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Abstract. In this paper, we establish relationships between complete quasi-
metric spaces and some Amsterdam properties. It is shown that every left K-
sequentially complete quasi-pseudo-metric space is weakly hypocompact; and
every regular quasi-developable left K-sequentially complete quasi-metric space
is hypocompact. Examples of quasi-metric spaces which satisfy some Amster-
dam properties but admit no any compatible left K-sequentially complete quasi-
metric are provided.
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1. Introduction

The Baire category theorem in mathematics says that if a topological space X

is either completely metrizable or locally compact Hausdorff, then the intersection of

countably many dense open sets of X is still dense. Spaces which have the topological

property described in the conclusion of the Baire category theorem, i.e., spaces in which

the intersection of any countable collection of dense open sets is dense, are called Baire

spaces. Since this theorem has numerous applications in analysis and topology, it is

interesting to consider the following classical problem.

Problem 1.1. Is there a natural class of spaces which contains all completely metrizable

spaces and all locally compact Hausdorff spaces such that the conclusion of the Baire

category theorem remains valid?

Čech [4] gave one solution to this problem by introducing the class of Čech complete

spaces, where he proved that every Čech complete space is Baire, and a metrizable space

is completely metrizable if and only if it is Čech complete. Recall that a Tychonoff space

X is Čech complete if it is a Gδ-set of its Stone-Čech compactification βX [6]. In studying
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Problem 1.1, de Groot and his students introduced various completeness properties which

were called Amsterdam properties, see [1]. In particular, de Groot [9] proved that a

metrizable space is completely metrizable if and only if it is subcompact, where a regular

space X is called subcompact if there is a base B such that
⋂F 6= ∅ whenever F ⊆ B is a

regular filterbase. Recall that a collection F of nonempty subsets of X is called a regular

filterbase if for every pair of sets F1, F2 ∈ F there is an F3 ∈ F such that F3 ⊆ F1 ∩ F2.

Subcompactness is just one of the Amsterdam properties, in what follows we shall mention

a few more of them. A space X is called base-compact [1] (resp. hypocompact [5]) if there

is a base B such that
⋂

F∈F F 6= ∅ for any centered system (resp. filterbase) F ⊆ B.

Furthermore, a space is called weakly base-compact (resp. weakly hypocompact [5]) if

there is a sequence of bases {Bn : n ∈ N} such that {Bn : n ∈ N} is a centered system

(resp. filterbase) and Bn ∈ Bkn with k1 < k2 < · · · imply
⋂

n∈NBn 6= ∅. Countably

base-compact (subcompact, hypocompact) spaces can be defined similarly.

Since every completely metrizable space has all the previously mentioned Amster-

dam properties, we consider the following natural problem.

Problem 1.2. Does a “complete” quasi-metric space X have any of the previously men-

tioned Amsterdam properties?

Recall that a (resp. non-Archimedean) quasi-pseudo-metric d on a nonempty set

X is a function d : X × X → R+ such that (i) d(x, x) = 0 for all x ∈ X; (ii) d(x, z) 6
d(x, y) + d(y, z) (resp. d(x, z) 6 max{d(x, y), d(y, z)}) for all x, y, z ∈ X. The pair (X, d)

is called a (resp. non-Archimedean) quasi-pseudo-metric space. If d satisfies the additional

condition that d(x, y) = 0 implies x = y then d is called a (resp. non-Archimedean) quasi-

metric. The set Bd(x, ε) = {y ∈ X : d(x, y) < ε} is the d-ball with centre x and radius ε.

A topological space (X, τ) is called (resp. non-Archimedeanly) quasi-pseudo-metrizable if

there is a (resp. non-Archimedean) quasi-pseudo-metric d on X such that τ = τd.

In the literature, there are several different versions of completeness for quasi-metric

spaces. In this paper, we mainly consider two of them, namely left K-sequential com-

pleteness and left p-sequential completeness. Let (X, d) be a quasi-pseudo-metric space.

A sequence {xn : n ∈ N} in (X, d) is called left K-Cauchy (resp. weakly left K-Cauchy)

if for each ε > 0 there is some k ∈ N such that d(xn, xm) < ε for all k 6 n 6 m (resp.

d(xk, xm) < ε for all m ≥ k); and (X, d) is said to be left K-sequentially complete (resp.

weakly left K-sequentially complete) if every left K-Cauchy (resp. weakly left K-Cauchy)



sequence converges to some point x ∈ X. Further, a sequence {xn : n ∈ N} in (X, d)

is said to be left p-Cauchy if for every ε > 0 there are x ∈ X and k ∈ N such that

d(x, xn) < ε for all n > k; and (X, d) is said to be left p-sequentially complete if every left

p-Cauchy sequence converges to some point x ∈ X. A good reference for these notions is

[13].

Note that Problem 1.2 is also relevant to another problem: how to find analogues

of the Baire category theorem for quasi-metric spaces. As a matter of fact, attempts in

this direction have been made by several authors. For instance, Kelly [10] and Reilly

et al [13] discovered a version of the Baire category theorem for quasi-metric spaces in

a bitopological context; Ferrer and Gregori [7] showed that every quasi-regular left K-

sequentially complete quasi-pseudo-metric space is a Baire space. Moreover, Ferrer and

Gregori’s result was re-discovered by Bentley et al in [3]. By studying Problem 1.2, we

can improve all these existing analogues of the Baire category theorem.

2. Main Results

Recall that a topological space X is said to be quasi-regular if for every nonempty

open set V ⊆ X, there is a nonempty open set U such that U ⊆ V .

The following version of Baire category theorem for quasi-pseudo-metric spaces has

been established in the literature.

Theorem 2.1 ([3], [7]). A quasi-regular left K-complete quasi-pseudo-metric space (X, d)

is a Baire space.

Note that the “quasi-regular” cannot be dropped in Theorem 2.1, as shown in [7].

Using some Amsterdam property, we can improve Theorem 2.1 as shown in our next

theorem.

Lemma 2.2. A topological space X is weakly hypocompact if, and only if X admits a

sequence of bases {Bn : n ∈ N} such that
⋂

j∈NBj 6= ∅ for every sequence {Bj : j ∈ N}
satisfying Bj ∈ Bmj

with {mj : j ∈ N} ⊆ N, mj < mj+1 and Bj+1 ⊆ Bj for all j ∈ N.

Proof. The necessity is trivially true. To show the sufficiency, let F = {Fn : n ∈ N}
be a countable filterbase such that Fn ∈ Bkn with k1 < k2 < · · · . Put U1 = F1 and

n1 := min{n > 1 : Fn ⊆ U1}. Then, there is an U2 ∈ F such that U2 ⊆
⋂n1+1

i=1 Fi. Put



n2 = min{n > n1 : Fn ⊆ U2}. Then n1 < n2. Repeating this process, we obtain a

sequence {Uj : j ∈ N} ⊆ F and a subsequence {Fnj
: j ∈ N} ⊆ F which satisfy the

following conditions

(i) Uj+1 ⊆
⋂nj+1

i=1 Fi for all j ∈ N,

(ii) nj+1 = min{n > nj : Fn ⊆ Uj+1} for all j ∈ N,

(iii) Fnj
∈ Bknj

,

(iv) kn1 < kn2 < · · · ,
(v) Fnj

⊇ Fnj+1
for all j ∈ N.

For convenience, we write Bj = Fnj
and mj = knj

for all j ∈ N. Then, by the assumption

and our previous construction, we obtain
⋂

n∈N Fn =
⋂

j∈NBj 6= ∅. This completes the

proof of the sufficiency. ¤

Theorem 2.3. Every left K-sequentially complete quasi-pseudo-metric space is weakly

hypocompact.

Proof. Let (X, d) be a left K-sequentially complete quasi-pseudo-metric space. For each

n ∈ N, let

Bn =

{
Bd

(
x,

1

2k

)
: k ≥ n, x ∈ X

}
.

Then, it is clear that {Bn : n ∈ N} is a sequence of bases for τd. To show that (X, d) is

weakly hypocompact, by Lemma 2.2, let {Bj : j ∈ N} be a sequence such that Bj ∈ Bmj

with {mj : j ∈ N} ⊆ N, mj < mj+1 and Bj+1 ⊆ Bj for all j ∈ N. Without loss of

generality, we may assume that Bj = Bd

(
xmj

, 1
2mj

)
for each j ∈ N. Since {mj : j ∈ N} ⊆

N is an increasing sequence, it is easily verified that {xmj
: j ∈ N} is a left K-Cauchy

sequence in (X, d). Since (X, d) is a left K-sequentially complete quasi-pseudo-metric

space, {xmj
: j ∈ N} converges to a point x0 ∈ X. Clearly, x0 ∈

⋂
j∈NBj, and therefore

(X, d) is weakly hypocompact. ¤

Corollary 2.4. If a quasi-pseudo-metric space has one of the following properties:

(i) left p-sequentially complete,

(ii) weakly left K-sequentially complete,

(iii) left K-sequentially complete,

then it is a weakly hypocompact space, and thus a Baire space.

Proof. Note that left p-sequentially complete ⇒ weakly left K-sequentially complete ⇒
left K-sequentially complete, and then Theorem 2.3 applies. ¤



Since every quasi-regular hypocompact space is Baire, Theorem 2.1 follows directly

from Theorem 2.3. To strengthen the conclusion of Theorem 2.3, we need an auxiliary

concept and lemma. Let X be a nonempty set. We say that a family F of subsets of X

has the decreasing chain condition [9] if any properly decreasing sequence of elements of

F is finite.

Lemma 2.5 ([9]). Any cover of a nonempty set X has a subcover which has the decreasing

chain condition.

Recall that a space X is said to be quasi-developable if there is a sequence of families

of nonempty open subsets {Gn : n ∈ N} such that for each x ∈ X, {st(x, Gn) : st(x, Gn) 6=
∅, and n ∈ N} is a local base at x, where

st(x, Gn) =
⋃
{G ∈ Gn : x ∈ G}.

for x ∈ X and n ∈ N.

Theorem 2.6. Every regular, quasi-developable and left K-sequentially complete quasi-

pseudo-metric space is hypocompact.

Proof. Let (X, d) be a regular, quasi-developable and left K-sequentially complete quasi-

pseudo-metric space. For each n ∈ N, let

Bn =

{
Bd

(
x,

1

2k

)
: k ≥ n, x ∈ X

}
.

Then {Bn : n ∈ N} is a sequence of bases for τd on X. First, we verify that if {Bn : n ∈ N}
is a properly decreasing sequence of open subsets of X with Bn ∈ Bn for all n ∈ N,

then {Bn : n ∈ N} is a convergent filterbase. Again, for each n ∈ N, we assume that

Bn = Bd(xkn , 1
2kn ) for some kn ≥ n, where k1 < k2 < · · · . Then, as a left K-Cauchy

sequence in (X, d), {xkn : n ∈ N} converges to a point x0 ∈ X. We claim that {Bn : n ∈ N}
converges to x0. Suppose the contrary. Then there exist an open neighbourhood V of x0

and a sequence {ykn : n ∈ N} in X such that ykn ∈ Bd(xkn , 1
2kn )\V for all n ∈ N. Observe

that {ykn : n ∈ N} also converges to the point x0. As {ykn : n ∈ N} ⊆ X \ V , x0 6∈ V .

This is a contradiction.

Now, let {Gn : n ∈ N} be a quasi-development for X. Define

B′
n = {B ∈ Bn : B ⊆ G for some G ∈ Gn}.

For every n ∈ N, by Lemma 2.5, there is a subfamily B′′
n of B′

n such that



(i)
⋃

B′
n =

⋃
B′′

n;

(ii) B′′
n satisfies the decreasing chain condition.

We first claim that
⋃

n∈NB′′
n is a base for X. In fact, for each x ∈ X and each neighborhood

U of x, there is some n0 ∈ N such that {G ∈ Gn0 : x ∈ G} 6= ∅ and st(x, Gn0) ⊆ U .

Thus, x ∈ ⋃
B′

n0
=

⋃
B′′

n0
. Choose B ∈ B′′

n0
with x ∈ B, then B ⊆ st(x, Gn0) ⊆ U .

To show that X is hypocompact, let F ⊆ ⋃
n∈NB′′

n be a filterbase. Suppose that F does

not have a cluster point, i.e.,
⋂

F∈F F = ∅. First, pick an arbitrary F1 ∈ F . Then,

there must be some element F ′
2 ∈ F with F1 6⊆ F ′

2. Choose a element F2 ∈ F such that

F2 ⊆ F1 ∩ F ′
2. It is clear that F2 is a proper subset of F1. Continuing this process, we

obtain a properly decreasing sequence F1 ⊃ F2 ⊃ · · · in F (and thus in
⋃

n∈NB′′
n). By

(ii), we can take a properly increasing subsequence k1 < k2 < · · · such that Fn ∈ B′′
kn

for

all n ∈ N. As pointed out previously, {Fn : n ∈ N} must converge to some point p ∈ X.

Since p 6∈ ⋂
F∈F F , then p ∈ X \ Fp for some Fp ∈ F . Hence, there is some k ∈ N such

that Fk ⊆ X \ Fp. It follows that Fk ∩ Fp = ∅. This contradicts with the fact that F is a

filterbase. Therefore, we have
⋂

F∈F F 6= ∅ and X is hypocompact. ¤

Corollary 2.7. If a regular and quasi-developable quasi-pseudo-metric space has any of

the following properties

(i) left p-sequentially complete,

(ii) weakly left K-sequentially complete,

then it is hypocompact.

Corollary 2.8 ([14]). Every regular, quasi-developable and left K-sequentially complete

quasi-metric space (X, d) is subcompact.

The answers of the following two questions are still unclear to the authors.

Question 2.9. Can the conclusion in Theorem 2.6 be sharpened to be base-compact?

Question 2.10. Must every left K-sequentially complete quasi-pseudo-metric space be

base-compact, subcompact or hypocompact?



3. Some Examples

In this section, we consider the converse of Problem 1.2, that is, if a quasi-metric

space has some Amsterdam properties, must it be completely quasi-metrizable in some

sense?

It is shown in [9] that a metrizable space is completely metrizable if, and only if it is

subcompact. However, until now, it seems to the authors that no quasi-metric analogue

to this result has been found yet.

Lemma 3.1 ([14]). A regular paracompact space is completely metrizable if, and only if

it has a compatible left K-sequentially complete quasi-metric.

Example 3.2. The Sorgenfrey line S is quasi-metrizable and subcompact, but admits

no compatible left K-sequentially complete quasi-metric. It is known that S is a Haus-

dorff, subconmpact and paracompact space, which is neither base-compact nor metrizable.

Hence, it admits no compatible left K-sequentially complete quasi-metric. Otherwise, by

Lemma 3.1, it will be completely metrizable, which is a contradiction.

Another well-known fact is that a (pseudo-) metrizable space is base-compact if,

and only if it is completely (pseudo-) metrizable, refer to [5, p. 401].

Example 3.3. The Michael line L is quasi-metrizable and base-compact, but admits no

compatible left K-sequentially complete quasi-metric. It is known that L is a Hausodrff,

base-compact, paracompact space which is not metrizable. Thus, by Lemma 3.1, L admits

no compatible left K-sequentially complete quasi-metric.

In what follows, we provide another example which has the properties similar to

those of spaces mentioned in Example 3.2 and Example 3.3. To this purpose, we need to

introduce some notation. Let V be a relation on a topological space X, that is, V ⊆ X×X.

Recall that V is said to be transitive if V ◦V ⊆ V . Furthermore, V is called a neighbornet

if for every x ∈ X, V (x) := {y ∈ X : (x, y) ∈ V } is a neighborhood of x.

Lemma 3.4 ([8]). A T1 topological space X is non-Archimedeanly quasi-metrizable if and

only if there is a sequence {Tn : n ∈ N} of transitive neighbournets such that {Tn(x) : n ∈
N} is a local base for every point x ∈ X.



Example 3.5. A base-compact quasi-metrizable space which admits no compatible left

K-sequentially complete quasi-metric. Let X =
⋃

α6ω1
Nα. For each α < ω1, x ∈ Nα and

n ∈ N, put

Un(x) = {x} ∪ {y ∈ X : x ⊆ y and y(α) ≥ n};

and for each x ∈ Nω1 , let Un(x) = {x} for all n ∈ N. Let X be equipped with the topology

generated by the base

B = {Un(x) : x ∈ X, and n ∈ N}.

First, we show that X is non-Archimedeanly quasi-metizable and non-metrizable. For each

n ∈ N, set Tn =
⋃

x∈X{x} × Un(x). Since Tn ◦ Tn ⊆ Tn for each n ∈ N, then {Tn : n ∈ N}
is a sequence of transitive neighbournets. By Lemma 3.4, X is non-Archimedeanly quasi-

metrizable. Since the subspace
⋃

α<ω1
Nα of X is precisely the space defined in [2], which

is non-metrizable, we conclude that X is non-metrizable either.

Secondly, we show that X is base-compact. Observe that for any two elements

B1, B2 ∈ B, either B1 ∩B2 = ∅, or one of them contains the other. In fact, suppose that

B1 = Un(x) and B2 = Um(y). If neither of x and y is an extension of the other, then

Un(x)∩Um(y) = ∅. If x is an extension of y, but x 6∈ Um(y), we still have Un(x)∩Um(y) = ∅.
Finally, if x ∈ Um(y) then Un(x) ⊆ Um(y). Now let F ⊆ B be a subfamily which has

the finite intersection property. Then F is linearly ordered by set-theoretic inclusion ⊆.

Enumerate F as F = {Un(α)(xα) : α ∈ A}. It is easy to see that x =
⋃

α∈A xα ∈
⋂

F∈F F .

It follows that X is base-compact.

Next, we prove that X is paracompact. Let U be an open cover of X. For each point

x ∈ N2, there is a Un(x)(x) ∈ B contained in some element of U . Let V2 = {Un(x)(x) : x ∈
N2}. Since no two points of N2 are extensions of each other, V2 is pairwise disjoint. For

each β < ω1, suppose that we have constructed a disjoint subfamily Vα ⊆ B such that

Vα is a cover of
⋃

γ6αNγ, Vγ ⊆ Vα if γ < α < β, and each element of Vα is contained in

some element of U . Now choose some Un(x)(x) ∈ B which is contained in some element

of U for each point x ∈ Nβ \⋃
α<β

⋃Vα. Clearly,

Un(x)(x) ∩
(⋃

α<β

⋃
Vα

)
= ∅.



Now, put

Vβ = {Un(x)(x) : x ∈ Nβ} ∪
⋃

α<β

Vα,

and

V =
⋃

α<ω1

Vα ∪
{
{x} : x ∈ X \

⋃
α<ω1

Vα

}
.

Then, V is a pairwise disjoint open refinement of U . Hence, X is paracompact.

Finally, if X admits a left K-sequentially complete quasi-metric, by Lemma 3.1, it

is completely metrizable. This is a contradiction. Therefore, X admits no compatible left

K-sequentially complete quasi-metric. ¤

Question 3.6. Must every Čech-complete quasi-metric space admit a compatible left K-

sequentially complete quasi-metric?

Note added in proof. After the paper was accepted, Prof. Hans-Peter Künzi

informed the authors that Question ?? had been solved by him and Romaguera in Propo-

sition 10 of [Some remarks on Doitchinov completeness, Topology Appl. 74 (1996), 61–72].

Furthermore, it was established by Romaguera in Proposition 1 of [Left K-completeness

in quasi-metric spaces, Math Nachr. 157 (1992), 15–23] that for any quasi-pseudo-

metric space, left K-sequential completeness and weakly left K-sequential completeness

are equivalent.
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