ON LINDELOF’S PROXIMATE ORDER

P, K, Kamruan(*}

The object of this paper is to prove some

inequalities for the upper
and lower

limits of ecertain ratios of partienlar integrel functions of

’ 1
LivpeLér s proximate order.

o0

Introduction : Let f(z)} = Z a,z" Dbe an entire function having order
n=>4

(0 << ¢ < o} and LinpELSF’s proximate order ofr) (see [*], p. 54). Define:
r r
M(r):expf@dx; N{:'):f—’dij-(—f—)—dx;3>0,
3 i 3 ‘

where n(x) is a non-deereasing function of », at least for » = x,. Let

n{r}
M{r)

: lim

Ir—>ro0

_C.
=g

The following relationships between these limits may then he proved.

Theorem :
) A=C; (i) B<=D{1+log(C/D)},
(i) A E%el‘)n’c ; . () B=D: (i) A=D;
(0) C<Ae; (¢i) D+ CZ Ae.

(*) The Author wishes to express his gratitude to Dr. 8. C. Mrrra. His thanks
also doe to the Government of India for its financial assistance,
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Corollary : Eguality cannot hold at the same time in (iv”) and (vi).

To prove the theorem, the following intermediate lemma is required :
Lemma: [f M(r) is defined as above, then for every finite 5 =0,

M (r -+ 9r)
e (14-g)e

uniformly as r > oo,

Proof of the lemma: We have

r-nr

o (= L = f o i

r

But

F+qr

f ¢ (x)log x dx
o

< slog (1+W)$ r>ry(g),

by (i), ([1], p. B4). Henee for sufficiently large »

M@ +ar _ (147} r)ote+ur) , )
log {—W}— tog “—m—}+0(1)+10g(1+n)-,

by lemma 1 (['], p. B5), uniformly as r » co.

Proof of the theorem : We have

r r4ar ‘
N(r+nr)=0(1)+f»—n(x)f(x)dx+ f w*u_w"(")x‘"(")dx

o

A Fynr
— O (1)—-|-f",(x)M dx + f n{x) M (x) dx

M (x) M(x)
<o(1)+(c+s)M(r)+n(r+nr)1og{1"'(ﬂj,—“(‘;)@}-
Therefore
M(rtar) _ G M) nGeban) o (MG}
Nirpar) ~ e WHC+ )M{r+nr)+M(r+?rr)10g{ G }
Hence

C
(1) Aéa—_—{:ﬁ—)g—l—acmg(l-l-ﬂ);
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(2) Béﬁé—l—ngog(l—}—m.

Substituting ¢ = (CfDy/e — 1 in (2)] and »==0 in (1}, we get (i7} and (i) respec-
tively. Similarly we have

N (e -+ ) MG m) M@ MO
Moo DT O e s T e M) tog {5 }
Therefore
D Ceo N .
@ A=ty e o8
12 Do .

Substituting n—exp {({C—D)feC}—11in (8) and =10 in (4); (i) and (iv)
are obtained respectively.

Now from (iii}
(B) Ae=C{A+DIC+ --)=C,
and so (o) follows. Also from (5)
Ae = C(1+ DIC},

“and so (vi} follows. (iv”) is obvious from (iv).

Proof of the corrollary: Suppose {irst 4 = D. Then from (8), for 5 suf-
ficiently small

(Aime—13A4_ for+0()) ,
(R rrrn gy R

as n— 0. lence

C=zA=D,
but C=D always, hence C= D = 4. Therefore
CH+D=2A4A<eA.

Next suppose C-+D —ed, then we say that D < A4, for if it were equal to 4,
then from the above argument C -+ D < eA, contrary to the hypothesis.

Remark : The above results include those of 8. K. Siven [?].
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JZET

Bu yazmida Lwwpendr <yaklaplk mertebesinin® baz &zel inlegral fonksiyonla-
riyle meydana getirilen birtakim kesirierinin alt vo tist Ilimitleri arasinda

meveut birkag egitsizlik ispat edilmektedir,




