta, \gamma \geq 0, \beta+\gamma>0,0<\xi_{1}<\cdots<\xi_{m-2}<N, a_{i}>0$, $i=\overline{1, m-2}, a_{m-2} \geq 1, N \geq \sum_{i=1}^{m-2} a_{i} \xi_{i}, y_{n} \geq 0$ for all $n=\overline{1, N-1}$, then the solution of problem (1), (2) satisfies

$$
\begin{aligned}
& u_{n} \leqslant \frac{\beta N+\gamma}{d} \sum_{i=1}^{N-1}(N-i) y_{i}, \quad \forall n=\overline{0, N} \\
& u_{\xi_{j}} \geq \frac{\beta \xi_{j}+\gamma}{d} \sum_{i=\xi_{m-2}}^{N-1}(N-i) y_{i}, \quad \forall j=\overline{1, m-2}
\end{aligned}
$$

Lemma 2.5. ([10]) We assume that $\beta, \gamma \geq 0, \beta+\gamma>0, d>0,0<\xi_{1}<\cdots<\xi_{m-2}<N$, $a_{i}>0$ for all $i=\overline{1, m-2}, N>\sum_{i=1}^{m-2} a_{i} \xi_{i}$ and $y_{n} \geq 0$ for all $n=\overline{1, N-1}$. Then the unique solution of problem (1), (2) verifies the relation $\inf _{n=\overline{\xi_{1}, N}} u_{n} \geq r\|u\|$, where

$$
r=\min _{2 \leqslant s \leqslant m-2}\left\{\frac{\xi_{1}}{N}, \frac{\sum_{i=1}^{m-2} a_{i}\left(N-\xi_{i}\right)}{N-\sum_{i=1}^{m-2} a_{i} \xi_{i}}, \frac{\sum_{i=1}^{m-2} a_{i} \xi_{i}}{N}, \frac{\sum_{i=1}^{s-1} a_{i} \xi_{i}+\sum_{i=s}^{m-2} a_{i}\left(N-\xi_{i}\right)}{N-\sum_{i=s}^{m-2} a_{i} \xi_{i}}\right\}
$$

and $\|u\|=\sup _{n=\overline{0, N}}\left|u_{n}\right|$.

3. Main results

We shall firstly present an existence result for the positive solutions of $(S),(B C)$.

Theorem 3.1. Assume that the assumptions (A1), (A2), (A3)a hold. Then the problem $(S),(B C)$ has at least one positive solution for $b>0$ sufficiently small.

Proof. We consider the problem

$$
\left\{\begin{array}{l}
\Delta^{2} h_{n}=0 \tag{4}\\
\beta h_{0}-\gamma \Delta h_{0}=0, \quad h_{N}=\sum_{i=1}^{m-2} a_{i} h_{\xi_{i}}+1
\end{array}\right.
$$

The solution $\left(h_{n}\right)_{n=\overline{2, N}}$ of $(4)_{1}$ is given by $h_{n}=n h_{1}-(n-1) h_{0}, n=\overline{2, N}$. Because $\beta h_{0}-\gamma\left(h_{1}-h_{0}\right)=0$, that is $h_{0}=\frac{\gamma}{\beta+\gamma} h_{1}$, we get $h_{n}=\frac{n \beta+\gamma}{\beta+\gamma} h_{1}, n=\overline{2, N}$. By the condition $h_{N}=\sum_{i=1}^{m-2} a_{i} h_{\xi_{i}}+1$ we obtain $\frac{N \beta+\gamma}{\beta+\gamma} h_{1}=\sum_{i=1}^{m-2} a_{i} \frac{\beta \xi_{i}+\gamma}{\beta+\gamma} h_{1}+1$, which implies $h_{1}=\frac{\beta+\gamma}{d}$. So $h_{n}=\frac{n \beta+\gamma}{d}, n=\overline{2, N}$.

Therefore the solution of (4) is

$$
\begin{equation*}
h_{n}=\frac{n \beta+\gamma}{d}, \quad n=\overline{0, N} . \tag{5}
\end{equation*}
$$

We now define $\left(x_{n}\right)_{n=\overline{0, N}},\left(y_{n}\right)_{n=\overline{0, N}}$ by

$$
\left\{\begin{array}{l}
u_{n}=x_{n}+b h_{n} \\
v_{n}=y_{n}+b h_{n}, \quad n=\overline{0, N} .
\end{array}\right.
$$

Then $(S),(B C)$ can be equivalently written as

$$
\begin{cases}\Delta^{2} x_{n-1}+b_{n} f\left(y_{n}+b h_{n}\right)=0, & n=\overline{1, N-1} \tag{6}\\ \Delta^{2} y_{n-1}+c_{n} g\left(x_{n}+b h_{n}\right)=0, & n=\overline{1, N-1}\end{cases}
$$

with the boundary conditions

$$
\left\{\begin{array}{l}
\beta x_{0}-\gamma \Delta x_{0}=0, x_{N}=\sum_{i=1}^{m-2} a_{i} x_{\xi_{i}} \tag{7}\\
\beta y_{0}-\gamma \Delta y_{0}=0, y_{N}=\sum_{i=1}^{m-2} a_{i} y_{\xi_{i}}
\end{array}\right.
$$

Using the Green function given in 2.2, a pair $\left(\left(x_{n}\right)_{n=\overline{0, N}},\left(y_{n}\right)_{n=\overline{0, N}}\right)$ is a solution of problem (6), (7) if and only if

$$
\left\{\begin{array}{l}
x_{n}=\sum_{i=1}^{N-1} G(n, i) b_{i} f\left(\sum_{j=1}^{N-1} G(i, j) c_{j} g\left(x_{j}+b h_{j}\right)+b h_{i}\right), n=\overline{0, N} \tag{8}\\
y_{n}=\sum_{i=1}^{N-1} G(n, i) c_{i} g\left(x_{i}+b h_{i}\right), n=\overline{0, N}
\end{array}\right.
$$

where $\left(h_{n}\right)_{n}$ is given by (5).
We consider the Banach space $X=\mathbb{R}^{N+1}$ with supremum norm $\|\cdot\|$ and we define the set $K=\left\{\left(x_{n}\right)_{n=\overline{0, N}}, 0 \leqslant x_{n} \leqslant c, \quad \forall n=\overline{0, N}\right\} \subset X$.

We also define the operator $\Lambda: K \rightarrow X$ by
$\Lambda(x)=\left(\sum_{i=1}^{N-1} G(n, i) b_{i} f\left(\sum_{j=1}^{N-1} G(i, j) c_{j} g\left(x_{j}+b h_{j}\right)+b h_{i}\right)\right)_{n=\overline{0, N}}, x=\left(x_{n}\right)_{n=\overline{0, N}} \in K$.
For sufficiently small $b>0$, by (A3)a we deduce

$$
f\left(y_{n}+b h_{n}\right) \leqslant \frac{c}{L}, g\left(x_{n}+b h_{n}\right) \leqslant \frac{c}{L}, \forall\left(x_{n}\right)_{n},\left(y_{n}\right)_{n} \in K
$$

Then for any $x=\left(x_{n}\right)_{n} \in K$ we have, using 2.3 , that $(\Lambda x)_{n} \geq 0, \forall n \in \overline{0, N}$.
By 2.4 we also have

$$
\begin{gathered}
y_{j} \leqslant \frac{\beta N+\gamma}{d} \sum_{k=1}^{N-1}(N-k) c_{k} g\left(x_{k}+b h_{k}\right) \leqslant \frac{c}{L} \cdot \frac{\beta N+\gamma}{d} \sum_{k=1}^{N-1}(N-k) c_{k} \\
\leqslant \frac{c}{L} \cdot L=c, \quad \forall j=\overline{1, N-1}
\end{gathered}
$$

and

$$
\begin{gathered}
\Lambda(x)_{n} \leqslant \frac{\beta N+\gamma}{d} \sum_{k=1}^{N-1}(N-k) b_{k} f\left(y_{k}+b h_{k}\right) \leqslant \frac{c}{L} \cdot \frac{\beta N+\gamma}{d} \sum_{k=1}^{N-1}(N-k) b_{k} \\
\leqslant \frac{c}{L} \cdot L=c, \quad \forall n=\overline{0, N}
\end{gathered}
$$

Therefore $\Lambda(K) \subset K$.
Using standard arguments we deduce that Λ is completely continuous (Λ is compact because for any bounded set $B \subset K, \Lambda(B) \subset K$ is bounded, so in \mathbb{R}^{N+1} is relatively compact, and Λ is continuous because f, g are continuous). By the Schauder fixed point theorem, we conclude that Λ has a fixed point $\left(x_{n}\right)_{n=\overline{0, N}} \in K$. This element together with $\left(y_{n}\right)_{n=\overline{0, N}}$ given by (8) represent a solution for (6), (7). This shows that our problem
$(S),(B C)$ has a positive solution $u_{n}=x_{n}+b h_{n}, v_{n}=y_{n}+b h_{n}, n=\overline{0, N}$ for sufficiently small $b>0$.

In the following theorem we shall present sufficient conditions for nonexistence of positive solutions of $(S),(B C)$.

Theorem 3.2. Assume that the assumptions (A1), (A2), (A3)b hold. Then the problem $(S),(B C)$ has no positive solution for b sufficiently large.

Proof. We shall follows the same steps as those used in the proof of Theorem 3.2 from [10]. We suppose that $\left(u_{n}\right)_{n}$ is a positive solution of $(S),(B C)$. Then $x_{n}=u_{n}-b h_{n}, y_{n}=$ $v_{n}-b h_{n}, n=\overline{0, N}$ is solution for (6), (7), where $\left(h_{n}\right)_{n=\overline{0, N}}$ is the solution of problem (4). By Lemma 2.3 we have $x_{n} \geq 0, y_{n} \geq 0$, for all $n=\overline{0, N}$, and by (A2) we deduce that $\|x\|>0,\|y\|>0$. Using Lemma 2.5 we also have $\inf _{n=\overline{\xi_{1}, N}} x_{n} \geq r\|x\|$ and $\inf _{n=\overline{\xi_{1}, N}} y_{n} \geq$ $r\|y\|$, where r is defined in Lemma 2.5.

Using now (5) - the expression for $\left(h_{n}\right)_{n=\overline{0, N}}$ we deduce that

$$
\inf _{n=\overline{\xi_{1}, N}} h_{n}=\frac{\beta \xi_{1}+\gamma}{d} \geq \frac{\xi_{1} h_{N}}{N}=\frac{\xi_{1}}{N} \cdot \frac{\beta N+\gamma}{d} .
$$

So $\inf _{n=\overline{\xi_{1}, N}} h_{n} \geq \frac{\xi_{1}}{N}\|h\|,\left(\|h\|=h_{N}\right)$. Then

$$
\inf _{n=\overline{\xi_{1}, N}}\left(x_{n}+b h_{n}\right) \geq r(\|x\|+b\|h\|) \geq r\|x+b h\|
$$

and

$$
\inf _{n=\overline{\xi_{1}, N}}\left(y_{n}+b h_{n}\right) \geq r(\|y\|+b\|h\|) \geq r\|y+b h\| .
$$

We now consider
$R=\frac{d}{r\left(\beta \xi_{m-2}+\gamma\right)}\left(\min \left\{\sum_{j=\xi_{m-2}}^{N-1}(N-j) c_{j}, \sum_{j=\xi_{m-2}}^{N-1}(N-j) b_{j}\right\}\right)-1>0$.
By (A3)b, that is $\lim _{u \rightarrow \infty} \frac{f(u)}{u}=\infty, \lim _{u \rightarrow \infty} \frac{g(u)}{u}=\infty$, for R defined above we deduce that there exists $M>0$ such that $f(u)>2 R u, g(u)>2 R u$, for all $u \geq M$.

We consider $b>0$ sufficiently large such that

$$
\inf _{n=\overline{\xi_{1}, N}}\left(x_{n}+b h_{n}\right) \geq M \text { and } \inf _{n=\overline{\xi_{1}, N}}\left(y_{n}+b h_{n}\right) \geq M
$$

Then we have

$$
\begin{aligned}
& y_{\xi_{m-2}} \geq \sum_{j=\xi_{m-2}}^{N-1} \frac{\beta \xi_{m-2}+\gamma}{d}(N-j) c_{j} g\left(x_{j}+b h_{j}\right) \\
& \geq \sum_{j=\xi_{m-2}}^{N-1} \frac{\beta \xi_{m-2}+\gamma}{d}(N-j) c_{j} \cdot 2 R\left(x_{j}+b h_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geq \sum_{j=\xi_{m-2}}^{N-1} \frac{\beta \xi_{m-2}+\gamma}{d}(N-j) c_{j} \cdot 2 R \inf _{k=\overline{\xi_{m-2}, N}}\left(x_{k}+b h_{k}\right) \\
& \geq \sum_{j=\xi_{m-2}}^{N-1} \frac{\beta \xi_{m-2}+\gamma}{d}(N-j) c_{j} \cdot 2 R \inf _{k=\overline{\xi_{1}, N}}\left(x_{k}+b h_{k}\right) \\
& \geq \sum_{j=\xi_{m-2}}^{N-1} \frac{\beta \xi_{m-2}+\gamma}{d}(N-j) c_{j} \cdot 2 R \delta\|x+b h\| \\
& \geq 2\|x+b h\| \geq 2\|x\| .
\end{aligned}
$$

And then we obtain

$$
\begin{equation*}
\|x\| \leqslant \frac{1}{2} y_{\xi_{m-2}} \leqslant \frac{1}{2}\|y\| . \tag{9}
\end{equation*}
$$

In a similar manner we deduce $x_{\xi_{m-2}} \geq 2\|y+b h\| \geq 2\|y\|$ and so

$$
\begin{equation*}
\|y\| \leqslant \frac{1}{2} x_{\xi_{m-2}} \leqslant \frac{1}{2}\|x\| \tag{10}
\end{equation*}
$$

By (9) and (10) we obtain $\|x\| \leqslant \frac{1}{2}\|y\| \leqslant \frac{1}{4}\|x\|$, which is a contradiction, because $\|x\|>0$.

Then, when b is sufficiently large, our problem $(S),(B C)$ has no positive solution.

4. An example

We consider $b_{n}=\frac{b_{0}}{N-n}, c_{n}=\frac{c_{0}}{N-n}$ for all $n=\overline{1, N-1}, b_{0}, c_{0}>0, \beta=2$, $\gamma=\frac{1}{4}, m=5, \xi_{1}=\frac{N}{4}, \xi_{2}=\frac{N}{2}, \xi_{3}=\frac{3 N}{4}(N=4 M, M \geq 1), a_{1}=\frac{1}{4}, a_{2}=\frac{1}{3}, a_{3}=1$. Then $d=\frac{2 N-7}{48}>0$ and the assumption $N>\sum_{i=1}^{3} a_{i} \xi_{i}$ is verified $\left(N>\frac{47}{48} N\right)$.

We consider $f, g:[0, \infty) \rightarrow[0, \infty), f(x)=\frac{\widetilde{a} x^{3}}{x+1}, g(x)=\frac{\widetilde{b} x^{3}}{x+1}$, with $\tilde{a}, \widetilde{b}>0$. We have $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \infty} \frac{g(x)}{x}=\infty$.

Next the constant L from (A3) is in this case
$L=\max \left\{\frac{\beta N+\gamma}{d} \sum_{i=1}^{N-1}(N-i) b_{i}, \frac{\beta N+\gamma}{d} \sum_{i=1}^{N-1}(N-i) c_{i}\right\}$
$=\frac{12(8 N+1)(N-1)}{2 N-7} \max \left\{b_{0}, c_{0}\right\}$.
We choose $c=1$ and if we select \widetilde{a} and \widetilde{b} satisfying the conditions
$\widetilde{a}<\frac{2}{L}=\frac{2(2 N-7)}{12(8 N+1)(N-1)} \min \left\{\frac{1}{b_{0}}, \frac{1}{c_{0}}\right\}$,
$\widetilde{b}<\frac{2}{L}=\frac{2(2 N-7)}{12(8 N+1)(N-1)} \min \left\{\frac{1}{b_{0}}, \frac{1}{c_{0}}\right\}$,
then we obtain $f(x) \leqslant \frac{\widetilde{a}}{2}<\frac{1}{L}, g(x) \leqslant \frac{\widetilde{b}}{2}<\frac{1}{L}$, for all $x \in[0,1]$.

Thus all the assumptions (A1)-(A3) are verified. By Theorem 3.1 and Theorem 3.2 we deduce that the nonlinear discrete system

$$
\left\{\begin{array}{l}
\Delta^{2} u_{n-1}+\frac{b_{0}}{N-n} \cdot \frac{\widetilde{a} v_{n}^{3}}{v_{n}+1}=0 \\
\Delta^{2} v_{n-1}+\frac{c_{0}}{N-n} \cdot \frac{\widetilde{b} u_{n}^{3}}{u_{n}+1}=0, n=\overline{1, N-1}(N=4 M, N \geq 4)
\end{array}\right.
$$

with the boundary conditions

$$
\begin{cases}u_{0}=\frac{u_{1}}{9}, & u_{N}-\frac{1}{4} u_{N / 4}-\frac{1}{3} u_{N / 2}-u_{3 N / 4}=b, \\ v_{0}=\frac{v_{1}}{9}, & v_{N}-\frac{1}{4} v_{N / 4}-\frac{1}{3} v_{N / 2}-v_{3 N / 4}=b\end{cases}
$$

has at least one positive solution for sufficiently small $b>0$ and no solution for sufficiently large b.

References

[1] D.R. Anderson, Solutions to second-order three-point problems on time scales, J. Differ. Equations Appl., 8 (2002), 673-688.
[2] D.R. Anderson, Twin n-point boundary value problems, Appl. Math. Lett., 17 (2004), 1053-1059.
[3] R. Avery, Three positive solutions of a discrete second order conjugate problem, PanAmer. Math. J., 8 (1998), 79-96.
[4] W. Cheung, J. Ren, Positive solutions for discrete three-point boundary value problems, Austr. J. Math. Anal. Appl., 1 (2004), 1-7.
[5] Y. Guo, W. Shan, W. Ge, Positive solutions for second order m-point boundary value problems, J. Comput. Appl. Math., 151 (2003), 415-424.
[6] J. Henderson, S.K. Ntouyas, Positive solutions for systems of nonlinear boundary value problems, Nonlinear Stud., 15 (2008), 51-60.
[7] J. Henderson, S.K. Ntouyas, Positive solutions for systems of three-point nonlinear boundary value problems, Austr. J. Math. Anal. Appl., 5 (2008), (1), 1-9.
[8] J. Henderson, S.K. Ntouyas, I.K. Purnaras, Positive solutions for systems of three-point nonlinear discrete boundary value problems, Neural Parallel Scient. Comput., 16 (2008), 209-224.
[9] V. Il'in, E. Moiseev, Nonlocal boundary value problems of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Differ. Equa., 23 (1987), 803-810.
[10] W.T. Li, H.R. Sun, Positive solutions for second-order m-point boundary value problems on times scales, Acta Math. Sin., Engl. Ser., 22, No. 6 (2006), 1797-1804.
[11] R. Luca, Positive solutions for $m+1$ - point discrete boundary value problems, Libertas Math., in press.
[12] R. Ma, Positive solutions for second order three-point boundary value problems, Appl. Math. Lett., 14 (2001), 1-5.
[13] R. Ma, Y. Raffoul, Positive solutions of three-point nonlinear discrete second order boundary value problem, J. Difference Equ. Appl., 10 (2004), 129-138.
[14] S.K. Ntouyas, Nonlocal initial and boundary value problems: a survey, Handbook of differential equations: Ordinary differential equations, Vol.II, 461-557, Elsevier, Amsterdam, 2005.
[15] H.R. Sun, W.T. Li, Existence of positive solutions for nonlinear three-point boundary value problems on time scales, J. Math. Anal. Appl., 299 (2004), 508-524.

Rodica LUCA

Department of Mathematics, Gh. Asachi Technical University, 11 Blvd. Carol I, Iasi 700506, Romania, E-Mail: rlucatudor@yahoo.com

[^0]: ${ }^{1}$ Department of Mathematics, Gh. Asachi Technical University, 11 Blvd. Carol I, Iasi 700506, Romania, E-Mail: rlucatudor@yahoo.com

