ON CONVEX FUNCTIONS AND THEIR APPLICATIONS TO ENTIRE FUNCTIONS

C. L. Rsuisawar

In this paper the growth of an indefinitely incereasing funection of a reat

variable has been studied in relation to another funection by introducing

the notion of order and type. An attempt has been made here to unify

dcertain aspects® of the two theories of entire functions defined by Tavior

geries and DiricuLer Series respectively, which have so far been treated

geparately by different workers in the two fields. Some applications gilven
in coneclusion are intended to emphasize thls faet.

1. Lei F(x) and %{x) be two indefinitely increasing funciions of the real
variable x defined by

1.1 log F(x) = log Flx,) -+ f «(t) glt) dt
and
(12 v =u(x)+ [ g0 d

where « () and g(f) are boith positive for 0= x, < < x and integrable in the
sense of Lenescue, We say that y(x) belongs to the class 4 or to B according
as for any positive constant k

(1.3A) wkx) — w(x) == 0(1)
(1.8B) ' plr+k) — px) = O(1)

as x approaches infinity. Since y(x) increases indefinitely with x, we have
log y(x)=o{w(x)} and from (1.8A4), it follows that y(kx)~ap(x) while (1.3B)
gives p(x -+ k) ~w(x). Since «(t) and g(¢) are both positive, so are the funec-
tions log F(x) and w(x). Further, if we take «(x) to be also nondecreasing,
then it follows easily thai log F(x) is @ convexr function of w{x).
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In this paper we study the growth of the funetions F(x) and a«{x) in
relation to the fuanetion w(x) and obtain a number of relations. It will he
seen that many known results of the theory of entire functions representable
by Tavior series and those defined by DiricHLET’s series, become the direct

consequences of the results obtained here,

Throughout in our discussions we shall assume. that F(x) and (x), as
defined in (1.1) and (1.2), arc hoth indefinitely inereasing functions which
are also positive since «(#) and g(¢) are hoth positive for 0 L », <¢ < x» and
that «(¢) is also nondecreasing, thus making log F(x) a convex function of
yw(x) which will be taken to helong either to the class A or to the class B as
defined ahove.

2. Theorem 1.

If -

_ fim 50 dog log £x) _ e
(2 1) X =00 inf '!p(x) A
then

4 sup Tog a(x) _ e
(2:2) cven iuf wlx) T A

Proof:

First suppose that w(x) belongs to the class A; then for &k >>1, we have

x .. kx hx
log Flkx) = log F(xo)—|—f w(t) glt) dt + f al(t) g(t) dt >f w(t) () dt

= o () [y(kx) — ()],

As w(x) satisfies the condition (1.8A), w(kx) ~ w(x) and hence we get,

' sup log a(x) _ 1im Sup Toglog F(x)

2y o S lim Y = ..
(2'3) x—oo 10T w(x) — x—oo inf w(x)
Also,

'

log F(x)=1log Flxo)+ [ %) () dt =105 Flxa) () wlx) — wlxa) |-

Hence, - ' log F(x) 1 ( ) .

oL log log Fix)  log alx 1 ol :
T G I C R
Thus.~._.0 . .. ' : . R - Pl
(2.4) : ‘I-‘im sup logra(x) iy, SUP log log F(x) i

X—r00 inf 1,U(x) T x—roo inf ",!J(x)
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Now, (2.2) follows from (2.1), (2.3) and (2.4).
Next suppose that w{x) belongs to the class B; then
x+k ‘:;:+k

log Fla--k) =1og Flx)) -+ f als). glt) dt > f alt). g(t) dt

=a(x) [ vlx + k) — vlx) ]
As y(x + k) —w(x) =0(1), we get p(x | k)~ p(x) and hence

) lim Sup log alx) lim Sup log log Flx)
(25) v inf T glx) = sheinf  w(x)
Hence, {2.2) follows from (2.1), (2.4) and (2.5).

Corollary ¢ ' N

If F'(x) be the derivative of F(x) [which exists for almost all values of
x = x,f, then

F'(x)
llm Sllp F(x) " g(x) 4 .
x—seo inf w{x) 2

Since from (1.1}, we have on differentiation F((x)) u—oe(x) g(x) for al.

most a11 values of x Lxﬂ , the corollary follows from 2. 2) on substituting
F'(x)
Flx). g(x)
Henceforth, ‘we shall refer to the constints g and A as defined 'in (2.1)
by «ip%-order» and <lower yp—order» respectively of the functions F(x} which
will he said to be of «regular yp—growths when p—21, The justification for
this lies in the fact that ¢ and 1 depend on the function w(x).

for a{x).

Theorem 2.

Let ¢ and 1 be respectmely the ‘i,l)—order and the w—lower order of the
function F(x); if

(2.6) ,}Hgo fg? #Jt)w(x)] v (0 <2< )

then '

) gl T S s e B2
Proof : 7 |

From (1.1) we have,
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(2.8) L a0 )

everywhere except for a set of measure zero. Let

lim B9P log F(x) ¢
x-so0 iuf &{x) 4

therefore for s >0, we have,

log F(x}

d—s< () < ¢} s

hence in view of (2.8), we have,

F(x) , F{x)
(d—9) Ty Tog 7o)~ W) <9 555710 Feoy
or ‘
A (1) 3 B 0
(d— s)xf i s Fa <xf 2() dt < (c+8)xf o T T
or
O (1) (d—s) log log F(x) < [p(x} —w(xe) | < (c-+ &) log log F(x)4- O (1)
or
{d ~£) log log F(x) : {c+¢) log log F(x)
[ o Fo(t)] < (1o <] o) +o(0)]-

Hence

Jim sup B UEEE 2 0
and

lim inf }08 108 F(x) 1

A—+00 P{x) ¢

or
d= X and ¢ == 1 .
¢ i

Hence
o im0 8 tim g 18 E0

Again, from (2.6), we have,
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a{x)
§— 8 W<}’+U

hence in view of (2.8), we have

(8—2). glx) . e®- ¥ < I;.((x)) <(r+s). glx). eV,

Integrating the above inequalities hetween the limils x, to » and then divi-
ding by «(x) we get

1 e2.¥(® log Fix) ,e? v
[(a—ﬁ‘).?- “(x) +0(1)]<W—< l:(?—i—g.}' (Z( ) +0(1)]
Therefore,
(2.10) 'Qi;yé iﬂgo inf lo_g_(F()L)A ,‘5-1—11010 stp %—ﬁ

From (2.9) and (2.10), the result of (2.7) follows.
Corollary :
If y=29, the function F(x) is of regular y—growth.
Theorem 3.

If O0<yg<x,

then
log F(x,) —log Flx,)
(2.12) w() £ TR T 2 ().
Proof:
From (1.1) and (1.2) we have
)
log F(x;) =log F(x,)+ f a(t) . glt) dt
and
v =viw)+ [ o). dr.
Hence
(2.12) log F(x;) —log Fx,) < a(xg) [ 9(xe) — p(xs) ]-

Also
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(2.18) mgﬂ&%4%FUQEMme&J~MMH-
Frdm (2.12) and (2.18), the result iﬁ (2.11) follows.
Theorem 4.

Let F(x) and ‘t,u(x) be positibe and indefinite[_ly inéreasing functions of the
real variable x defined by (1.1) and (1.2). Farther let ¢{x) be defired by

;

(2.14) o log plx) = log g(x) + [ Be) 1) o

where B(x) = a(x); then ¢(x) is alse a positive and indefinitely increasing function:
Farther if,

gi(ﬁ

2.15 o m s B Fw _a
(219) Um it “ i) B
and

. P
(2.16) fm FX [ == g
then
(2.17) Q=B=A=P.

Proof:

That ¢(x) is also positive and indefinitely increasing, is evident from
the definition of F(x) and #{x), and the fact that f(x) = «(x).
From (1.1) and (2.14), we get

log ;(;CD)) — log gi: =;o/ [ 8(t) — a(t)]. g(t)dt.
Therefore
1 9(x) 1 3
v(x) [tog Flx) f'fo(?)] = "’(x).-[;[ (B() —=()) - £(0) at)-

But, from (2.168) we have for any s >0 and sufficiently large x

s Qe [flx) —a(x)[< P+a.

Hence
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X x
Q—: f 1 . _lx) P-e f
o ] A< [10g o +o] < ] -
xy *p
On proceeding to limits the result of (2.17) follows, since,

[ s de=n) =) and p(o) >

Corollary :

K the limit in (2.16) exists, so does the limit in (2.15) and then the two limits

are equal.

Remark.

If P<< o, then a(x)~ f{x) and therefore in view of theorem 1, it fol-
lows that both the funections F(x} and Q?(x) have the same w—order and the
same lower w—order.

8. A belter estimate -of the growth of the funetion F(x} in relation to
log Flx)

— 25 ) Thus,
exp.le-yx]

the function y(x) is obtained if we consider the limjt of

let

(3. lim Sup log Flx) T

o it eewin — ¢ 0 (0Ft=TEw)

where p{0 << ¢ < ) is the yp—order of F{x). We define T to be the wy-—type
and ¢ the lower p—type of the function F{x) of yp—order p (0 <<p< =) and
in case, the limit in (3.1) ex13ts, i.e., T=1t, wo say that F{x) is of «perfectly
yw—regular growth» . S

Lemma:

If F(x) is of «perfec‘ily,Lw—regulgr growthy of w—iygpe T (0< T< ) of
y—order o (0< g < ), then it is necessarily of w—regular growth.

Proof:
We have, since F(x) is of perfectly y--regular growth,

log Flx) e~ T.e2. ¥},

hence, o
log log F(x)~1log T e.y(x).

Dividing hoth sides by w(x) and proceeding to limits we get sinee 0< T'< o
and y(x) > oo, o N S
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lim ]ﬁ lo—g F(JC) — 0.

x—>0o wlx)
Theorem 5.

Let ¢ (0 << o< ), be the w—order of the fanction F(x); if

sup log Flx) T

14 = = o0
oo inf eeiwey Ty ((Et=T=e)
and
lim sup OL(.A{) =¥,
x-rco i]lf -1 Y(x) 3
then
(8.2) d=Zpt=pT=y
Proof
We have for any ¢ >0 and x > x,
(3.8) (y-1-2) e P >a(x) > (6§ —r) e V(¥

Therefore, from (1.1), we get,

X
85—,
log F(x) > 10g Flxs)+ (3 —2) f ¢@. 90 . g{t) dt =10g Flx,) -+ —p—[e@¥ ) —c@¥ew],
*p

Hence,

log Flx) _d—¢

e q,((x)) > 4o(l).
Thus
(3.4) lim inf 108 F(x) 9

X0 e . Wxy — o]

Next, taking the first inequality in (3.8) and using it in (1.1), we simi-
larily obtain,

- log F(x) _
(8.5) Jm sup e £

and hence the resuli of (8.2) follows.

Corollary :

If y=28, then F(x) is of‘perfectly' regular w—growih.
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APPLICATIONS

4. Here we give some applications of the results derived in the previous
sections to cntire funetions.

(=]
First we consider the case of TavLor serics. Let f(z) = Zan ", z=x-t1iy.

0
ap real or complex, he an entire function of order ¢ and lower order 2; M(r)

denote its maximum modulus, p(r) its maximum term of rank »(»} for [z | =r.

It is known [', 31; 2, 10] that

4
@) log uly) =log wir)+ [ AL
Yo

and

(4.2) lim S0P log log M(r} 1y sup loglogpe(r) _ 3, SUP log»(r) __ e

x—+oo  inf log r x-co Inf log r xoo nf  log r A

Since »(¢) is positive and non-decreasing and
"1
log r=1log r,-+ f -
Yo

we ohserve that p(r) has a rvepresentation similar to that of F{x) with
afe) =»(t) and g(t)=1jt,

consequently, the result of the sccond equality in (4.2) follows from theorem 1.

Also, sinee [', 27}

40N dt

log M(r) =1log M{r,) -+ p

¥
Yo
where W(#) is a positive and indefinitely increasing funection, we get from co-
rollary to theorem 1,

(4.3) lim SWP O T__MG) e
: oo int IOg P A

where M'(r) is the derivative of M{») whieh exists for almost all valucs of
r [, 34].

Similarily, from theorem 2, we get the result [*, 10]; [%, £0-82]
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B log u(y) 1 i iog uly) _
4.4 — = lim inf P é S Hm osup —= 0000 2 4
WOy = AR e E T E AN T S
where

lim StP L(yl_ 7,
Fron inf y< g

From {2.11) of theorem 3, we get the inequalities [*, B8]

(4.5) [ ]v(?u é%g%—é(rl )V('r)

where 0 <<r <p,.

Again, if 7, ¢t he respectively the type and lower type of f{z) of order
p(0 < g << o), then the theorem 5 yields the inequalities ['¢, 220]

(4.6) d<gt=el <y
The mean value of f(z) is defined as

2

En
Mq(7'>=§;[f | fp . ef®) (a0 |7, g >0,

4

It is known [% 748] that

¥
log M, (r) = log M, (r,) + f ﬂ"t(—t)dt.
To

Here log M, (-} is an indefinitely increasing function being a convex fune-
tion of log r. Therefore on using theorem 1, we get [, 198]

sup log log My () sup log myq(r)

1i = 1i
(4.7) ,1_3.10 inf log » A ,l_ige inf  log -
It lim 'SGP mg(r) _ ¢
yooo  inf re T d

we gel from (2.7)

= lim inf log My ¢y _ 1 1 < lim sup log My (y)

[+
4.8 < =
.8 g.Cc.q  ywoo q(r) _e-q Aog Ty m (7) g.d.q

Now consider the entire function

(e}

F =3 an etns

n=1
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where 0<< A, <<dy< +or > oo, lim sup Log n

n—o0 n

=0
defined by a Drricarer series. Let, as usoal,
M{g)=1. u. b. | f(e+ti1)]
: o teon .

and p{o) denotes the maximum term of rank N{s) for Re(s) =o¢. The RirT-0rder
I, 78] g and Jower order A are given by

(4.9) lim Sup log log M(s) _ e,

goo  inf a A

Also, it is known [®, 67] that
g
{4.10) log (o) =1log w(s,) |- f A (£ di.
Gy

Since An(g is 4 non decreasing function and
qg
¢ =0, } f dt,
Go

we again have analogue between the fanctions p(e¢) and F{x) with w(c) =0
which belongs to class B. Consequently, many results which have been obta-
ined separately for the ease of entire funetions defined by DiricHLET series
follow directly from the theorems proved here. We list below a few of them,

(i) From theorem 1, we get, [?, 69-73]

(4.11) Lim SUP Log log M(o) _ Iim SUP log log m({s)
! g-r00 inf 43 - oroc iNf [i3
— Iim 5up log v 'Zg )

G0 inf R A

(ii} From Corollary to theorem 1, we have ['°, lemma 2]

sup log Bﬂ’fj’((o))
. i ¢ __e
(4-12) e

where M’(c) denotes the derivative of M(e).
(i) It

lim SUP AN _ 7
soo inf e® T §

then from theorem 2, we obtain ['*, 135]
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4,13 % lim inf Mé_l_élé lim sup log p{s) Y
(4.13) = p o8 MY . ¥
.y g0 AN(a) g AT Goaeo Ing —e.0

(iv) TFrom (2.11) of theorem 3 we get the inequalitics [, 139)

e TNEG) _ e {0)) 1 e% 1IN
(4.14) | e,[] £ ey = [ ]
if 0< 0, << g,

(v) If T and t be respeetively the type and lower type of f(s) of order
2{0<C g << o), theorem 5 yiclds the incqualities ['f, 141]

(4.15) d<ptsigT=y.

(vi) It is known ['%, 707] that if f(s) is of linearly regular growth and

limit [2n(s 1) — AN(ers) ]

g—rca

exists then f(s) is of finite order ¢ sueh that
(4.16) lim [ Aws, FOY — AN H]l=ne
0—*00

for n=1, 2...., iN(gs /) and Ay, ;™) being the ranks of the maximum terms
in f(s) and its atk derivative f(n) (s), respectivoly.

Sinee,
.
(4.17) log 1% H = log u(se, H +f N dt,
Og
[\ i
(4.18) log (9, f() = log (%, f(n))+f AN £ ot
dy i

T

and also™ [1, 89]

s, £

og 2
lim S0P 0 sle f) _ ne

gaoco 10 ] nﬁ

(4.19)

Hence applying the result of theorem 4 and its corollary we obtain the
resnlt in (4.16) (¥,

{*) The author wishes to aknowledge his deht to Dr. R. S. L. Smivastava for his kind
guidance and help in the preparation of this paper.
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OZET

Sira ve tip kavramlart tarif edilmek suretiyle, reel bir degigkenin sinirsiz

artan bir Fonksiyonunun artigi, diger bir fonksiyona gidre Incelenmektedir.
Bir taraftan Tayvior serilerl wvasitasiyle, diger taraftan Diriemeer aserileri
yolu ile tarif edilebilen tam fonksiyonlarin bu iki ayri koldaki teorilerinin
degigik yazarlar tarafindan ayr: tutularak incelenen baz1 noktalart bu
aragtirmada birlestirilmeye caligtlmigtir. Elde edilen sonuglar birgok problem-

lere uygulanarak bu husus tebardz ettirilmistir,




