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Abstract. In this paper we study the existence and nonexistence of positive
solutions for a class of nonlinear difference systems subject to some m+1–point
boundary conditions. The arguments for existence of solutions are based upon
the Schauder fixed point theorem.
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1. Introduction

We consider the discrete system with second-order differences

(S)

{
∆2un−1 + bnf(vn) = 0, n = 1, N − 1
∆2vn−1 + cng(un) = 0, n = 1, N − 1, (N ≥ 2),

with m + 1-point boundary conditions

(BC)





βu0 − γ∆u0 = 0, uN −
m−2∑
i=1

aiuξi
= b,

βv0 − γ∆v0 = 0, vN −
m−2∑
i=1

aivξi
= b, m ≥ 3,

where ∆ is the forward difference operator with stepsize 1, ∆un = un+1 − un and b > 0.

The above problem is equivalent to{
un+1 − 2un + un−1 + bnf(vn) = 0
vn+1 − 2vn + vn−1 + cng(un) = 0, n = 1, N − 1,

with the conditions 



(β + γ)u0 = γu1, uN −
m−2∑
i=1

aiuξi
= b

(β + γ)v0 = γv1, vN −
m−2∑
i=1

aivξi
= b.

In this paper we shall investigate the existence and nonexistence of positive solutions

of (S), (BC). In the case b = 0 and bn = λb̃n, cn = µc̃n, λ, µ > 0, the existence of positive

solutions with respect to a cone has been studied in [11]. In [10] the authors studied the
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existence and nonexistence of positive solutions for the m-point boundary value problem

on time scales



u∆∇(t) + a(t)f(u(t)) = 0, t ∈ (0, T )

βu(0)− γu∆(0) = 0, u(T )−
m−2∑
i=1

aiu(ξi) = b, m ≥ 3, b > 0.

In recent years the existence of positive solutions of multi-point boundary value problems

for second-order or higher-order differential or difference equations has been the subject

of investigations by many authors (see also [1]–[9], [12]–[15]).

We shall suppose that the following conditions are verified

(A1) bn, cn ≥ 0 for n = 1, N − 1; β, γ ≥ 0, β + γ > 0; ai > 0, i = 1, m− 2,

am−2 ≥ 1; 0 < ξ1 < ξ2 < · · · < ξm−2 < N ; b > 0, N >

m−2∑
i=1

aiξi, d = β

(
N −

m−2∑
i=1

aiξi

)
+

γ

(
1−

m−2∑
i=1

ai

)
> 0.

(A2) There exist n0, ñ0 ∈ {ξm−2, ..., N} such that bn0 > 0, cñ0 > 0.

(A3) f, g : [0,∞) → [0,∞) are continuous functions that satisfy the conditions

a) There exists c > 0 such that f(u) <
c

L
, g(u) <

c

L
, for all u ∈ [0, c];

b) lim
u→∞

f(u)

u
= ∞, lim

u→∞
g(u)

u
= ∞,

where L = max

{
βN + γ

d

N−1∑
i=1

(N − i)bi,
βN + γ

d

N−1∑
i=1

(N − i)ci

}
.

2. Preliminaries

In this section we shall present some auxiliary results from [10] and [11], related to

the following second-order difference system with boundary conditions

∆2un−1 + yn = 0, n = 1, N − 1 (1)

βu0 − γ∆u0 = 0, uN −
m−2∑
i=1

aiuξi
= 0. (2)

Lemma 2.1. ([10], [11]) If β + γ 6= 0, 0 < ξ1 < · · · < ξm−2 < N and d 6= 0, then the

solution of (1), (2) is given by

un =
nβ + γ

d

N−1∑
i=1

(N − i)yi − nβ + γ

d

m−2∑
i=1

ai

ξi−1∑
j=1

(ξi − j)yj

−
n−1∑
i=1

(n− i)yi, i = 0, N.

(3)



We use the conventions
0∑

i=1

zi = 0 and
−1∑
i=1

zi = 0.

Lemma 2.2. ([11]) Under the assumptions of 2.1, the Green function for the boundary

value problem (1), (2) is given by

G(n, i) =





nβ + γ

d
(N − i)− nβ + γ

d

m−2∑

k=1

ak(ξk − i)− (n− i),

if i < ξ1, n ≥ i,
(for n = 0 or n = 1 without term (n− i)),

nβ + γ

d
(N − i)− nβ + γ

d

m−2∑

k=1

ak(ξk − i), if n 6 i < ξ1,

nβ + γ

d
(N − i)− nβ + γ

d

m−2∑

k=j

ak(ξk − i)− (n− i),

if ξj−1 6 i < ξj, n ≥ i, j = 2,m− 2,

nβ + γ

d
(N − i)− nβ + γ

d

m−2∑

k=j

ak(ξk − i),

if ξj−1 6 i < ξj, n 6 i, j = 2,m− 2,
nβ + γ

d
(N − i)− (n− i), if ξm−2 6 i 6 n,

nβ + γ

d
(N − i), if i ≥ ξm−2, n 6 i,

and we have un =
N−1∑
i=1

G(n, i)yi, n = 0, N .

Lemma 2.3. ([10], [11]) If d > 0, β, γ ≥ 0, β + γ > 0, ai > 0 for all i = 1,m− 2,

0 < ξ1 < · · · < ξm−2 < N ,
m−2∑
i=1

aiξi 6 N and yn ≥ 0, for all n = 1, N − 1, then the

solution un, n = 0, N of problem (1), (2) satisfies un ≥ 0, for all n = 0, N .

Lemma 2.4. ([11]) If d > 0, β, γ ≥ 0, β + γ > 0, 0 < ξ1 < · · · < ξm−2 < N , ai > 0,

i = 1,m− 2, am−2 ≥ 1, N ≥
m−2∑
i=1

aiξi, yn ≥ 0 for all n = 1, N − 1, then the solution of

problem (1), (2) satisfies

un 6 βN + γ

d

N−1∑
i=1

(N − i)yi, ∀n = 0, N,

uξj
≥ βξj + γ

d

N−1∑

i=ξm−2

(N − i)yi, ∀ j = 1,m− 2.



Lemma 2.5. ([10]) We assume that β, γ ≥ 0, β+γ > 0, d > 0, 0 < ξ1 < · · · < ξm−2 < N ,

ai > 0 for all i = 1,m− 2, N >

m−2∑
i=1

aiξi and yn ≥ 0 for all n = 1, N − 1. Then the unique

solution of problem (1), (2) verifies the relation infn=ξ1,N un ≥ r‖u‖, where

r = min
26s6m−2





ξ1

N
,

m−2∑
i=1

ai(N − ξi)

N −
m−2∑
i=1

aiξi

,

m−2∑
i=1

aiξi

N
,

s−1∑
i=1

aiξi +
m−2∑
i=s

ai(N − ξi)

N −
m−2∑
i=s

aiξi





and ‖u‖ = supn=0,N |un|.

3. Main results

We shall firstly present an existence result for the positive solutions of (S), (BC).

Theorem 3.1. Assume that the assumptions (A1), (A2), (A3)a hold. Then the problem

(S), (BC) has at least one positive solution for b > 0 sufficiently small.

Proof. We consider the problem




∆2hn = 0

βh0 − γ∆h0 = 0, hN =
m−2∑
i=1

aihξi
+ 1.

(4)

The solution (hn)n=2,N of (4)1 is given by hn = nh1 − (n − 1)h0, n = 2, N . Because

βh0 − γ(h1 − h0) = 0, that is h0 =
γ

β + γ
h1, we get hn =

nβ + γ

β + γ
h1, n = 2, N . By the

condition hN =
m−2∑
i=1

aihξi
+ 1 we obtain

Nβ + γ

β + γ
h1 =

m−2∑
i=1

ai
βξi + γ

β + γ
h1 + 1, which implies

h1 =
β + γ

d
. So hn =

nβ + γ

d
, n = 2, N .

Therefore the solution of (4) is

hn =
nβ + γ

d
, n = 0, N. (5)

We now define (xn)n=0,N , (yn)n=0,N by{
un = xn + bhn

vn = yn + bhn, n = 0, N.
Then (S), (BC) can be equivalently written as

{
∆2xn−1 + bnf(yn + bhn) = 0, n = 1, N − 1
∆2yn−1 + cng(xn + bhn) = 0, n = 1, N − 1,

(6)



with the boundary conditions



βx0 − γ∆x0 = 0, xN =
m−2∑
i=1

aixξi

βy0 − γ∆y0 = 0, yN =
m−2∑
i=1

aiyξi
.

(7)

Using the Green function given in 2.2, a pair ((xn)n=0,N , (yn)n=0,N) is a solution of

problem (6), (7) if and only if




xn =
N−1∑
i=1

G(n, i)bif

(
N−1∑
j=1

G(i, j)cjg(xj + bhj) + bhi

)
, n = 0, N,

yn =
N−1∑
i=1

G(n, i)cig(xi + bhi), n = 0, N,

(8)

where (hn)n is given by (5).

We consider the Banach space X = RN+1 with supremum norm ‖ · ‖ and we define

the set K = {(xn)n=0,N , 0 6 xn 6 c, ∀n = 0, N} ⊂ X.

We also define the operator Λ : K → X by

Λ(x) =

(
N−1∑
i=1

G(n, i)bif

(
N−1∑
j=1

G(i, j)cjg(xj + bhj) + bhi

))

n=0,N

, x = (xn)n=0,N ∈ K.

For sufficiently small b > 0, by (A3)a we deduce

f(yn + bhn) 6 c

L
, g(xn + bhn) 6 c

L
, ∀ (xn)n, (yn)n ∈ K.

Then for any x = (xn)n ∈ K we have, using 2.3, that (Λx)n ≥ 0, ∀n ∈ 0, N .

By 2.4 we also have

yj 6 βN + γ

d

N−1∑

k=1

(N − k)ckg(xk + bhk) 6 c

L
· βN + γ

d

N−1∑

k=1

(N − k)ck

6 c

L
· L = c, ∀ j = 1, N − 1

and

Λ(x)n 6 βN + γ

d

N−1∑

k=1

(N − k)bkf(yk + bhk)6
c

L
· βN + γ

d

N−1∑

k=1

(N − k)bk

6 c

L
· L = c, ∀n = 0, N.

Therefore Λ(K) ⊂ K.

Using standard arguments we deduce that Λ is completely continuous (Λ is compact

because for any bounded set B ⊂ K, Λ(B) ⊂ K is bounded, so in RN+1 is relatively

compact, and Λ is continuous because f, g are continuous). By the Schauder fixed point

theorem, we conclude that Λ has a fixed point (xn)n=0,N ∈ K. This element together

with (yn)n=0,N given by (8) represent a solution for (6), (7). This shows that our problem



(S), (BC) has a positive solution un = xn + bhn, vn = yn + bhn, n = 0, N for sufficiently

small b > 0. ¤

In the following theorem we shall present sufficient conditions for nonexistence of

positive solutions of (S), (BC).

Theorem 3.2. Assume that the assumptions (A1), (A2), (A3)b hold. Then the problem

(S), (BC) has no positive solution for b sufficiently large.

Proof. We shall follows the same steps as those used in the proof of Theorem 3.2 from

[10]. We suppose that (un)n is a positive solution of (S), (BC). Then xn = un−bhn, yn =

vn− bhn, n = 0, N is solution for (6), (7), where (hn)n=0,N is the solution of problem (4).

By Lemma 2.3 we have xn ≥ 0, yn ≥ 0, for all n = 0, N , and by (A2) we deduce that

‖x‖ > 0, ‖y‖ > 0. Using Lemma 2.5 we also have infn=ξ1,N xn ≥ r‖x‖ and infn=ξ1,N yn ≥
r‖y‖, where r is defined in Lemma 2.5.

Using now (5) - the expression for (hn)n=0,N we deduce that

infn=ξ1,N hn =
βξ1 + γ

d
≥ ξ1hN

N
=

ξ1

N
· βN + γ

d
.

So infn=ξ1,N hn ≥ ξ1

N
‖h‖, (‖h‖ = hN). Then

infn=ξ1,N(xn + bhn) ≥ r(‖x‖+ b‖h‖) ≥ r‖x + bh‖
and

infn=ξ1,N(yn + bhn) ≥ r(‖y‖+ b‖h‖) ≥ r‖y + bh‖.
We now consider

R =
d

r(βξm−2 + γ)


min





N−1∑

j=ξm−2

(N − j)cj,

N−1∑

j=ξm−2

(N − j)bj






−1 > 0.

By (A3)b, that is lim
u→∞

f(u)

u
= ∞, lim

u→∞
g(u)

u
= ∞, for R defined above we deduce

that there exists M > 0 such that f(u) > 2Ru, g(u) > 2Ru, for all u ≥ M .

We consider b > 0 sufficiently large such that

infn=ξ1,N(xn + bhn) ≥ M and infn=ξ1,N(yn + bhn) ≥ M .

Then we have

yξm−2 ≥
N−1∑

j=ξm−2

βξm−2 + γ

d
(N − j)cjg(xj + bhj)

≥
N−1∑

j=ξm−2

βξm−2 + γ

d
(N − j)cj · 2R(xj + bhj)



≥
N−1∑

j=ξm−2

βξm−2 + γ

d
(N − j)cj · 2R inf

k=ξm−2,N
(xk + bhk)

≥
N−1∑

j=ξm−2

βξm−2 + γ

d
(N − j)cj · 2R inf

k=ξ1,N
(xk + bhk)

≥
N−1∑

j=ξm−2

βξm−2 + γ

d
(N − j)cj · 2Rδ‖x + bh‖

≥ 2‖x + bh‖ ≥ 2‖x‖.
And then we obtain

‖x‖ 6 1

2
yξm−2 6 1

2
‖y‖. (9)

In a similar manner we deduce xξm−2 ≥ 2‖y + bh‖ ≥ 2‖y‖ and so

‖y‖ 6 1

2
xξm−2 6 1

2
‖x‖. (10)

By (9) and (10) we obtain ‖x‖ 6 1

2
‖y‖ 6 1

4
‖x‖, which is a contradiction, because

‖x‖ > 0.

Then, when b is sufficiently large, our problem (S), (BC) has no positive solution.

¤

4. An example

We consider bn =
b0

N − n
, cn =

c0

N − n
for all n = 1, N − 1, b0, c0 > 0, β = 2,

γ = 1
4
, m = 5, ξ1 = N

4
, ξ2 = N

2
, ξ3 = 3N

4
(N = 4M, M ≥ 1), a1 = 1

4
, a2 = 1

3
, a3 = 1. Then

d = 2N−7
48

> 0 and the assumption N >

3∑
i=1

aiξi is verified (N > 47
48

N).

We consider f, g : [0,∞) → [0,∞), f(x) =
ãx3

x + 1
, g(x) =

b̃x3

x + 1
, with ã, b̃ > 0. We

have lim
x→∞

f(x)

x
= lim

x→∞
g(x)

x
= ∞.

Next the constant L from (A3) is in this case

L = max

{
βN + γ

d

N−1∑
i=1

(N − i)bi,
βN + γ

d

N−1∑
i=1

(N − i)ci

}

=
12(8N + 1)(N − 1)

2N − 7
max{b0, c0}.

We choose c = 1 and if we select ã and b̃ satisfying the conditions

ã <
2

L
=

2(2N − 7)

12(8N + 1)(N − 1)
min

{
1

b0

,
1

c0

}
,

b̃ <
2

L
=

2(2N − 7)

12(8N + 1)(N − 1)
min

{
1

b0

,
1

c0

}
,

then we obtain f(x) 6 ã
2

< 1
L
, g(x) 6 b̃

2
< 1

L
, for all x ∈ [0, 1].



Thus all the assumptions (A1)-(A3) are verified. By Theorem 3.1 and Theorem 3.2

we deduce that the nonlinear discrete system



∆2un−1 +
b0

N − n
· ãv3

n

vn + 1
= 0

∆2vn−1 +
c0

N − n
· b̃u3

n

un + 1
= 0, n = 1, N − 1 (N = 4M, N ≥ 4),

with the boundary conditions{
u0 = u1

9
, uN − 1

4
uN/4 − 1

3
uN/2 − u3N/4 = b,

v0 = v1

9
, vN − 1

4
vN/4 − 1

3
vN/2 − v3N/4 = b

has at least one positive solution for sufficiently small b > 0 and no solution for sufficiently

large b.
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