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Abstract. The paper deals with the dynamics of discrete-continuous systems longitudinally
deformed. These systems consist of elastic elements connected by means of rigid bodies. In
the discussion a wave method using the solution of the d’Alembert type is applied, what
leads to equations with a retarded argument. After a general information concerning the
wave approach, detailed considerations are done for a system consisting of three rods and
two rigid bodies. Rods in the system have variable cross-sections and in numerical
calculations their effect on rods’ displacements is investigated.
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1. INTRODUCTION

In the paper dynamical discrete-continuous systems are investigated. Such systems
consist of elastic elements connected by means of rigid bodies. The considered systems
belong to a certain class of discrete-continuous systems, namely to those where the
motion of elastic elements with a constant cross-section is described by the classical
wave equation. In the discussion a wave approach is used, what leads to solving
equations with a retarded argument. The proposed approach can be applied in the study
of systems longitudinally and torsionally deformed, strings or systems subject to shear
deformations, [9]. Elastic elements in the systems can have variable or constant cross-
sections. It is required that functions describing variable cross-sections allow to use the
solution of the d’Alembert type for equations of motion, i.e., to use the wave approach.

At the beginning, the wave approach is presented shortly. Detailed considerations are
done next for a system consisting of two rigid bodies and three noncoaxial rods
longitudinally deformed with variable cross-sections. Such systems can be used in the
modelling of fragments of plane trusses, [3,4,7,8]. The rod-rigid element systems with
constant rod cross-sections are discussed in [7,8,11]. In [7] linear systems while in
[8,11] systems with a local nonlinearity are studied.
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The aim of the present paper is to propose functions for the description of rod cross-
sections, to formulate the initial-boundary problem for the linear system consisting of
two rigid bodies and three rods having variable cross-sections, and to investigate in
numerical calculations the effect of the variable cross-sections on the behavior of the
considered system.

2. WAVE APPROACH

The proposed wave approach can be applied in the discussion of multi-mass discrete-
continuous systems subject to longitudinal, torsional or shear deformations. These
systems consist of elastic elements connected by rigid bodies. During the motion the
cross-sections of elastic elements remain flat. Rigid bodies can be loaded by an external
loading P(t). Elastic elements can have variable cross-sections described by the
functions

A(X) = Ay (L= x/by ) (2.1)

where A (x)=0 for x=Db, and A (x)=A, Iisconstantfor b, — = co. Exemplary

diagrams of functions (2.1) are given in Fig. 1 for i = 1. From Fig. 1 it follows that for
b, =—1000 functions (2.1) can be considered as constant functions. It should be

pointed out that functions (2.1) allow to apply the solutions of the d’Alembert type for
equations of motion, i.e., to use the wave approach.
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Fig. 1. Diagrams of functions (2.1)

The determination of displacements W, of the ith elastic element having the cross-
sections (2.1) is reduced to solving the following equation of motion

=0, =123, (2.2)

oW, (oW, 2 oW,
ot’ ox* by —x oOXx

with a being a wave speed. The solutions of equations (2.2) are sought in the form, [5],

1

0i

W, (x,t) = [fi(a(t_tOi)_X+X0i)+gi(a(t_tOi)+X_X0i)] (2.3)

where f, and g, represent waves propagating in the ith elastic element in the

consistent and opposite to x-axis senses, and the constants t;, and X, denote the

I
time instant and the end of the ith elastic element where the first disturbance caused by
the external force P(t) occurs. For the constant cross-section, equations (2.2) become
classical wave equations and solutions are looking for only by means of the sum of the
functions f; and g;, i.e., without denominators in (2.3), and with the same arguments.

The assumed solutions satisfy identically the equations of motion (2.2).

To equations (2.2) one has to add zero initial conditions and appropriate boundary
conditions which are conditions for displacements and forces acting in the cross-
sections where rigid bodies are located. Upon substituting (2.3) into appropriate
boundary conditions the equations with a retarded argument are obtained, [7-11].
Differential-difference equations have incessantly some attention in the literature,
[1,2,6]. It appears that equations of such a type are obtained in the study of discrete-
continuous dynamical systems. Details investigations are presented below for the
system longitudinally deformed.

3. SYSTEM LONGITUDINALLY DEFORMED, GOVERNING EQUATIONS

The wave approach can be applied for various systems having elastic elements
described by equations (2.2). Here this approach is shown for the linear system
consisting of 3 rods longitudinally deformed and of 2 rigid bodies, Fig. 2. Rods are not
coaxial, so in the description a fixed reference system Oxy and one-dimensional
coordinate systems 0, x; assigned to individual ith rod are used. The displacement of



the cross-section x; in the ith rod is described by the function u, (x;,t) dependent on

the location of the considered cross-section and on time, whereas the time functions
U;,V,; arethe components of the displacements of the jth rigid body in the x-axis and

y-axis directions, respectively.

Fig. 2. Rod-rigid element system longitudinally deformed

The considered system can represent a fragment of plane trusses with members subject
to longitudinal deformations modelled by discrete-continuous models, [3,4,7,8]. An
external excitation is applied to a rigid body located, for example, in a truss joint. In this
cross-section a visco-elastic discrete element is also located. Rods are characterized by
the Young’s modulus E, density o and the length I.. The cross-section of rods can
be variable. We proposed to describe them by functions (2.1). Damping in the rods is
taken into account by means of an equivalent internal and external damping with
appropriate coefficients D; and d;. Here the case when the motion of the rigid body

having mass m, in the x-axis direction is neglected (U, =0) is discussed.
It is convenient to perform the discussion in the following nondimensional quantities

o =u/u,, X=x/l,, t=at/l,, I.=1/1, D,=D,all,



aij :dijlo I(amy), Ri=m/m,, K, =A;pl/my, A=ATA;, (3.1)

by

=by /1y, P =PIZI(um,a®), k; =k;l?/(m,a?)
where m,, |, and u, are fixed mass, length and displacement, respectively.

Under the assumed assumptions, the determination of nondimensional displacements
u; (x;,t) of rods leads to solving three equations of motion

2 2
OU QU 2 ) 5 =123 (3.2)
ot ox: by —x 0O
where a® = E/ p, with zero initial conditions
ou, .
ui(xi,t):a—t'(xi,t)zo for t=0, 1=123, (3.3)

and with the following boundary conditions
u,(x,t)=0 for x, =0,

u,cosf—-u,cosa=0 for x, =1, x,=1,,
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_R{C 0 “1+clﬂ]—dlz[02%+q%j+

a2 e ot ot
—k,,(C,u, +Cyu,) — A (x,)K, cosa Dl%+2—xj+ (3.4)
—Az(xz)chosﬂ(Dz g:;5t+2% TP =0 for x, =1, x, =1,
—Rz%—dﬂ%—kﬂus—AS(XS)Ka(DS s;‘gt+‘2—z:]+
—Az(xz)Kzsinﬂ[Dzs:;;t+2%j:0 for x,=0, x, =1,



u;sing+u,=0 for x,=0, x;=1,,
Us(X;,t)=0 for x,=0

with C, =sina/sin(a+ ), C, =sin g/sin(a+ ). In relations (3.2) - (3.4) bars
denoting nondimensional quantities are omitted, for convenience. When the rods in the
considered system have constant cross-sections then the boundary conditions (3.4)
coincide with appropriate boundary conditions given in [7].

The solutions for equations (3.2) are looking for in the form

U, (%, t) :#[fl(t_xl +1)+ 09, (t+x _Il)]’
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0 (k) =[x 1) 49,00 - 1), @5)
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U3(X3,'[) :—b[fs(t_xs _Iz +|3)+93(t+x3 _Iz _|3)]'
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In seeking solutions it is taken into account that the first disturbance caused by the
external force P(t) occurs in rods (1) and (2) at time instant t=0 in x, =1, x, =1,,

whileintherod (3)at t=1, in x; =1,.

Upon substituting (3.5) into boundary conditions (3.4) the following equations with a
retarded argument for unknown functions f,(z) and g,(z) are obtained

fl(Z) = _gl(z - 2'1) )
f,(2) =-9,(z-2l,) + byL, Sinﬂ[fs(z =2l,)+95(z- 2'2)]’
f3(Z) = —g3(z - 2'3) 1 (3.6)

r,0:(2) =1,0,(2) + 1 £.(2) + 1, £/(2) + 15 ,(2) + 15 T, (2)
+ r17[f1(z) + gl(z)]+ LIlP(Z),

9,(z) = —1,(2) + LL;'[f,(2) + 9,(2)]cos B/ cosex ,



1,05 (2) = 15,05(2) + 1, 1(2) + 15, £5(2) + 15595 (2) + 15595 (2)
+ r37[f3(z) + 93(2)]

where
r, =R, /cosa +S,K,D, cosa + S,K,D, cos’ g/ cosa,
r, =S,K,D,L, cosa —d,, /cose — S, K, cosa + S,K,D,L, cos® #/cosa
-S,K, cos® glcosa,
r, =S,K,D, cosa—R, /cosa - S,K,D, cos* B/ cosa,
r, =S,K,D,L, cosa —d,, /cosa +S,K, cosa + S,K,D,L, cos* B/ cosa
-S,K, cos® Blcosa,
. =2S,K,D,L'L,cos B, 1, =2S,K,L;'L,cosf3,
r, =S,K,L, cosa —k,, /cosa +S,K,L, cos®* B/ cose, (3.7)
r, =R, + S,K,D, + K,D, sin? g,
r, = S;K,D,L, —d,, — S,K, + K,D,sin’ /b, — K, sin* 3,
s = S;K;D; — R, —K,D, sin’ 3,
r, = S;K,D,L, —d,, + S,K, + K,D,sin* /b, — K, sin* 3,
I, = 2K,D,L;'sin /by, 1, =2K,L;'sin3/b,,
I, = S;K,L, —ky, + K, sin? B/by,,
L=(,=by)", S, =@-11/by), i=123.

Equations (3.6) are linear. Differential equations in (3.6) are solved numerically by
means of the Runge-Kutta method.

The problem similar to (3.2) - (3.4), but not in details, is formulated in [10] for the
system consisting of two rods having variable cross-sections and of two rigid bodies



with a local nonlinearity. The equations with a retarded argument obtained there are
nonlinear. Though these equations takes into account variable cross-sections, presented
exemplary numerical results are done for b, =-1000, i.e. for constant rod cross-

sections (see Fig. 1).

4. Numerical results

In numerical calculations the following dimensional parameters are assumed
l,b=l,=1,=1,=2m, A, =2-10°m?, p=0.8-10"kg/m?,
E=21.10"N/m?, k; =2.1-10°N/m, m, =20kg,

m, =3.2kg, m, =32kg, a=5000m/s, 4.1)
P, = 200kN, u, =10°m, a=p8=7/6.

Using (3.1) nondimensional parameters then are

R, =0.625 R,=01 |, =10, K, =10, P,=10, k, =1.05. (4.2)

Remaining parameters can change.

External loading occurring in (3.6) can be described by an arbitrary time function. Here
it is represented by the function changing harmonically in time

P(t) = B, sin(pt) (4.3)

where p is the nondimensional frequency of the external force, and P, is its non-
dimensional amplitude. Such a type of the external loading is important in engineering
applications. Numerical solutions are focused on the determination of displacements in
selected cross-sections in transient as well as in steady states of motion. All calculations
are done with the nondimensional damping coefficients d; = D; =0.2.

The effect of variable cross-sections is presented in Figs 3 - 14 showing diagrams of
appropriate displacements in transient, and next, in steady states. Figs 3 -5 and Figs 9 -
11 concern the displacements V, =C,u, +C,u, of the rigid body m, in y-axis

direction located in x, =1, x, =1, (see Fig. 2) with the frequency p equal 0.5 or 1.3,



respectively. The first natural frequency of the considered system with parameters (4.2)
is equal @, = 1.369, [8], so p = 0.5 corresponds to results far while p = 1.3
corresponds to results close to the first resonant region. Figs 6 - 8 and Figs 12 - 14
concern the displacements u, of the rigid body m, in x-axis direction with x, =1,

also for p =05 and p = 1.3. In calculations three values of the parameters b,
representing variable cross-sections (2.1) are assumed, i.e., b, =-1000, -20, -10. From
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Figs 3 - 14 it follows that the solutions gain steady states earlier for p = 0.5. The strong
effect of variable cross-sections is observed for p = 1.3, i.e. near the first resonant
region. This concerns displacements V, as well as displacements u, and they

increase then with the increase of b,,.

Equations (3.6) using (3.5) allow to determine required solutions in arbitrary cross-
sections of rods in the analyzed system. For this reason, in Fig. 15 displacements
u; (x;,t) in the cross-sections x, =X, =X, = 0.5 of rods (1), (2), (3) in the regions of
the steady states of motion are presented for a) p =0.5 and b) p = 1.3. From these
diagrams it follows that the smallest displacement amplitudes are observed in the rod
(3), 1.e., for x, = 0.5, in the both cases of the frequency p of the external loading.
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Fig. 15. Displacements in the steady state in x, = x, = X,=0.5 for b,=-20
andfor a)p=0.5, b)p=1.3

5. FINAL REMARKS

In the paper, on the example the system consisting of two rigid bodies and three
noncoaxial rods, it is shown that variable cross-sections of elastic elements can be
incorporated in the discussion of dynamical discrete-continuous systems longitudinally
deformed. In order to use the wave approach functions describing the cross-sections
ought to allow to assume the solutions of the d’Alembert type for the equations of
motion. Such a type of functions are proposed in the paper. From numerical results with
external force changing harmonically in time it follows that the effect of variable cross-
sections is observed in the neighborhood of the resonant region. This conclusion can
have a significant meaning in the studies of systems in which variable cross-sections
ought to be taking into account and when the wave approach could be applied.
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