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Abstract
For arbitrary monoids A and B, a presentation for the restricted wreath product of A by
B that is known as the semi-direct product of A⊕B by B has been widely studied. After
that a presentation for the Zappa product of A by B was defined which can be thought
as the mutual semidirect product of given these two monoids under a homomorphism
ψ : A → T(B) and an anti-homomorphism δ : B → T(A) into the full transformation
monoid on B, respectively on A. As a next step of these above results, by considering
the monoids A⊕B and B⊕A, we first introduce an extended version (generalization) of the
Zappa product and then we prove the existence of an implicit presentation for this new
product. Furthermore we present some other outcomes of the main theories in terms of
finite and infinite cases, and also in terms of groups. At the final part of this paper we
point out some possible future problems related to this subject.
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1. Introduction
Study on the product of groups have received much attention in the literature. During

these studies, people investigated this group product which is constructed by subgroups
either in terms of permutability (cf. [6, 9, 17]) or in terms of an extension (cf. [5, 24]).
Nevertheless, direct, semidirect and (standard) wreath products are the most famous
structures among these extension constructions (see, for instance, [10, 14, 18, 20, 25]). As
a next step of these products, some other people also studied Zappa (or Zappa-Szép)
products ([13, 16, 27, 28]) which is also referred as bilateral semidirect products ([22]),
general products ([23]) or knit products ([1, 26]). Unlikely semi-direct products, none of
the factor is normal in the Zappa product of any two groups. In other words, for a group
G with subgroups A and B that satisfy A ∩ B = {1G} and G = AB, we know that each
element g ∈ G is expressible (uniquely) as g = ab with a ∈ A and b ∈ B. Now to reserve
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certain products, let us consider an element ba ∈ G. In fact there must be unique elements
b′ ∈ B and a′ ∈ A such that ba = a′b′. This actually implies two functions

(b, a) 7−→ ba ∈ B, (b, a) 7−→ b.a = ba ∈ A (1.1)

which are unique and so satisfy

ba = (b.a)(ba) = baba, (1.2)

for all b ∈ B and a ∈ A.
According to the references [13, 22, 23, 25], by considering the action given (1.1), the

monoid version of the Zappa product of any two monoids can be defined as follows.
For any two monoids A and B, let us consider a homomorphism ψ : A → T(B) and an

anti-homomorphism δ : B → T(A) such that T(.) denotes the full transformation monoid.
For a ∈ A, b ∈ B, denote the operation of (a)ψ on B by b 7−→ (a)ψ = ba and the operation
of (b)δ on A by a 7−→ (a)δb = ba. For every elements a, a1, a2 ∈ A, b, b1, b2 ∈ B, suppose
that the conditions

b1A = b, 1aB = 1B, (1A)δb = 1A, (a)δ1B = a,

b(a1a2) = (ba1)a2 , (a)δb1b2 = ((a)δb2)δb1 ,

(b1b2)a = b
(a)δb2
1 ba2 and (a1a2)δb = (a1)δb(a2)δba1

are all true. Then the set A×B defines the Zappa product Aδ×ψB (cf. [13,22]) of A and
B which is of course a monoid with respect to the multiplication,

(a1, b1)(a2, b2) = (a1(a2)δb1 , b
a2
1 b2) . (1.3)

Assume that A has a monoid presentation PA = [X;R] while B has PB = [Y ;S]. Then,
by [23, Theorem 2], a presentation for Aδ×ψB with the structure defined by (1.3) on the
set A × B is given as P = [X, Y ; R, S, T ] in which the relator T consists of all ordered
elements (ba, baba), as given in (1.2), for (b, a) ∈ B ×A.

Since there are some difficulties in the meaning of embedding for the factors in the
product unless they are not taken as identities, throughout in this paper we will not
attempt to study the cases of Zappa products for semigroups.

To give another preliminary material for the next section, let us recall the fundamentals
of standard wreath products of any two monoids A and B. First let us consider the monoid
A⊕B which is the direct product of the number of B copies of A. In fact A⊕B can be
thought as the set of all functions f having finite support. Suppose that ψ : A⊕B → T(B)
is a homomorphism and δ : B → T(A⊕B) is an anti-homomorphism where T(.) is the
full transformation monoid on B and A⊕B, respectively, as previously. For g ∈ A⊕B and
b ∈ B, let us denote the operation of (g)ψ on B by b 7−→ b and operation of (b)δ on
A⊕B by g 7−→ (g)δb = bg. Then the set A⊕B × B defines a monoid A ≀ B (namely the
(standard) wreath product of A by B) with the operation (f, b1)(g, b2) = (f b1g, b1b2),
and the identity is (I, 1B), where (x)I = 1A (cf. [14, 18, 20, 22]). It is clear that A ≀ B is
actually the semidirect product of A⊕B by B and notated by A⊕B ×δ B. Now, by taking
into account the same presentations PA and PB for the monoids A and B as in above, for
each b ∈ B, let us assume the set Xb = {xb : x ∈ X} is a copy of X and the set Rb is the
corresponding copy of R. So, for x, x′ ∈ X, y ∈ Y , b, e ∈ B, b ̸= e, the monoid A ≀ B has
a presentation Xb, Y ; Rb, S, xbx′

e = x′
exb, yxb = (

∏
m∈by−1

xm)y

 (1.4)

(cf. [2, 14,18,25]).
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2. A higher version of the Zappa product
By combining the definitions of Zappa and (standard) wreath products, the main pur-

poses of this section are to define and study a generalized version of the Zappa product
of A⊕B by B⊕A, namely restricted generalized Zappa product A⊕B

δ×ψB
⊕A with an op-

eration adapted from (1.3). Additionally, by considering the presentation in (1.4), we will
prove the existence of an implicit presentation for this product (see Theorem 2.2 below).
Moreover, by taking into account a special case A⊕B

δ×ψB of this new product, we will
state and prove some consequences of this theorem.

Let A and B be monoids, and let the set A×B denotes the Cartesian product of the
number of B copies of the monoid A while the set A⊕B denotes the corresponding direct
product as in wreath products. Recall that A⊕B can be thought as the set of whole
functions f with finite support (in other words, functions with the property (x)f = 1A
for all but finitely many x in B). Hence a generalization of restricted and unrestricted
Zappa products of the monoid A⊕B by the monoid B⊕A are defined on A×B × B×A and
A⊕B ×B⊕A, respectively, with the multiplication

(f, h)(g, k) = (f (g)δh, (h)ψgk) = (f hg, hgk), (2.1)

where δ : B⊕A → T(A⊕B), (g)δh = hg and ψ : A⊕B → T(B⊕A), (h)ψg = hg are defined
by, for a ∈ A and b ∈ B,

hg = (ha)g and hg = h(bg).

Also, for x ∈ A and y ∈ B, we define

(x)ha = (ax)h and (y) bg = (yb)g (2.2)

such that, for all d ∈ B, c ∈ A,

(d) (ha)g = (dha)g and (c)h(bg) = (bgc)h.

Both these restricted and unrestricted generalized Zappa products are monoids under
the multiplication defined in (2.1) with the identity (1, 1̃), where 1 : B → A, (b)1 = 1A
and 1̃ : A → B, (a)1̃ = 1B, for all a ∈ A and b ∈ B.

Throughout this paper all generalized Zappa products will be assumed to be restricted
and so we will use the notation A⊕B

δ×ψB
⊕A for it. It is clear that the sets {(f, 1̃) : f ∈

A⊕B} and {(1, k) : k ∈ B⊕A} are the submonoids of A⊕B
δ×ψB

⊕A which are isomorphic
to A⊕B and B⊕A, respectively. Moreover, for f ∈ A⊕B and k ∈ B⊕A, we definitely have
(f, 1̃)(1, k) = (f, k).

For a ∈ A and b ∈ B, we now define ab : B → A and b̃a : A → B as

(m)ab =
{
a, b = m
1A, otherwise and (n)b̃a =

{
b, a = n
1B, otherwise .

Notice that if f : B → A and k : A → B have finite supports, then

f =
∏
b∈B

((b)f)b and k =
∏
a∈A

˜((a)k)a.

Also notice that if the monoid A is generated by a set X (so that every a in A is expressible
as a finite product x1x2 · · ·xn of elements of X) and if the monoid B is generated by Y
(so every b in B is expressible as a finite product y1y2 · · · ym), then

ab = x1b
x2b

· · ·xnb
and b̃a = ỹ1a ỹ2a · · · ỹma .

After all, we have the following lemma which is actually a generalization of [18, Lemma
2.1].
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Lemma 2.1. Assume that the sets X and Y generate the monoids A and B, respectively.
Further, let Xb = {(xb, 1̃) : b ∈ B, x ∈ X} and Ỹa = {(1, ỹa) : a ∈ A, y ∈ Y }. Then the
product A⊕B

δ×ψB
⊕A is generated by the set (

∪
b∈B

Xb) ∪ (
∪
a∈A

Ỹa).

In general, the generating set given in Lemma 2.1 is the best possible for the monoids
A and B. If B has an indecomposable identity (in other words, for all b, c ∈ B, bc = 1B ⇒
b = c = 1B), then any generating set of A⊕B

δ×ψB
⊕A must contain elements from the

generating set of the submonoid A⊕B ∼= {(f, 1̃) : f ∈ A⊕B} and, in fact,
∪
b∈BXb is the

smallest such a set. One may discuss same arguments for
∪
a∈A Ỹa as well.

For simplicity, we will denote the set {m ∈ B : b = my} with only by−1 (where b, y ∈ B)
and will denote the set {n ∈ A : a = xn} with only x−1a (where a, x ∈ A).

The following theorem generalizes the result presented in [13].

Theorem 2.2. Suppose that the monoids A and B are presented by [X;R] and [Y ;S],
respectively. For each b ∈ B, let Xb = {xb : x ∈ X} denote a copy of X, and let Rb denote
the corresponding copy of R. Similarly, for each a ∈ A, let Ya = {ya : y ∈ Y } be a copy
of Y , and let Sa be the corresponding copy of S. Then the (restricted) generalized Zappa
product A⊕B

δ×ψB
⊕A is defined by the generators (

∪
b∈B

Xb) ∪ (
∪
a∈A

Ya) and relations

Rb, Sa, (a ∈ A, b ∈ B) ; (2.3)
xbx

′
e = x′

exb, (x, x′ ∈ X, b, e ∈ B, b ̸= e) ; (2.4)
yay

′
s = y′

sya, (y, y′ ∈ Y, a, s ∈ A, a ̸= s) ; (2.5)

yaxb =

 ∏
m∈by′−1

xm

 ∏
n∈x′−1a

yn

 (2.6)

such that the elements x′ and y′ in Eq. (2.6) are defined as

x′ =
∏

m∈by−1

xm and y′ =
∏

n∈x−1a

yn ,

respectively.

Proof. We first recall that, for a set of alphabet M, the monoid of all words in M is
notated by M∗.

For x ∈ X, b ∈ B, y ∈ Y , a ∈ A, the mapping ρ from the monoid

(
∪
b∈B

Xb) ∪ (
∪
a∈A

Ya)

∗

,

say M , to the product A⊕B
δ×ψB

⊕A defined by (xb)ρ = (xb, 1̃) and (ya)ρ = (1, ỹa) is
surjective as a result of Lemma 2.1. Furthermore, relations in (2.3), (2.4) and (2.5) are all
held in A⊕B

δ×ψB
⊕A by the equalities and explanations presented just before Lemma 2.1.

Now the next step is to obtain relation (2.6). We easily deduce from (2.1) that

(1, ỹa)(xb, 1̃) = (ỹaxb, ỹa
xb).

Now by considering (2.2), for each x ∈ X, we can write
ỹaxb = (ỹa

x)xb ,

where for d ∈ A,

(d)ỹax = (xd)ỹa =
{
y, a = xd
1B, otherwise =

{
y, d ∈ x−1a
1B, otherwise

=
∏

n∈x−1a

(d)ỹn = (d)
∏

n∈x−1a

ỹn.
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So we have ỹax =
∏

n∈x−1a

ỹn. For simplicity, let us denote
∏

n∈x−1a

ỹn by only y′. As a result,

we obtain
(ỹa

x)xb = y′
xb.

Moreover, for e ∈ B,

(e)y′
xb = (ey′)xb =

{
x, b = ey′

1A, otherwise =
{
x, e ∈ by′−1

1A, otherwise

=
∏

m∈by′−1

(e)xm = (e)
∏

m∈by′−1

xm.

Therefore y′
xb =

∏
m∈by′−1

xm and finally we have

ỹaxb = (ỹa
x)xb = y′

xb =
∏

m∈by′−1

xm .

Additionally, for each y ∈ Y , by taking into account the second part of (2.2) and its
attachments, since

ỹa
xb = ỹa

(yxb) ,

we clearly obtain
ỹa
xb = ỹa

(yxb) = ỹa
x′

=
∏

n∈x′−1a

ỹn ,

where x′ =
∏

m∈by−1

xm.

Therefore, if we write all above results together, then we get

(1, ỹa)(xb, 1̃) =

 ∏
m∈by′−1

xm

 ∏
n∈x′−1a

yn

 ,

as required. As a result of all these above findings, we deduce that ρ defines actually an
epimorphism ρ from the monoid M obtained by relations (2.3), (2.4), (2.5) and (2.6) onto
the monoid A⊕B

δ×ψB
⊕A.

Now we need to prove that ρ is a monomorphism. Let w be a word representing an
element of M . By using relations (2.4), (2.5) and (2.6), it is easy to show that there exist
words (b)w in X∗ (b ∈ B) and (a)w in Y ∗ (a ∈ A) such that

w = (
∏
b∈B

((b)w)b)(
∏
a∈A

((a)w)a)

in M . (We note that if z ∈ X∗, t ∈ Y ∗ then zb and ta are the corresponding words in X∗
b

and Y ∗
a , respectively). Now, for each w ∈ X∗ ∪ Y ∗, c ∈ B and d ∈ A, we have

(c)wb =
{
w, b = c
1, otherwise and (d)w̃a =

{
w, a = d
1, otherwise .

Hence we get
(c)(

∏
b∈B

((b)w)b) =
∏
b∈B

(c)((b)w)b = (c)w , (2.7)

(d)(
∏
a∈A

˜((a)w)a) =
∏
a∈A

(d) ˜((a)w)a = (d)w , (2.8)

for all c ∈ B and d ∈ A.
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For any two words u, v in ((
∪
b∈B

Xb) ∪ (
∪
a∈A

Ya))∗, we have

(u)ρ = (v)ρ ⇒ ((
∏
b∈B

((b)u)b)(
∏
a∈A

((a)u)a))ρ = ((
∏
b∈B

((b)v)b)(
∏
a∈A

((a)v)a))ρ

⇒ ((
∏
b∈B

((b)u)b)ρ(
∏
a∈A

((a)u)a))ρ = ((
∏
b∈B

((b)v)b)ρ(
∏
a∈A

((a)v)a))ρ

⇒ (
∏
b∈B

((b)u)b, 1̃))(
∏
a∈A

(1, ˜((a)u)a)) = (
∏
b∈B

(((b)v)b, 1̃))(
∏
a∈A

(1, ˜((a)v)a))

⇒ (
∏
b∈B

((b)u)b,
∏
a∈A

( ˜((a)u)a)) = (
∏
b∈B

(((b)v)b,
∏
a∈A

˜((a)v)a)) .

Now from the equality of the first and second components and using equalities (2.7)-(2.8),
we deduce that (c)u = (c)v in A (for all c ∈ B) and (d)u = (d)v in B (for all d ∈ A). Also,
relations given in (2.3) imply u = v in the monoid M . Therefore ρ is injective.

These complete the proof. �

Remark 2.3. For d ∈ x−1a and e ∈ by−1, since (d)ỹax = y and (e)yxb = x, we have seen
in the above proof there exist equalities

(ỹa
x)xb = yxb = y ′xb and ỹa

(yxb) = ỹa
x = ỹa

x′
.

Therefore, by omitting the bar and tilde signs, another version of the relation given in
(2.6) can be stated as

yaxb =

( ∏
n∈x−1a

yn

)
xb y

 ∏
m∈by−1

xm


a . (2.9)

We have the following consequence of Theorem 2.2.

Corollary 2.4. Let A and B be monoids with the conditions given in Theorem 2.2 hold.
Then the standard presentation for A⊕B

δ×ψB
⊕A is given by

[Xb, Ya ; Rb, Sa (a ∈ A, b ∈ B) ,
xbx

′
e = x′

exb (x, x′ ∈ X, b, e ∈ B, b ̸= e) ,
yay

′
s = y′

sya (y, y′ ∈ Y, a, s ∈ A, a ̸= s) ,

yaxb =

( ∏
n∈x−1a

yn

)
xb y

 ∏
m∈by−1

xm


a ] .

At the rest of this section, as a special case of Theorem 2.2 (and also Corollary 2.4), we
will only consider the generalized Zappa product A⊕B

δ ×ψ B for defining a presentation
on it.

For an arbitrary monoid A with a presentation [X;R] and an arbitrary monoid B with
a presentation [Y ;S], let us consider

δ : B → T(A⊕B) and ψ : A⊕B → T(B)

b 7→ (g)δb = bg g 7→ (b)ψg = bg

such that (x) bg = (xb)g for x ∈ B and bg = b(b′
g) for b′ ∈ B. Then the generalized Zappa

product A⊕B
δ ×ψ B is defined on the set A⊕B × B with a multiplication (f, b)(g, b′) =

(f bg, bgb′).
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Theorem 2.5. A presentation for A⊕B
δ ×ψ B is defined by

[Xb, Y ; Rb, S, xbx′
e = x′

exb, yxb = (
∏

m∈by−1

xm)y
(
∏

m∈by−1

xm)
] , (2.10)

where x, x′ ∈ X, y ∈ Y, b, e ∈ B, b ̸= e.

Proof. Let us consider the presentation given in Corollary 2.4. Since we have just one
copy of B in the product A⊕B

δ ×ψ B, we must have Y instead of Ya in the generating
set and also S instead of Sa in the relators set of the requiring presentation. Moreover, by
the same reason, the relator yay′

s = y′
sya (y, y′ ∈ Y, a, s ∈ A, a ̸= s) will be disappeared.

For the last relator, again let us consider the multiplication (1, y)(xb, 1B) = (yxb, yxb),
where x ∈ X, y ∈ Y and b ∈ B. Recall that, in the proof of Theorem 2.2, we obtained the
equation

yxb =
∏

m∈by−1

xm .

Hence, by considering both (2.6) and (2.9) with the fact that there exists a single B in
the product A⊕B

δ ×ψ B, we obtain

(1, y)(xb, 1B) = (
∏

m∈by−1

xm)y
(
∏

m∈by−1

xm)
,

as required.
Notice that presentation in (2.10) is a generalization of the presentation given in (1.4)

since it presents a product having mutual actions. �
As a consequence of Theorem 2.5, we can get a much nicer presentation in the case of B

is a group which is actually a generalization of the presentation defined in [18, Corollary
2.3].

Corollary 2.6. Assume that A is a monoid but B is a group. Now consider their monoid
presentations [X;R] and [Y ;S], respectively. Thus A⊕B

δ ×ψ B has a presentation[
X,Y ; R,S, x(b−1x′bx

′′) = (b−1x′bx
′′)x

]
,

where x, x′, x′′ ∈ X, b ∈ B.

Proof. Recall from (1.2), for any a ∈ A and b ∈ B, the action satisfies ba = baba. So, for
xb ∈ A⊕B and b ∈ B, we get

bxb = bxbb
xb . (2.11)

Now, by replacing b instead of y in equations yxb =
∏
m∈by−1 xm and yxb = y(yxb), where

m ∈ B, which are obtained in Theorems 2.2 and 2.5 and also by writing those new
equations in (2.11), we obtain the relation

bxb = x1Bb

∏
m∈by−1

xm

in A⊕B
δ×ψB. For just simplicity, if we write x′ instead of x1B and x′′ instead of

∏
m∈by−1

xm,

then this above last relation becomes
xb = b−1x′bx

′′
. (2.12)

Further, by using (2.12), if we eliminate the element xb (where x ∈ X, b ∈ B− {1B}) from
the relations in presentation (2.10), the last relator of this presentation becomes trivial
while the relations Rb and xbx

′
e = x′

exb are actually consequences of the relations R and
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x(b−1x′bx
′′) = (b−1x′bx

′′)x, respectively, in the meaning of Tietze transformations, where
x, x′, x′′ ∈ X, b ∈ B.

Hence this completes the proof. �

By taking into account both A and B as any groups, Corollary 2.6 can be expressed as
in the following.

Corollary 2.7. Assume that both A and B are groups with their monoid presentations
[X;R] and [Y ;S], respectively. Hence the presentation

[X,Y ; R, S, a(b−1a′ba
′′) = (b−1a′ba

′′)a (b ∈ B, a, a′, a′′ ∈ A) ]

defines A⊕B
δ ×ψ B.

Proof. As in the proof of Corollary 2.6, for a ∈ A and b ∈ B, we can easily see that

ab = b−1a1Bb

∏
m∈by−1

am

holds in A⊕B
δ×ψB. For simplicity, let us replace a1B by a′ and

∏
m∈by−1

am by a′′. Then the

above equality becomes ab = b−1a′ba
′′ . Therefore, by replacing ab in presentation (2.10),

we obtain the required presentation given in the statement of corollary. �

3. Some applications
By considering the presentation defined in Theorem 2.5 for A⊕B

δ ×ψ B, we will give
some examples while A and B are taken as some special monoids.

3.1. Finite case
In this section we will study on finite cyclic monoids (cf. [19]). In fact some examples and

applications over other extensions for these monoids have been investigated, for instance,
in [3, 4, 15].

Suppose that A = [x ; xk = xl (k > l)] and B = [y ; ys = yt (s > t)] are finite cyclic
monoids, and consider δ and ψ as given in Theorem 2.5. We then have the following result.

Corollary 3.1. Let A and B be finite cyclic monoids as in above. Then

[ x(0), x(1), · · · , x(s−1), y ; ys = yt, x(i)x(j) = x(j)x(i) (0 ≤ i < j ≤ s− 1),
x(i)k = x(i)l (0 ≤ i ≤ s− 1),

yx(i) = x(i−1)yx
(i−1) (1 ≤ i ≤ s− 1),

yx(t) = x(s−1)yx
(s−1) ]

is a presentation for the product A⊕B
δ ×ψ B.

Proof. By considering A and B are finite cyclic monoids, we just need to convert presenta-
tion (2.10) in Theorem 2.5. For all yi ∈ B, let us label each xyi by x(i), where 0 ≤ i ≤ s−1,
for simplicity. Therefore the set of the generators for the monoid A⊕B

δ ×ψ B is {x(i), y}.
Further, since A⊕B is a direct product, we must have x(i)x(j) = x(j)x(i) (0 ≤ i < j ≤ s−1)
and x(i)k = x(i)l as relations in our presentation.

Now let us consider the relator

yxb = (
∏

m∈by−1

xm)y
(
∏

m∈by−1

xm)
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in presentation (2.10). In this relator, by taking 1, y, y2, · · · , ys−1 instead of each b ∈ B

and replacing each xb by related x(i) where 0 < i ≤ s − 1, we obtain the relator yx(i) =
x(i−1)yx

(i−1) . Moreover, for the monoid B, since we have ys = yt as a relator, we can write
this relator as yt = ys−1y which implies that, for b = yt and m = ys−1, yx(t) = x(s−1)yx

(s−1)

by keeping same idea as in the previous sentence.
Hence this completes the proof. �

We can also give the following application which is a consequence of Corollary 2.6.

Corollary 3.2. Let A be a finite monoid (not necessarily cyclic) and let B be a cyclic group
of order s. If PA = [X;R] and PB = [y ; ys = yt (s > t)] are their monoid presentations,
respectively, then the presentation

[X, y ; R, ys = yt, x(y−ix′(yi)x′) = (y−ix′(yi)x′)x (x, x′ ∈ X, 0 < i ≤ (s− t) − 1)]

defines the product A⊕B
δ ×ψ B.

Proof. From Corollary 2.6, we have the relations bxb = x1Bb
x1B , for b ∈ B, x ∈ X. If

we take 1, y, y2, · · · , y(s−t)−1 instead of for each b, we obtain x(i) = y−ix(0)(yi)x(0) where
0 < i ≤ (s− t) − 1. Also let us replace x′ by x(0). Thus we have x(i) = y−ix′(yi)x′ . Hence
this completes the proof. �

3.2. Infinite case
In this subcase, let A be the free Abelian monoid rank 2 and let B be the finite cyclic

monoid. As a consequence of Theorem 2.5, we have the following result which can be
proved quite similarly as in Corollary 3.1.

Corollary 3.3. Let PA = [x1, x2 ; x1x2 = x2x1] and PB = [y ; ys = yt (s > t)] be monoid
presentations for the above monoids A and B. Therefore, the monoid A⊕B

δ ×ψ B has a
presentation with generators

x
(0)
1 , x

(1)
1 , · · · , x(s−1)

1 , x
(0)
2 , x

(1)
2 , · · · , x(s−1)

2 , y

and relators

ys = yt, x
(m)
i x

(n)
j = x

(n)
j x

(m)
i (i, j ∈ {1, 2}, 0 ≤ m,n ≤ s− 1),

yx
(m)
1 = x

(m−1)
1 yx

(m−1)
1 (0 < m ≤ s− 1),

yx
(n)
2 = x

(n−1)
2 yx

(n−1)
2 (0 < n ≤ s− 1),

yx
(t)
1 = x

(s−1)
1 yx

(s−1)
1 , yx

(t)
2 = x

(s−1)
2 yx

(s−1)
2 .

We note that Corollary 3.3 can be easily generalized for an arbitrary free abelian monoid
A with rank greater than 2.

On the other hand another infinite case application of Theorem 2.5 is the following:
Let A be the free monoid with a presentation PA = [x ; ] and let B be the monoid

Zs × Zm with a presentation

PB = [y1, y2 ; ys1 = yt1, y
m
2 = yn2 (s > t, m > n), y1y2 = y2y1].

For a representive element yi1y
j
2 in the monoid B, let us label x

yi
1y

j
2

by x(i,j) where 0 ≤ i ≤
s− 1, 0 ≤ j ≤ m− 1. Then, for each element in B, we have a generating set {x(i,j), y1, y2}
for the monoid A⊕B

δ ×ψ B. Therefore, by suitable changes in presentation (2.10), we
obtain the following result.
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Corollary 3.4. Let A and B be as above. Then

[ x(i,j), y1, y2 ; ys1 = yt1, y
m
2 = yn2 (s > t, m > n), y1y2 = y2y1,

x(i,j)x(l,k) = x(l,k)x(i,j) (0 ≤ i ≤ s− 1, 0 ≤ j ≤ m− 1, (i, j) < (l, k)),

y1x
(i,j) = x(i−1,j)yx

(i−1,j)
1 (1 ≤ i ≤ s− 1, 0 ≤ j ≤ m− 1),

y2x
(i,j) = x(i,j−1)yx

(i,j−1)
2 (0 ≤ i ≤ s− 1, 1 ≤ j ≤ m− 1),

y1x
(t,j) = x(s−1,j)yx

(s−1,j)
1 (0 ≤ j ≤ m− 1),

y2x
(i,n) = x(i,m−1)yx

(i,m−1)
2 (0 ≤ i ≤ s− 1)

is a presentation for A⊕B
δ ×ψ B.

4. Conclusions and future problems
In this paper, we first introduced a new monoid A⊕B

δ×ψB
⊕A under the name of a

higher version of Zappa products or generalized Zappa products of the monoid A⊕B by the
monoid B⊕A which is obtained by a combination of Zappa and wreath products. Then
we defined a presentation on this new Theorem 2.2. After that, by taking A and B as
finite (or infinite) monoid examples and also taking them as groups with their monoid
presentations, we presented some consequences of Theorem 2.2.

It is clear that to define a presentation on an algebraic structure is an important tool in
geometric group theory since this implies new studying areas over this structure. So, by
considering the presentation defined in Theorem 2.2 or the presentations defined in corol-
laries of Theorem 2.2, one may study Gröbner-Shirshov bases (see, for instance, [12, 21])
over these presentations since the normal forms obtained by Gröbner-Shirshov bases im-
plies the solvability of word problems ([11]). Furthermore the existence of other decision
problems, specially the isomorphism problem, over the monoid A⊕B

δ×ψB
⊕A can be stud-

ied for a future project. Additionally, with the help of Theorem 2.2, the subjects Green‘s
relations, periodicity and local finiteness may also be studied on A⊕B

δ×ψB
⊕A.

Another future research on A⊕B
δ×ψB

⊕A would be the adaptation of the results pre-
sented in [7] and [8], that is, to investigate whether there exists a bijective correspondence
between formations of the monoid A⊕B

δ×ψB
⊕A with formations of languages.
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