NORMAL CURVATURE OF A VECTOR FIELD IN A HYPERSURFACE
OF A GENERALISED FINSLER SPACE

A, C, SHAMIHOKE (*)

The idea of generalised FiwsLer spaces was developed in [*]. Pan['] had
studied the normal curvature of a vector field lying in a hypersurface of
a Riemannian gpace which was generalised to a vector fleld lying in a
hypersurface of a FinsLer space by Nacara [‘1]. In this note we have exten-
ded these results to a peneralised Finster space. The corresponding results
for peneralised Riemaunian spaces and FiusLer gpaces [“'.4] follow as par-

ticular cases.

1. Introduction. Let F, be an a-dhnensional generalised FINSLER space en-
dowed with a local coordinate system

(=1, ..,n.
The distance between two neighbouring points P {x?) and Q {xi|-dx?) is given by
(1) | ds = F (x%, dxi)
where the distance function F safisfies thy following conditions:

a) F{x,dx) is continuously differentiable at least up to the fourth or-
der in its 2a argomenis;

B) F{x,dx) is positive provided all dx! do not vanish simultaneocusly ;

¢) F{x,dx) is positively homogeneous of the first degree in the dxi,
ie. Fixt, xdx)=x F{x?,dxf) for x>0,

d) gGple, P EE >0 for all real & satisfying 3 (2)°=0, where

(*) The Author wishes to thank Dr. Ram Bewant and Dr. P. B. Buartacianrva for their
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J. N. Karpur Tor providing him with research facilities.
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- 1 2 F* (e, x)
(3) giple,v)=m o ———
£ 2 axiax’
This space is based on a non-symmetric metric tensor £ij (x, ,1:) whose sym-~
metric part g¢ (x, x) is defined by (3) and whose skew-symmetrié part gf; ;] (x, x}
is a function of coordinates only.

The covariant ditferential of a vector field X*‘(xk) ol F, is given by [}

4) Dyt = dxt + Pirg (e, dey X dxk
where
(5a) . ) S g hik =3k

: foo il Ay o= e gii (D8RS 080k Bk
B A=A A=y B (axk AR Sl
and
(5) Pitg (e, ) == iy, — Cig A7 57

The covariant derivative of X with respect to x* is given by

(6) ak)(.f:%-{—ip"_kk X'é
where o ‘ | ‘
(7) Py = ﬂ"}r.é e (Chamt Pl j+ Ciemt Py j_:‘chkl Pim 7 M
In the case when '
C;J-':;E—i—fa—g’! =0,

i. e, when the space under consideration is 2 generalised Riemannian space, FPiy
and P*., hboth reduce to i, the usual conuection parameters taken for that
space. Pi, and PPi, reduce to the similar quantities of Runp[*], if gtijl = 0.

Let a -hypersurface F, , of F, be given by

(8 i = xi (u®
so that the matrix

[l Bigii
‘Wllgr(_a

Arf
Bi.= —
BT g

is of rank »—1. The two kinds of normals »f and »*' to F,_, are defined by [*]
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(9) - gGpGnn) Blan/=0, Flx,n=1
and

9" 2 (x, 1,) Big nti =0, Flr,n*)=1
respectively.

The relations regarding the projection factors are glven by [7]
a) Biy BB, =df = Bi, bf;
(10) and

. . . . 1 .
by Bi, B“J,-—!—n'nj:tf‘j:B*ub“j—!——lﬁ-n*’ R

Writing Xi,p for the generalised covariant derivative of Bi,g, we have

(11) Xiop =0 Biq— Bis P*qp + By BEg P*ing

the induced connection parameters P*Vq§ for F,_, being given by

(12) P45 = BY; (59 Bia + P*inx B a B¥g).
The coefficients of gecond and secondary second fundamental form are given
by [°]
(13) Qap == ny Xiqp = ny (36 Bia + P*ini B*u BrG)
and
(14} O*ap = up sec (n, n%)
respectively.

For differentiation in the direction
(10} dxi=Bi, In"
of the hyparsurface the covariant differential of Bi; is given by
(16) D(Biy) = Xi,p dub = (5§ Bly — Bl P'dop |- B Bkg P iny) dub .
| Multiplying (7} by Bly, we obtain
a7 Bly P*¥og = Biy B (36 B'q + By B¥g P/ps).
From (10), (13) and (17), we obtain
(18) Biy P¥op = 3p Bia |- Py B'a B¥g — nf Qup

which implies

T R T T T
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19) g 5iq = Biy P*ap — B"q BYg P i3y + ni 048
It should he clearly understood that [3}

a
28lePl g,
g u¥
Let of be a unit vector field defined at all points of F,_,. If C:a®=u®s)
be a curve ou F,_,, then the vector field of is automatically defined f[or each
point P of the curve C. Surely, we have

wiz== B, o%

(20)
g (ad, o B =1

% being the components of «¥ in F, _,.

Differentiating (20) with respect to s, we obtain

dof _ { . ., dot o 1'1Lﬁ.

Substituting the value of g Bi; from (19), we oblain

Dot 8% . . 4. B
Ds B Blat oYt o

(22)
where Dof is the covaciant differential of «f in F, and J¢% that of ¢% in F,_,,

when these vectors are transported in the direction of du®.

The vector Doi/Ds is defined ag the absolate curvature vector of of at a point
of C. Its magnitude, to be denoted by o* is called the absolute eurvature of of
with respzct to C at P.

2, Normal carvature. The magnitude of the normal component of the ab-
golute curvature vector is defined fto bz the normal curvature of the vector field
at a point of C.

3, Agymptotic directions and lines. An asymplotic direction of a vector
field is that direction with respeet to which the normal curvature of the vector
field is zero.

A curve on F,_, which is such that the direction of its tangent at each and

every point coincides with an asymptotic direction of the vector field is called an
agymptotic line of the vector field.

The asymptotic lines are analytically given by

o) (ay a”) v JuB =0,
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4. Principal diractions. The directions w.th respzet to which the normal

curvature given by

Oapy 0 Ael

(23) 'Uk" B T e ey et e e
\/guﬁ (a, o) v oB \/g-yj(n, da) du¥ Jud

has an extreme value are known ag principal directions,

Direct calculation ghowa that the principal directions are determined by

(24) [#pg— (v*n) g dud® =10
where
(25) Pay = _9af Wy v 0¥ R

glaB) v ub

We observe that ¥gs are symmastric in their indices inspite of the fact that

f24p are non-symmetric in their indices.

In view of the fact that ||vgsl| has rank equal to unity, the equation
(28) - det. | Pps—(vFn)° gam) | =0

wiich determines the extreme values of the noemal curvature, hag only oue non-
z:ro root. This root will b2 denot:d by @*», The valuz of the normal curvature in

this direction is called the principal normal curvature.

5. Conjugate direztions, Two directlons de® and 2% are gsaid to bz conju-
gate to each ofther if and only if

(27) Ly du® 5B =0,

We now simply quotz the following theorems which are easy deductions of
the above definitions:

Theorem 1. The normal carvalare of a vector field in F, ., is invariant for

all curves touching one another at that point.

Theorem 2. The normal carvature of a vector field in F, .| w'th respect to
the indicatrix F(u, o) =1 of the fiell is namerically equal to the absslute curvature
of the field in F, with respect to the inlicatrix Flx,0) =1 of the field in F_,. The
absolufe carvatare vector of a wector field with respect to the inlicatrix of the field

has at each point the normal direction of F, .

Theorem 3. [f a vector field andergoes a prrallel displacemsent with respect to

an asymptatic line | of F,_,, then it unlergoss parallel displacement w'th respect to
C considered as a curve of Fp. (The vector field is suppased to lie in F,_)).

Theorem 4. The asympiotic line of a wector field lying in F,_, is conjugate
to the direction of the vector field at any psint P lying on it.
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OZET

Teswil edilmis FinsLer 'uzayx fiiert [°] te tetkik edilmigtir. Diger taraftan

bir Riemany uzayindaki bir hiperyuzeyln ig,‘uide bulunan bir velktsr alani-

nin normal efriligi Pawn ['] tarafindan incelenmis ve bn fikir bir Frvsisr

uzayindali bi[‘r hiperylizeye NAOATA lsf tarafindan tesmil edilmigtir. Bu ya-

zrda bn nef:iceleri, tegmil edilmis bir Finster uzay: igin elde ettlk. Tesmil

edilmis bir Rirmasn uzay: [2, '1] i¢in bulunan neticeler bunlarin hususi hal-
leridir.




