ON THE PROXIMATE ORDER OF ENTIRE FUNCTIONS

R. S. L. SRIVASTAVA - O. P. JUNEJA

In this paper proximate orders of an entire function in terms of the maximum term of its Taylor series and the maximum modulus have been found.

1. Let

$$f(z) = \sum_{n=0}^{\infty} a_n \ z^n$$

be an entire function of order ϱ and lower order λ ; M(r) denote the maximum modulus and $\mu(r)$ the maximum term of rank $\nu(r)$ in the Taylor expansion of f(z) for |z| = r. Then M(r), $\mu(r)$ and $\nu(r)$ are all positive and non-decreasing functions of r and

$$\lim_{r \to \infty} \frac{\sup}{\inf} \frac{\log \log M(r)}{\log r} = \lim_{r \to \infty} \frac{\sup}{\inf} \frac{\log \log \mu(r)}{\log r}$$
$$= \lim_{r \to \infty} \frac{\sup}{\inf} \frac{\log r(r)}{\log r} = \frac{\varrho}{\lambda}.$$

When $\varrho = \lambda$, f(z) is said to be of regular growth.

It is possible to find (['], p. 64) a positive continons function $\varrho(r)$ having the following properties:

(1) $\varrho(r)$ is differentiable for $r > r_0$ except at isolated points at which $\varrho'(r-0)$ and $\varrho'(r+0)$ exist.

(ii)
$$\lim_{r \to \infty} \sup \varrho(r) = \varrho;$$

(111)
$$\lim_{r \to \infty} r \varrho'(r) \log r = 0; \quad \text{and} \quad$$

(iv)
$$\lim_{r\to\infty} \sup \frac{\log M(r)}{r^{\varrho(r)}} = 1.$$

Such a function $\varrho(r)$ is called LINDELOF'S Proximate Order for the entire function f(z). In this paper we find proximate orders of f(z) in terms of the maximum term $\mu(r)$ and the maximum modulus M(r).

- 2. Theorem 1: If f(z) is an entire function of order ϱ , $(0 < \varrho < \infty)$ and r(r) the rank of its maximum term $\mu(r)$ such that $r(r) \sim \Phi(r) r^{\varrho}$, where $\Phi(r)$ is a positive continuous function in (r_0, ∞) and $\Phi(cr) \sim \Phi(r)$ as $r \to \infty$ for every constant c > 0 then
 - (1) f(z) is of regular growth;

(11)
$$\lim_{r\to\infty} \frac{r(r)}{\log \mu(r)} = \varrho$$
; and

(111)
$$\frac{\log \log \mu' r)}{\log r}$$
 is a proximate order of $f(z)$.

Proof: (1) Since f(z) is of order g, we have

$$\lim_{r\to\infty} \sup \frac{\log r(r)}{\log r} = \varrho.$$

Hence, for any $\varepsilon > 0$, we can find an $r_0 = r_0(\varepsilon)$ such that for every $r > r_0(\varepsilon)$

$$\log r(r) < (\varrho + \varepsilon) \log r$$

or,

$$(2.1) v(r) < r^{Q+\varepsilon}.$$

Also, since

$$r(r) \sim \phi(r) r^{\varrho}$$

we have, for any $\varepsilon > 0$,

$$(2.2) (1-\varepsilon) \Phi(r) r^{\varrho} < r(r) < (1+\varepsilon) \Phi(r) r^{\varrho}$$

for $r > r_0'$.

Hence for sufficiently large r, we have from (2.1) and (2.2)

$$(1-\varepsilon) \Phi(r) r^{\varrho} < r^{\varrho+8}$$

or

$$(1-\varepsilon)\Phi(r) < r^8$$
.

Taking logarithms and proceeding to limits we get, since $\Phi(r)$ is positive,

$$\lim_{r\to\infty}\frac{\log\phi(r)}{\log r}=0.$$

The condition $\nu(r) \sim \Phi(r) r^{Q}$ then gives

$$\lim_{r\to\infty}\frac{\log r(r)}{\log r}=\varrho.$$

So f(z) is of regular growth.

(11) To prove the second part, we have

$$v(r) \sim \Phi(r) r^{\varrho}$$

and so,

$$(\Phi(r) - \varepsilon) r^{\varrho} < r(r) < (\Phi(r) + \varepsilon) r^{\varrho}$$
 for $r > r_{\upsilon}(\varepsilon)$.

Or,

(2.3)
$$\int_{r_0}^r (\Phi(r) - \varepsilon) r^{2^{-1}} dr < \int_{r_0}^r \frac{v(r)}{r} dr < \int_{r_0}^r (\Phi(r) + \varepsilon) r^{2^{-1}} dr$$
 or,

$$\int_{r_0}^{r} \phi(r) r^{\varrho-1} dr - \varepsilon \int_{r_0}^{r} r^{\varrho-1} dr < \int_{r_0}^{r} \frac{r(r)}{r} dr < \int_{r_0}^{r} \phi(r) r^{\varrho-1} dr + \varepsilon \int_{r_0}^{r} r^{\varrho-1} dr.$$

Now, by Lemma V [2], the condition $\Phi(cr) \sim \Phi(r)$ involves

$$\int_{r}^{r} u^{\delta-1} \, \Phi(u) \, du \sim \frac{r^{\delta}}{\delta} \, \Phi(r)$$

for every positive δ , and so we get,

$$(2.4) \qquad \frac{r^{\varrho}}{\varrho} \Phi(r) - \varepsilon \frac{r^{\varrho}}{\varrho} + O(1) < \int_{r}^{r} \frac{\nu(r)}{r} dr < \frac{r^{\varrho}}{\varrho} \Phi(r) + \varepsilon \frac{r^{\varrho}}{\varrho} - O(1).$$

Now it is known ([1], p. 31) that

(2.5)
$$\log \mu(r) = \log \mu(r_0) + \int_{r_0}^{r} \frac{r'(x)}{x} dx$$

Hence, (2.4) becomes

$$\frac{r^{\varrho}}{\rho}\,\Phi(\varrho)-\varepsilon\,\frac{r^{\varrho}}{\rho}+O(1)<\log\mu(r)-\log\mu(r_{0})<\frac{r^{\varrho}}{\rho}\,\Phi(r)+\varepsilon\,\frac{r^{\varrho}}{\rho}-O(1).$$

Dividing by r(r) and proceeding to limits, we have, since $r(r) \sim \Phi(r) r^{\varrho}$,

(2.6)
$$\lim_{r \to \infty} \frac{v(r)}{\log \mu(r)} = \varrho.$$

(111) To prove (111), let

$$\varrho(r) = \frac{\log \log \mu(r)}{\log r} .$$

Then, $\lim_{z\to a} \varrho(r) = \varrho$, since f(z) is of regular growth and order ϱ . Further, if

$$f(z) = \sum_{n=0}^{\infty} a_n z^n,$$

the maximum term $\mu(r)$ for |z|=r is given by $\mu(r)=|a_{V(r)}|r^{V(r)}$. As $a_{V(r)}$, r(r) are constants in intervals, have an enumerable number of discontinuities and change values at these discontinuities only, they are differentiable everywhere except at a set of measure zero and their derivatives vanish almost everywhere. Consequently, $\mu(r)$ and hence $\varrho(r)$ are also differentiable almost everywhere. Thus,

(2.7)
$$r \varrho'(r) \log r = \frac{r \mu'(r)}{\mu(r) \log \mu(r)} - \frac{\log \log \mu(r)}{\log r}$$

where $\mu'(r)$ denotes the derivative of $\mu(r)$.

Since $\mu(r) = |a_{V(r)}| r^{V(r)}$, we get on differentiation

$$\frac{\mu'(r)}{\mu(r)} = \frac{r(r)}{r}$$

almost everywhere. Substituting in (2.7), we get,

$$r \varrho'(r) \log r = \frac{r(r)}{\log \mu(r)} - \frac{\log \log \mu(r)}{\log r} \to 0$$
 as $r \to \infty$,

since by (2.6)

$$\lim_{r\to\infty} \frac{v(r)}{\log \mu(r)} = \varrho = \lim_{r\to\infty} \frac{\log \log \mu(r)}{\log r}.$$

Also, from the definition of $\varrho(r)$

$$\frac{\log \mu(r)}{r^{\varrho(r)}} = 1$$

and since $\log \mu(r) \sim \log M(r)$ for functions of finite order, we have,

$$\lim_{r\to\infty}\frac{\log M(r)}{r^{\varrho(r)}}=\lim_{r\to\infty}\frac{\log \mu(r)}{r^{\varrho(r)}}=1.$$

Thus, all the conditions for g(r) to be a proximate order are satisfied and so the theorem is proved.

3. If W(r) be an indefinitely increasing function continuous in adjacent intervals, we know (['], p. 27) that

$$\log M(r) = \log M(r_0) + \int_{r_0}^{r} x^{-1} W(x) dx.$$

Using this relation and proceeding as in Theorem 1, we can similarly prove the following:

Theorem 2: If f(z) is an entire function of order ϱ ($0 < \varrho < \infty$), and W(r) an indefinitely increasing positive function such that $W(r) \sim \Phi(r) r^{\varrho}$ where $\Phi(r)$ is a positive continuous function in (r_{ϱ}, ∞) and $\Phi(cr) \sim \Phi(r)$ for every constant c > 0, then

(1)
$$\lim_{r\to\infty} \frac{W(r)}{\log M(r)} = \varrho$$
, and

(11)
$$\frac{\log \log M(r)}{\log r}$$
 is a proximate order of $f(z)$.

REFERENCES

['] G. Valiron : Lectures on the General Theory of Integral Functions, Chelsea, (1949).

[?] G. H. HARDY AND : Notes on Fourier Series (III), Quart. Journ. of Maths., 16, (1945). W. W. Rogosinski

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY
KANPUR — INDIA

(Manuscript received April 25, 1963)

ÖZET

Bu makalede lam fonksiyonların «proximate» (komşu) mertebeteri, babis konusu fonksiyonların Taylor serilerinin maksimum terimi ile maksimum modülleri cinsinden ifade edilmiştir.