Existence of Positive Solutions for a Discrete Boundary Value Problem

Rodica $LUCA^1$

Abstract. In this paper we study the existence and nonexistence of positive solutions for a class of nonlinear difference systems subject to some m + 1-point boundary conditions. The arguments for existence of solutions are based upon the Schauder fixed point theorem.

Keywords: Difference equations, multi-point boundary value problem, positive solution, fixed point theorem.

AMS Subject Classification: 39A10.

1. INTRODUCTION

We consider the discrete system with second-order differences

(S)
$$\begin{cases} \Delta^2 u_{n-1} + b_n f(v_n) = 0, & n = \overline{1, N-1} \\ \Delta^2 v_{n-1} + c_n g(u_n) = 0, & n = \overline{1, N-1}, & (N \ge 2), \end{cases}$$

with m + 1-point boundary conditions

(BC)
$$\begin{cases} \beta u_0 - \gamma \Delta u_0 = 0, \ u_N - \sum_{\substack{i=1 \\ m-2}}^{m-2} a_i u_{\xi_i} = b, \\ \beta v_0 - \gamma \Delta v_0 = 0, \ v_N - \sum_{\substack{i=1 \\ m-2}}^{m-2} a_i v_{\xi_i} = b, \ m \ge 3 \end{cases}$$

where Δ is the forward difference operator with stepsize 1, $\Delta u_n = u_{n+1} - u_n$ and b > 0. The above problem is equivalent to

$$\begin{cases} u_{n+1} - 2u_n + u_{n-1} + b_n f(v_n) = 0\\ v_{n+1} - 2v_n + v_{n-1} + c_n g(u_n) = 0, \quad n = \overline{1, N-1}, \end{cases}$$

with the conditions

$$\begin{cases} (\beta + \gamma)u_0 = \gamma u_1, \ u_N - \sum_{i=1}^{m-2} a_i u_{\xi_i} = b\\ (\beta + \gamma)v_0 = \gamma v_1, \ v_N - \sum_{i=1}^{m-2} a_i v_{\xi_i} = b. \end{cases}$$

In this paper we shall investigate the existence and nonexistence of positive solutions of (S), (BC). In the case b = 0 and $b_n = \lambda \tilde{b}_n$, $c_n = \mu \tilde{c}_n$, $\lambda, \mu > 0$, the existence of positive solutions with respect to a cone has been studied in [11]. In [10] the authors studied the

¹ Department of Mathematics, Gh. Asachi Technical University, 11 Blvd. Carol I, Iasi 700506, Romania, E-Mail: rlucatudor@yahoo.com

existence and nonexistence of positive solutions for the m-point boundary value problem on time scales

$$\begin{cases} u^{\Delta \nabla}(t) + a(t)f(u(t)) = 0, \ t \in (0,T) \\ \beta u(0) - \gamma u^{\Delta}(0) = 0, \ u(T) - \sum_{i=1}^{m-2} a_i u(\xi_i) = b, \ m \ge 3, \ b > 0. \end{cases}$$

In recent years the existence of positive solutions of multi-point boundary value problems for second-order or higher-order differential or difference equations has been the subject of investigations by many authors (see also [1]–[9], [12]–[15]).

We shall suppose that the following conditions are verified

 $\begin{array}{l} (A1) \ b_n, \ c_n \geq 0 \ \text{for} \ n = \overline{1, N-1}; \ \beta, \ \gamma \geq 0, \ \beta + \gamma > 0; \ a_i > 0, \ i = \overline{1, m-2}, \\ a_{m-2} \geq 1; \ 0 < \xi_1 < \xi_2 < \dots < \xi_{m-2} < N; \ b > 0, \ N > \sum_{i=1}^{m-2} a_i \xi_i, \ d = \beta \left(N - \sum_{i=1}^{m-2} a_i \xi_i \right) + \\ \gamma \left(1 - \sum_{i=1}^{m-2} a_i \right) > 0. \\ (A2) \ \text{There exist} \ n_0, \ \widetilde{n}_0 \in \{\xi_{m-2}, \dots, N\} \ \text{such that} \ b_{n_0} > 0, \ c_{\widetilde{n}_0} > 0. \\ (A3) \ f, \ g : [0, \infty) \to [0, \infty) \ \text{are continuous functions that satisfy the conditions} \\ a) \ \text{There exists} \ c > 0 \ \text{such that} \ f(u) < \frac{c}{L}, \ g(u) < \frac{c}{L}, \ \text{for all} \ u \in [0, c]; \\ b) \ \lim_{u \to \infty} \frac{f(u)}{u} = \infty, \ \lim_{u \to \infty} \frac{g(u)}{u} = \infty, \\ \text{where} \ L = \max \left\{ \frac{\beta N + \gamma}{d} \sum_{i=1}^{N-1} (N-i)b_i, \ \frac{\beta N + \gamma}{d} \sum_{i=1}^{N-1} (N-i)c_i \right\}. \end{array}$

2. Preliminaries

In this section we shall present some auxiliary results from [10] and [11], related to the following second-order difference system with boundary conditions

$$\Delta^2 u_{n-1} + y_n = 0, \ n = \overline{1, N-1}$$
 (1)

$$\beta u_0 - \gamma \Delta u_0 = 0, \ u_N - \sum_{i=1}^{m-2} a_i u_{\xi_i} = 0.$$
⁽²⁾

Lemma 2.1. ([10], [11]) If $\beta + \gamma \neq 0$, $0 < \xi_1 < \cdots < \xi_{m-2} < N$ and $d \neq 0$, then the solution of (1), (2) is given by

$$u_{n} = \frac{n\beta + \gamma}{d} \sum_{i=1}^{N-1} (N-i)y_{i} - \frac{n\beta + \gamma}{d} \sum_{i=1}^{m-2} a_{i} \sum_{j=1}^{\xi_{i}-1} (\xi_{i}-j)y_{j} - \sum_{i=1}^{n-1} (n-i)y_{i}, \quad i = \overline{0, N}.$$
(3)

We use the conventions
$$\sum_{i=1}^{0} z_i = 0$$
 and $\sum_{i=1}^{-1} z_i = 0$.

Lemma 2.2. ([11]) Under the assumptions of 2.1, the Green function for the boundary value problem (1), (2) is given by

$$G(n,i) = \begin{cases} \frac{n\beta + \gamma}{d} (N-i) - \frac{n\beta + \gamma}{d} \sum_{k=1}^{m-2} a_k(\xi_k - i) - (n-i), \\ if \ i < \xi_1, \ n \ge i, \\ (for \ n = 0 \ or \ n = 1 \ without \ term \ (n-i)), \\ \frac{n\beta + \gamma}{d} (N-i) - \frac{n\beta + \gamma}{d} \sum_{k=1}^{m-2} a_k(\xi_k - i), \ if \ n \leqslant i < \xi_1, \\ \frac{n\beta + \gamma}{d} (N-i) - \frac{n\beta + \gamma}{d} \sum_{k=j}^{m-2} a_k(\xi_k - i) - (n-i), \\ if \ \xi_{j-1} \leqslant i < \xi_j, \ n \ge i, \ j = \overline{2, m-2}, \\ \frac{n\beta + \gamma}{d} (N-i) - \frac{n\beta + \gamma}{d} \sum_{k=j}^{m-2} a_k(\xi_k - i), \\ if \ \xi_{j-1} \leqslant i < \xi_j, \ n \leqslant i, \ j = \overline{2, m-2}, \\ \frac{n\beta + \gamma}{d} (N-i) - (n-i), \ if \ \xi_{m-2} \leqslant i \leqslant n, \\ \frac{n\beta + \gamma}{d} (N-i), \ if \ i \ge \xi_{m-2}, \ n \leqslant i, \end{cases}$$

and we have $u_n = \sum_{i=1}^{N-1} G(n,i)y_i, \quad n = \overline{0,N}.$

Lemma 2.3. ([10], [11]) If d > 0, $\beta, \gamma \ge 0$, $\beta + \gamma > 0$, $a_i > 0$ for all $i = \overline{1, m-2}$, $0 < \xi_1 < \cdots < \xi_{m-2} < N$, $\sum_{i=1}^{m-2} a_i \xi_i \leqslant N$ and $y_n \ge 0$, for all $n = \overline{1, N-1}$, then the solution u_n , $n = \overline{0, N}$ of problem (1), (2) satisfies $u_n \ge 0$, for all $n = \overline{0, N}$.

Lemma 2.4. ([11]) If d > 0, $\beta, \gamma \ge 0$, $\beta + \gamma > 0$, $0 < \xi_1 < \cdots < \xi_{m-2} < N$, $a_i > 0$, $i = \overline{1, m-2}, a_{m-2} \ge 1$, $N \ge \sum_{i=1}^{m-2} a_i \xi_i$, $y_n \ge 0$ for all $n = \overline{1, N-1}$, then the solution of problem (1), (2) satisfies

$$u_n \leqslant \frac{\beta N + \gamma}{d} \sum_{i=1}^{N-1} (N-i)y_i, \quad \forall n = \overline{0, N},$$
$$u_{\xi_j} \ge \frac{\beta \xi_j + \gamma}{d} \sum_{i=\xi_{m-2}}^{N-1} (N-i)y_i, \quad \forall j = \overline{1, m-2}.$$

Lemma 2.5. ([10]) We assume that β , $\gamma \ge 0$, $\beta + \gamma > 0$, d > 0, $0 < \xi_1 < \cdots < \xi_{m-2} < N$, $a_i > 0$ for all $i = \overline{1, m-2}$, $N > \sum_{i=1}^{m-2} a_i \xi_i$ and $y_n \ge 0$ for all $n = \overline{1, N-1}$. Then the unique solution of problem (1), (2) verifies the relation $\inf_{n=\overline{\xi_{1,N}}} u_n \ge r \|u\|$, where

$$r = \min_{2 \leqslant s \leqslant m-2} \left\{ \frac{\xi_1}{N}, \frac{\sum_{i=1}^{m-2} a_i (N-\xi_i)}{N-\sum_{i=1}^{m-2} a_i \xi_i}, \frac{\sum_{i=1}^{m-2} a_i \xi_i}{N}, \frac{\sum_{i=1}^{s-1} a_i \xi_i + \sum_{i=s}^{m-2} a_i (N-\xi_i)}{N-\sum_{i=s}^{m-2} a_i \xi_i} \right\}$$

and $||u|| = \sup_{n=\overline{0,N}} |u_n|.$

3. Main results

We shall firstly present an existence result for the positive solutions of (S), (BC).

Theorem 3.1. Assume that the assumptions (A1), (A2), (A3)a hold. Then the problem (S), (BC) has at least one positive solution for b > 0 sufficiently small.

Proof. We consider the problem

$$\begin{cases} \Delta^2 h_n = 0\\ \beta h_0 - \gamma \Delta h_0 = 0, \ h_N = \sum_{i=1}^{m-2} a_i h_{\xi_i} + 1. \end{cases}$$
(4)

The solution $(h_n)_{n=\overline{2,N}}$ of $(4)_1$ is given by $h_n = nh_1 - (n-1)h_0$, $n = \overline{2,N}$. Because $\beta h_0 - \gamma (h_1 - h_0) = 0$, that is $h_0 = \frac{\gamma}{\beta + \gamma} h_1$, we get $h_n = \frac{n\beta + \gamma}{\beta + \gamma} h_1$, $n = \overline{2, N}$. By the condition $h_N = \sum_{i=1}^{m-2} a_i h_{\xi_i} + 1$ we obtain $\frac{N\beta + \gamma}{\beta + \gamma} h_1 = \sum_{i=1}^{m-2} a_i \frac{\beta \xi_i + \gamma}{\beta + \gamma} h_1 + 1$, which implies $h_1 = \frac{\beta + \gamma}{d}$. So $h_n = \frac{n\beta + \gamma}{d}$, $n = \overline{2, N}$. Therefore the solution of (4) is

$$h_n = \frac{n\beta + \gamma}{d}, \ n = \overline{0, N}.$$
(5)

We now define $(x_n)_{n=\overline{0,N}}$, $(y_n)_{n=\overline{0,N}}$ by $\begin{cases} u_n = x_n + bh_n \\ v_n = y_n + bh_n, n = \overline{0,N}. \end{cases}$ Then (S), (BC) can be equivalently written as

$$\begin{cases} \Delta^2 x_{n-1} + b_n f(y_n + bh_n) = 0, & n = \overline{1, N-1} \\ \Delta^2 y_{n-1} + c_n g(x_n + bh_n) = 0, & n = \overline{1, N-1}, \end{cases}$$
(6)

with the boundary conditions

$$\begin{cases} \beta x_0 - \gamma \Delta x_0 = 0, \ x_N = \sum_{\substack{i=1\\m-2}}^{m-2} a_i x_{\xi_i} \\ \beta y_0 - \gamma \Delta y_0 = 0, \ y_N = \sum_{i=1}^{m-2} a_i y_{\xi_i}. \end{cases}$$
(7)

Using the Green function given in 2.2, a pair $((x_n)_{n=\overline{0,N}}, (y_n)_{n=\overline{0,N}})$ is a solution of problem (6), (7) if and only if

$$\begin{cases} x_n = \sum_{i=1}^{N-1} G(n,i) b_i f\left(\sum_{j=1}^{N-1} G(i,j) c_j g(x_j + bh_j) + bh_i\right), & n = \overline{0, N}, \\ y_n = \sum_{i=1}^{N-1} G(n,i) c_i g(x_i + bh_i), & n = \overline{0, N}, \end{cases}$$
(8)

where $(h_n)_n$ is given by (5).

We consider the Banach space $X = \mathbb{R}^{N+1}$ with supremum norm $\|\cdot\|$ and we define the set $K = \{(x_n)_{n=\overline{0,N}}, 0 \leq x_n \leq c, \forall n = \overline{0,N}\} \subset X.$

We also define the operator $\Lambda: K \to X$ by

$$\Lambda(x) = \left(\sum_{i=1}^{N-1} G(n,i)b_i f\left(\sum_{j=1}^{N-1} G(i,j)c_j g(x_j+bh_j)+bh_i\right)\right)_{n=\overline{0,N}}, \ x = (x_n)_{n=\overline{0,N}} \in K.$$

For sufficiently small $b > 0$, by (A3)a we deduce

For sufficiently small b > 0, by (A3)a we deduce

$$f(y_n + bh_n) \leqslant \frac{\partial}{L}, \ g(x_n + bh_n) \leqslant \frac{\partial}{L}, \ \forall (x_n)_n, \ (y_n)_n \in K.$$

Then for any $x = (x_n)_n \in K$ we have, using 2.3, that $(\Lambda x)_n \ge 0, \ \forall n \in \overline{0, N}$. By 2.4 we also have

$$y_j \leqslant \frac{\beta N + \gamma}{d} \sum_{k=1}^{N-1} (N-k)c_k g(x_k + bh_k) \leqslant \frac{c}{L} \cdot \frac{\beta N + \gamma}{d} \sum_{k=1}^{N-1} (N-k)c_k$$
$$\leqslant \frac{c}{L} \cdot L = c, \ \forall j = \overline{1, N-1}$$

and

$$\Lambda(x)_n \leqslant \frac{\beta N + \gamma}{d} \sum_{k=1}^{N-1} (N-k) b_k f(y_k + bh_k) \leqslant \frac{c}{L} \cdot \frac{\beta N + \gamma}{d} \sum_{k=1}^{N-1} (N-k) b_k \leqslant \frac{c}{L} \cdot L = c, \ \forall n = \overline{0, N}.$$

Therefore $\Lambda(K) \subset K$.

Using standard arguments we deduce that Λ is completely continuous (Λ is compact because for any bounded set $B \subset K$, $\Lambda(B) \subset K$ is bounded, so in \mathbb{R}^{N+1} is relatively compact, and Λ is continuous because f, g are continuous). By the Schauder fixed point theorem, we conclude that Λ has a fixed point $(x_n)_{n=\overline{0,N}} \in K$. This element together with $(y_n)_{n=\overline{0,N}}$ given by (8) represent a solution for (6), (7). This shows that our problem (S), (BC) has a positive solution $u_n = x_n + bh_n$, $v_n = y_n + bh_n$, $n = \overline{0, N}$ for sufficiently small b > 0.

In the following theorem we shall present sufficient conditions for nonexistence of positive solutions of (S), (BC).

Theorem 3.2. Assume that the assumptions (A1), (A2), (A3)b hold. Then the problem (S), (BC) has no positive solution for b sufficiently large.

Proof. We shall follows the same steps as those used in the proof of Theorem 3.2 from [10]. We suppose that $(u_n)_n$ is a positive solution of (S), (BC). Then $x_n = u_n - bh_n$, $y_n = v_n - bh_n$, $n = \overline{0, N}$ is solution for (6), (7), where $(h_n)_{n=\overline{0,N}}$ is the solution of problem (4). By Lemma 2.3 we have $x_n \ge 0$, $y_n \ge 0$, for all $n = \overline{0, N}$, and by (A2) we deduce that ||x|| > 0, ||y|| > 0. Using Lemma 2.5 we also have $\inf_{n=\overline{\xi_1,N}} x_n \ge r ||x||$ and $\inf_{n=\overline{\xi_1,N}} y_n \ge r ||y||$, where r is defined in Lemma 2.5.

Using now (5) - the expression for
$$(h_n)_{n=\overline{0,N}}$$
 we deduce that

$$\inf_{n=\overline{\xi_1,N}} h_n = \frac{\beta\xi_1 + \gamma}{d} \ge \frac{\xi_1 h_N}{N} = \frac{\xi_1}{N} \cdot \frac{\beta N + \gamma}{d}.$$
So $\inf_{n=\overline{\xi_1,N}} h_n \ge \frac{\xi_1}{N} \|h\|$, $(\|h\| = h_N)$. Then

$$\inf_{n=\overline{\xi_1,N}} (x_n + bh_n) \ge r(\|x\| + b\|h\|) \ge r\|x + bh\|$$
and

and

$$\inf_{n=\overline{\xi_{1,N}}}(y_n+bh_n) \ge r(\|y\|+b\|h\|) \ge r\|y+bh\|.$$

We now consider

$$R = \frac{d}{r(\beta\xi_{m-2} + \gamma)} \left(\min\left\{ \sum_{j=\xi_{m-2}}^{N-1} (N-j)c_j, \sum_{j=\xi_{m-2}}^{N-1} (N-j)b_j \right\} \right)^{-1} > 0.$$

By (A3)b, that is $\lim_{u\to\infty} \frac{f(u)}{u} = \infty$, $\lim_{u\to\infty} \frac{g(u)}{u} = \infty$, for *R* defined above we deduce that there exists M > 0 such that f(u) > 2Ru, g(u) > 2Ru, for all $u \ge M$.

We consider b > 0 sufficiently large such that

 $\inf_{n=\overline{\xi_1,N}} (x_n + bh_n) \ge M \text{ and } \inf_{n=\overline{\xi_1,N}} (y_n + bh_n) \ge M.$ Then we have $y_{\xi_{m-2}} \ge \sum_{\substack{j=\xi_{m-2}}}^{N-1} \frac{\beta\xi_{m-2} + \gamma}{d} (N-j)c_jg(x_j + bh_j)$ $\ge \sum_{\substack{j=\xi_{m-2}}}^{N-1} \frac{\beta\xi_{m-2} + \gamma}{d} (N-j)c_j \cdot 2R(x_j + bh_j)$

$$\geq \sum_{\substack{j=\xi_{m-2}\\j=\xi_{m-2}}}^{N-1} \frac{\beta\xi_{m-2}+\gamma}{d} (N-j)c_j \cdot 2R \inf_{\substack{k=\overline{\xi_{m-2},N}}} (x_k+bh_k)$$

$$\geq \sum_{\substack{j=\xi_{m-2}\\j=\xi_{m-2}}}^{N-1} \frac{\beta\xi_{m-2}+\gamma}{d} (N-j)c_j \cdot 2R \inf_{\substack{k=\overline{\xi_{1},N}}} (x_k+bh_k)$$

$$\geq \sum_{\substack{j=\xi_{m-2}\\d}}^{N-1} \frac{\beta\xi_{m-2}+\gamma}{d} (N-j)c_j \cdot 2R\delta ||x+bh||$$

$$\geq 2||x+bh|| \geq 2||x||.$$

And then we obtain

$$||x|| \leq \frac{1}{2} y_{\xi_{m-2}} \leq \frac{1}{2} ||y||.$$
(9)

In a similar manner we deduce $x_{\xi_{m-2}} \ge 2||y + bh|| \ge 2||y||$ and so

$$\|y\| \leq \frac{1}{2} x_{\xi_{m-2}} \leq \frac{1}{2} \|x\|.$$
(10)

By (9) and (10) we obtain $||x|| \leq \frac{1}{2}||y|| \leq \frac{1}{4}||x||$, which is a contradiction, because ||x|| > 0.

Then, when b is sufficiently large, our problem (S), (BC) has no positive solution.

4. An example

We consider $b_n = \frac{b_0}{N-n}, c_n = \frac{c_0}{N-n}$ for all $n = \overline{1, N-1}, b_0, c_0 > 0, \beta = 2, \gamma = \frac{1}{4}, m = 5, \xi_1 = \frac{N}{4}, \xi_2 = \frac{N}{2}, \xi_3 = \frac{3N}{4} (N = 4M, M \ge 1), a_1 = \frac{1}{4}, a_2 = \frac{1}{3}, a_3 = 1.$ Then $d = \frac{2N-7}{48} > 0$ and the assumption $N > \sum_{i=1}^{3} a_i \xi_i$ is verified $(N > \frac{47}{48}N)$. We consider $f, g: [0, \infty) \to [0, \infty), f(x) = \frac{\widetilde{a}x^3}{x+1}, g(x) = \frac{\widetilde{b}x^3}{x+1}$, with $\widetilde{a}, \widetilde{b} > 0$. We have $\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{g(x)}{x} = \infty$. Next the constant L from (A3) is in this case $L = \max\left\{\frac{\beta N + \gamma}{d}\sum_{i=1}^{N-1} (N-i)b_i, \frac{\beta N + \gamma}{d}\sum_{i=1}^{N-1} (N-i)c_i\right\}$ $= \frac{12(8N+1)(N-1)}{2N-7}\max\{b_0, c_0\}.$ We choose c = 1 and if we select \widetilde{a} and \widetilde{b} satisfying the conditions $\widetilde{a} < \frac{2}{L} = \frac{2(2N-7)}{12(8N+1)(N-1)}\min\left\{\frac{1}{b_0}, \frac{1}{c_0}\right\},$ $\widetilde{b} < \frac{2}{L} = \frac{2(2N-7)}{12(8N+1)(N-1)}\min\left\{\frac{1}{b_0}, \frac{1}{c_0}\right\},$ then we obtain $f(x) \leq \frac{\widetilde{a}}{2} < \frac{1}{L}, g(x) \leq \frac{\widetilde{b}}{2} < \frac{1}{L}$, for all $x \in [0, 1]$. Thus all the assumptions (A1)-(A3) are verified. By Theorem 3.1 and Theorem 3.2 we deduce that the nonlinear discrete system

$$\begin{cases} \Delta^2 u_{n-1} + \frac{b_0}{N-n} \cdot \frac{\tilde{a}v_n^3}{v_n + 1} = 0\\ \Delta^2 v_{n-1} + \frac{c_0}{N-n} \cdot \frac{bu_n^3}{u_n + 1} = 0, \ n = \overline{1, N-1} \ (N = 4M, \ N \ge 4), \end{cases}$$

with the boundary conditions

$$\begin{cases} u_0 = \frac{u_1}{9}, \ u_N - \frac{1}{4}u_{N/4} - \frac{1}{3}u_{N/2} - u_{3N/4} = b, \\ v_0 = \frac{v_1}{9}, \ v_N - \frac{1}{4}v_{N/4} - \frac{1}{3}v_{N/2} - v_{3N/4} = b \end{cases}$$

has at least one positive solution for sufficiently small b > 0 and no solution for sufficiently large b.

References

- D.R. Anderson, Solutions to second-order three-point problems on time scales, J. Differ. Equations Appl., 8 (2002), 673-688.
- [2] D.R. Anderson, Twin *n*-point boundary value problems, Appl. Math. Lett., 17 (2004), 1053-1059.
- [3] R. Avery, Three positive solutions of a discrete second order conjugate problem, PanAmer. Math. J., 8 (1998), 79-96.
- W. Cheung, J. Ren, Positive solutions for discrete three-point boundary value problems, Austr. J. Math. Anal. Appl., 1 (2004), 1-7.
- [5] Y. Guo, W. Shan, W. Ge, Positive solutions for second order *m*-point boundary value problems, J. Comput. Appl. Math., 151 (2003), 415-424.
- [6] J. Henderson, S.K. Ntouyas, Positive solutions for systems of nonlinear boundary value problems, Nonlinear Stud., 15 (2008), 51-60.
- [7] J. Henderson, S.K. Ntouyas, Positive solutions for systems of three-point nonlinear boundary value problems, Austr. J. Math. Anal. Appl., 5 (2008), (1), 1-9.
- [8] J. Henderson, S.K. Ntouyas, I.K. Purnaras, Positive solutions for systems of three-point nonlinear discrete boundary value problems, Neural Parallel Scient. Comput., 16 (2008), 209-224.
- [9] V. Il'in, E. Moiseev, Nonlocal boundary value problems of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Differ. Equa., 23 (1987), 803-810.
- [10] W.T. Li, H.R. Sun, Positive solutions for second-order *m*-point boundary value problems on times scales, Acta Math. Sin., Engl. Ser., 22, No.6 (2006), 1797-1804.
- [11] R. Luca, Positive solutions for m + 1 point discrete boundary value problems, Libertas Math., in press.
- [12] R. Ma, Positive solutions for second order three-point boundary value problems, Appl. Math. Lett., 14 (2001), 1-5.
- [13] R. Ma, Y. Raffoul, Positive solutions of three-point nonlinear discrete second order boundary value problem, J. Difference Equ. Appl., 10 (2004), 129-138.
- [14] S.K. Ntouyas, Nonlocal initial and boundary value problems: a survey, Handbook of differential equations: Ordinary differential equations, Vol.II, 461-557, Elsevier, Amsterdam, 2005.
- [15] H.R. Sun, W.T. Li, Existence of positive solutions for nonlinear three-point boundary value problems on time scales, J. Math. Anal. Appl., 299 (2004), 508-524.

Rodica LUCA

Department of Mathematics, Gh. Asachi Technical University, 11 Blvd. Carol I, Iasi 700506, Romania, E-Mail: rlucatudor@vahoo.com