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Abstract. The paper deals with the dynamics of discrete-continuous systems longitudinally 
deformed. These systems consist of elastic elements connected by means of rigid bodies. In 
the discussion a wave method using the solution of the d’Alembert type is applied, what 
leads to equations with a retarded argument. After a general information concerning the 
wave approach, detailed considerations are done for a system consisting of three rods and 
two rigid bodies. Rods in the system have variable cross-sections and in numerical 
calculations their effect on rods’ displacements is investigated. 
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1. INTRODUCTION 

In the paper dynamical discrete-continuous systems are investigated. Such systems 
consist of elastic elements connected by means of rigid bodies. The considered systems 
belong to a certain class of discrete-continuous systems, namely to those where the 
motion of elastic elements with a constant cross-section is described by the classical 
wave equation. In the discussion a wave approach is used, what leads to solving 
equations with a retarded argument. The proposed approach can be applied in the study 
of  systems longitudinally and torsionally deformed, strings or systems subject to shear 
deformations, [9]. Elastic elements in the systems can have variable or constant cross-
sections. It is required that functions describing variable cross-sections allow to use the 
solution of the d’Alembert type for equations of motion, i.e., to use the wave approach. 

At the beginning, the wave approach is presented shortly. Detailed considerations are 
done next for a system consisting of two rigid bodies and three noncoaxial rods 
longitudinally deformed with variable cross-sections. Such systems can be used in the 
modelling of fragments of plane trusses, [3,4,7,8]. The rod-rigid element systems with 
constant rod cross-sections are discussed in [7,8,11]. In [7] linear systems while in 
[8,11] systems with a local nonlinearity are studied. 



 
 

The aim of the present paper is to propose functions for the description of rod cross-
sections, to formulate the initial-boundary problem for the linear system consisting of 
two rigid bodies and three rods having variable cross-sections, and to investigate in 
numerical calculations the effect of the variable cross-sections on the behavior of the 
considered system. 

 

2. WAVE APPROACH 

The proposed wave approach can be applied in the discussion of multi-mass discrete-
continuous systems subject to longitudinal, torsional or shear deformations. These 
systems consist of elastic elements connected by rigid bodies. During the motion the 
cross-sections of elastic elements remain flat. Rigid bodies can be loaded by an external 
loading  P(t). Elastic elements can have variable cross-sections described by the 
functions 
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00 /1)( iii bxAxA −=  (2.1) 

where  0)( =xAi   for  ibx 0=   and  ii AxA 0)( =   is constant for  ∞±→ib0 . Exemplary 
diagrams of functions (2.1) are given in Fig. 1 for i = 1. From Fig. 1 it follows that for  

10000 −=ib   functions (2.1) can be considered as constant functions. It should be 
pointed out that functions (2.1) allow to apply the solutions of the d’Alembert  type for 
equations of motion, i.e., to use the wave approach. 
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Fig. 1. Diagrams of functions (2.1) 

The determination of displacements  iW   of the ith elastic element having the cross-
sections (2.1) is reduced to solving the following equation of motion 
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with  a  being a wave speed. The solutions of equations (2.2) are sought in the form, [5], 
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where  if   and  ig   represent waves propagating in the ith elastic element in the 

consistent and opposite to  x-axis  senses, and the constants  it0   and   ix0   denote the 
time instant and the end of the ith elastic element where the first disturbance caused by 
the external force  P(t)  occurs. For the constant cross-section, equations (2.2) become 
classical wave equations and solutions are looking for only by means of the sum of the 
functions if   and  ig , i.e., without denominators in (2.3), and with the same arguments. 
The assumed solutions satisfy identically the equations of motion (2.2). 

To equations (2.2) one has to add zero initial conditions and appropriate boundary 
conditions which are conditions for displacements and forces acting in the cross-
sections where rigid bodies are located. Upon substituting (2.3) into appropriate 
boundary conditions the equations with a retarded argument are obtained, [7-11]. 
Differential-difference equations have incessantly some attention in the literature, 
[1,2,6]. It appears that equations of such a type are obtained in the study of discrete-
continuous dynamical systems. Details investigations are presented below for the 
system longitudinally deformed. 

 

3. SYSTEM LONGITUDINALLY DEFORMED, GOVERNING EQUATIONS 

The wave approach can be applied for various systems having elastic elements 
described by equations (2.2). Here this approach is shown for the linear system 
consisting of 3 rods longitudinally deformed and of 2 rigid bodies, Fig. 2. Rods are not 
coaxial, so in the description a fixed reference system  0xy  and one-dimensional 
coordinate systems  ii x0   assigned to individual ith rod are used. The displacement of 



 
 

the cross-section  ix   in the ith rod is described by the function  ),( txu ii   dependent on 
the location of the considered cross-section and on time, whereas the time functions  

jU , jV   are the components of the displacements of the jth rigid body in the  x-axis  and  

y-axis  directions, respectively. 

 

 

Fig. 2. Rod-rigid element system longitudinally deformed 

 

The considered system can represent a fragment of plane trusses with members subject 
to longitudinal deformations modelled by discrete-continuous models, [3,4,7,8]. An 
external excitation is applied to a rigid body located, for example, in a truss joint. In this 
cross-section a visco-elastic discrete element is also located. Rods are characterized by 
the Young’s modulus  E, density  ρ   and the length  il . The cross-section of rods can 
be variable. We proposed to describe them by functions (2.1). Damping in the rods is 
taken into account by means of an equivalent internal and external damping with 
appropriate coefficients  iD   and  ijd . Here the case when the motion of the rigid body 

having mass  1m   in the x-axis direction is neglected ( 01 =U ) is discussed. 

It is convenient to perform the discussion in the following nondimensional quantities 

0/ uuu ii = ,   0/ lxx ii = ,   0/ latt = ,   0/ lll ii = ,   0/ laDD ii = , 
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where  0m , 0l   and  0u   are fixed mass, length and displacement, respectively. 

Under the assumed assumptions, the determination of nondimensional displacements  
),( txu ii  of rods leads to solving three equations of motion 
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where  ρ/2 Ea = , with zero initial conditions 
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and with the following boundary conditions 
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 0sin 23 =+ uu β     for   332    ,0 lxx == , 

 0),( 33 =txu     for   03 =x  

with  )sin(/sin1 βαα +=C , )sin(/sin2 βαβ +=C . In relations (3.2) - (3.4) bars 
denoting nondimensional quantities are omitted, for convenience. When the rods in the 
considered system have constant cross-sections then the boundary conditions (3.4) 
coincide with appropriate boundary conditions given in [7]. 

The solutions for equations (3.2) are looking for in the form 
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In seeking solutions it is taken into account that the first disturbance caused by the 
external force  P(t)  occurs in rods (1) and (2) at time instant  t = 0  in   ,11 lx = 22 lx = , 
while in the rod (3) at  2lt =   in  33 lx = . 

Upon substituting (3.5) into boundary conditions (3.4) the following equations with a 
retarded argument for unknown functions  )(zf i   and  )(zgi   are obtained 
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Equations (3.6) are linear. Differential equations in (3.6) are solved numerically by 
means of the Runge-Kutta method. 

The problem similar to (3.2) - (3.4), but not in details, is formulated in [10] for the 
system consisting of two rods having variable cross-sections and of two rigid bodies 



 
 

with a local nonlinearity. The equations with a retarded argument obtained there are 
nonlinear. Though these equations takes into account variable cross-sections, presented 
exemplary numerical results are done for  10000 −=ib , i.e. for constant rod cross-
sections (see Fig. 1). 

 

4. Numerical results 

In numerical calculations the following dimensional parameters are assumed 

,m/kg100.8=   ,m102   ,m2 3423
03210 ⋅⋅===== − ρiAllll  
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6/   m,10   kN,200 3
00 πβα ==== −uP . 

Using (3.1) nondimensional parameters then are 

        .05.1   ,0.1   1.0,=   ,0.1   ,1.0   ,625.0 021 ===== ijii kPKlRR                (4.2) 

Remaining parameters can change. 

External loading occurring in (3.6) can be described by an arbitrary time function. Here 
it is represented by the function changing harmonically in time 

                                               P t P pt( ) sin( )= 0                                                     (4.3) 

where  p  is the nondimensional frequency of the external force, and  0P   is its non-
dimensional amplitude. Such a type of the external loading is important in engineering 
applications. Numerical solutions are focused on the determination of displacements in 
selected cross-sections in transient as well as in steady states of motion. All calculations 
are done with the nondimensional damping coefficients  iij Dd =  = 0.2. 

The effect of variable cross-sections is presented in Figs 3 - 14 showing diagrams of 
appropriate displacements in transient, and next, in steady states. Figs 3 - 5 and Figs 9 -
 11 concern the displacements   21121 uCuCV +=   of the rigid body  1m   in  y-axis 
direction located in  11 lx = , 22 lx =  (see Fig. 2) with the frequency  p  equal 0.5 or 1.3, 



 
 

respectively. The first natural frequency of the considered system with parameters (4.2) 
is equal  1ω  = 1.369, [8], so  p = 0.5  corresponds to results far while  p = 1.3  
corresponds to results close to the first resonant region. Figs 6 - 8 and Figs 12 - 14 
concern the displacements  3u   of the rigid body  2m   in  x-axis direction with  33 lx = , 

also for  p = 0.5  and  p = 1.3. In calculations three values of the parameters  ib0   

representing variable cross-sections (2.1) are assumed, i.e.,  ib0  = -1000, -20, -10.  From  

 

0.0 100.0 200.0 300.0 400.0

-0.8

-0.4

0.0

0.4

0.8

t  

V  1  

     0.0 100.0 200.0 300.0 400.0

-0.8

-0.4

0.0

0.4

0.8

t  

V  1  

 

         Fig. 3. Displacement  1V   of the rigid             Fig. 4. Displacement  1V   of the rigid 
             body  1m   for  p = 0.5, ib0  = -1000                  body  1m   for  p = 0.5, ib0  = -20 
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         Fig. 5. Displacement  1V   of the rigid          Fig. 6. Displacement   3u   for  3x  = 3l ,  
                body  1m   for  p = 0.5, ib0  = -10                              p = 0.5, ib0  = -1000 
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        Fig. 7. Displacement  3u   for  3x  = 3l ,           Fig. 8. Displacement  3u   for 3x  = 3l , 
                         p = 0.5, ib0  = -20                                        p = 0.5, ib0  = -10 
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       Fig. 9. Displacement  1V   of the rigid             Fig. 10. Displacement  1V   of the rigid 
           body  1m   for  p = 1.3, ib0  = -1000                       body  1m   for  p = 1.3, ib0  = -20 
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        Fig. 11. Displacement  1V   of the rigid        Fig. 12. Displacement  3u   for  3x  = 3l , 
                  body  1m   for  p = 1.3, ib0  = -10                            p = 1.3, ib0  = -1000 
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   Fig. 13. Displacement  3u   for  3x  = 3l ,         Fig. 14. Displacement  3u   for  3x  = 3l , 
                           p = 1.3, ib0  = -20                                        p = 1.3, ib0  = -10 

 

Figs 3 - 14 it follows that the solutions gain steady states earlier for  p = 0.5. The strong 
effect of variable cross-sections is observed for  p = 1.3, i.e. near the first resonant 
region. This concerns displacements  1V   as well as displacements  3u   and they 

increase then with the increase of  ib0 . 

Equations (3.6) using (3.5) allow to determine required solutions in arbitrary cross-
sections of rods in the analyzed system. For this reason, in Fig. 15 displacements  

),( txu ii   in the cross-sections  321 xxx ==  = 0.5 of rods (1), (2), (3) in the regions of 
the steady states of motion are presented for  a)  p = 0.5  and  b)  p = 1.3. From these 
diagrams it follows that the smallest displacement amplitudes are observed in the rod 
(3), i.e., for  3x  = 0.5, in the both cases of the frequency  p  of the external loading. 

a)                                                                   b) 
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Fig. 15. Displacements in the steady state in  321 xxx == = 0.5  for  ib0 = -20 
and for  a) p = 0.5,  b) p = 1.3 

 

5. FINAL REMARKS 

In the paper, on the example the system consisting of two rigid bodies and three 
noncoaxial rods, it is shown that variable cross-sections of elastic elements can be 
incorporated in the discussion of dynamical discrete-continuous systems longitudinally 
deformed. In order to use the wave approach functions describing the cross-sections 
ought to allow to assume the solutions of the d’Alembert type for the equations of 
motion. Such a type of functions are proposed in the paper. From numerical results with 
external force changing harmonically in time it follows that the effect of variable cross-
sections is observed in the neighborhood of the resonant region. This conclusion can 
have a significant meaning in the studies of systems in which variable cross-sections 
ought to be taking into account and when the wave approach could be applied. 
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