POLARITY FOR A QUADRIC IN AN r - SPACE

Samis Ram MANDAN

Abstract (*), H.T, Baxer [*] proved analgtically that the nt1 {n—2)-spaces
common to the pairs of corresponding primes of a pair of polar simplexes
S and S” for a quadrie Q in an n-space Sp, are assosicted in such a
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way that they are met by s lines, one line through each point of
each (r—2)-space. Later ].A.Tooo and IH. S. M. Coxerer '] also proved
enalgtically the dually asseciated character of the n41 jolns of the pairs
of corresponding verticea of S and S’ as a solution of an advanced prob-
[em proposed dy S.BarrTY ['*1, 1t is suggested by Coxerer (in the Eprror’s
note there) that the same statement can be established synthetically by
induction. Thiz suggestion is followed up here to prove: «If oo™ (n_9).
spaees, for n greater than 8, meeting » of the rnil given lines A; B; of
general position in S,, pass respectively through each of 2 points Ap, By
of the (n41) th line, the n+41 lines A; By (i =0, 1,....,n) are associated in

3

such a way that ™" " (n_%)-spaces meeting them pass through every

point of every one of these [ines.»

[ecidently we observe that n{r+1) points, two on each edge of a simplex
S in Sp, lie on a quadrie, if, aud only if, they lie, in 22(n+1)/2 waye, in
n-ads in the p41 primes of another, polar to S for a quadrie. As a re-
sult, we derive Pascar's theorem for a quadrie in Sp according to CHasLes
{'°] and its deval, Briancmon’s theorem, in analogy with £hose for a econic,
leading fo a system of (n41) 2™ lines, 2" through each vertex of S, such
that each line belongs to 2"(’1_')"2 of 2P0 aggoclated sets of n+1
lines each. However interesting the relations of the Iines of a system,

they are not treated here,

A number of special cases of some interest are noted explaining the no-
velties in the paper of Baker referred to above, Selfconjugate r.ads for

Q arising from degenerate cases are also discussed, The paper is divided
into 2 sections, one devoted to 4-space only, the other deals with deve-
[opments in lhigher spaces.

{*) Published in the Proceedings of the 47th Session of the Indian Seience Cong,
Agsoeiation held at Bombay in January 1860. :
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I. SPACE OF FOUR DIMENSIONS

1. 5 Associated Lines.

If 3 planes, meeting 4 given lines a, b, e, d of general position in a 4-space,
pass respectively through each of two points E, E’ of general position, o' such pla-
nes are possible and a plane through E or E' meeting three of a, h, ¢, d necessarily

meets the fourth, EE" then is the fifth line e associated with a, b, ¢, d [*], [“].

The major work below is based on this proposition which is a necessary con-
sequence of the observations made by BAx=R ([*], p. 123) in regard to the character
of a set of 5 associated Iines.

2. Polar (Reciprocal) Simplexes.

2.1. Let ! be respectively the poles of the 5 solids jklIm
(l.)j)k! l)m:A‘}B’ C?DﬁE)

of a general simplex S=ABCDE for a quadric ) in a 4-space. S"=A4"B'C’'D'E’
and .§ then form a pair of polar simplexes for Q.

The projection j"&"I"m”, of jk'I'm’ from i’ in its polar solid jkIm for Q,
forms a tetrahedron polar to jkIm for the quadric section of ¢ by this solid.
777 kK, 1", mm” then generate a quadric w ([®*], Ex.7, p.41) and have o'

transversals which joined to # give us ~' planes meeting jj’, kk", [V, m m".

Similarly through / pass ~' planes meeting them. Therefore, ii" form a set of 5

associated lines (Art. 1).

2.2. Conversely, if the 5 pairs of corresponding vertices /, i” of 2 simplexes
S and 5° in a 4-space lie on b associated lines //", there exists a quadric Q, for
which 5 and S are polar, as follows.

Project the solid 7°&"'m” of 5" from its opposite vertex i, into j"&"I"m” in
the solid j&kIm of S, and the triangle k*I"m” {from j” or the plane k'Vm’ of 5°
from its opposite edge /" j* into & I* m* in the plane kI m.

Now through * passan infinity of planes meeting the 5 given associated lines.
They meet the solid jk!Im in an infinity of lines meeting the 4 lines jj*, k%7,
1, m m" which then generate a quadric w. Therefore the tetrahedra jkIm and
JY K" I" m¥ are poiar for a quadric Q; ([’l, £x. 14, p. 58). Thence the triangles kI m
and & 1" m" are polar for the conic section (; of Q; by their plane. Therefore
by Cuastus’s theorem ([°], p. 62), they are in perspective from a point, say (i j).
It is easily verified that the plane (7 j) " j* meets the 5 associated lines, and the
line (i j) j”, lying in it, is a generator of w.
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Similarly we construct the quadrie Q; for which the fefrahedron iklm is
polar fo the projection of / &"I"m’ from ;" in ite solid, and show thatf the trian-
gles kIm and k" " m" are polar for the conic section Q, of Q; by their plane.
The Desarguesian character of these two trizngles fixes the conic for which they
are polar ([*}, p. 65). Hence Qi; = Qy, that is, the guadries Q; and Q; meet in a

¢onic,

Thus the 5 duadrics Q;, one in each solid of 5, are such that every two of
them meet in a conic. Therefore, they all lie on a 3-quadric @ determined by any
three of them. () is then seen to be the required quadriec. Hence, the 5 joins of
the wertices of a simplex S, in a 4-space, to those of another, sag S’, one fo one,
form, in general, an associated set of 5 lines, if, and only if, § and 8§ are polar
for a quadric, and consequently the 5 planes common fo their corresponding solids
foo form an associated sef sach that ang line meeting four of them meeets the fifth

1

and ' such lines lie in every solid through every plane of the sef.

3. Ohbservations,

3.1, The 6 intersections, of the non.corresponding sides of a pair of triangles
polar for a conic aud therefore in pelspectlve (Art, 2,2}, lie on a conic ({‘], p- 219;
{1, Ex. 5, p-. 80) Conve1 ser, the 6 1ntelsect10ns of a conic with the sides of a
triangle, lie, in 8 ways ([*}, p. 419), in pairs on the sides of another DEsarGUES
with it and therefore polar to it for a conic. Thus, fhe § paints, fwo on each side
of a triangle, lie on a conie, if, and only if, they lie in 8 ways, in pairs on the sides
of another polar to it for a conic and therefore DESARGUES with i. The later part of
this proposition speaks of the Pascar’s theorem, for a conic, in a forin suitable
for its extension into higher spaces ([*I, p. 417; [*], pp. 141--42),

3.2, Let an edge i{j of a simplex .5 meet a quadric W in g, h. An involution
is set up by the 2 pairs of points i, g; j, h and another by i, A; j, g. There are
2 pairs of foei of the 2 involutions, one pair for each, on ij, and thus 2 pairs of
siuch foei on each edge of 5. Now it follows from the preceding propesition that
3 pairs of them, one pair on each edge in a plane of S, lie on a conic, and there
are 8 such conies in this plane. Thence the quadric ¢, through 4 pairs of them,
one pair on each edge through a vertex ¢ of 5, and 6 other foeci, one on each
other edge, passes through one of the said 8 conics iu each plane of .5 through i,
and therefore through one such conic in every plane of 5. Q is one of the 21" =
1024 quadries for which each intersection of I with each edge of .5 is conjugate
to a vertex of 5 thereat. For there are 2 choices for a pair of foei on each edge
of § independent of each other, there being 10 edges in all.

3.3. Conversely, the 20 points, two on each edge of a simplex § conjugate
respectively to its two vertices thereat for a quadric @, lie on a quadric ¥, For
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the 6 points in each plane of .5 lie on a conic as observed above (Art. 3.1}, Now
they distribute into 5 tetrads, each tetrad conjugate to a vertex of § for @, in
the 5 solids which determine the simplex S’ polar to § for . Hence, the 20
points, two on each edge of a simplex S in a 4-space, lie on a qaadric, if, and only
if, they lie, in 1024 ways, in tetrads in the 5 solids of another pslar to S for a
quadric. Dually, the 20 solids, two through each plane of S, touch a quadric, if,
and only if, theg pass, in 1024 wags, in tetrads through the 5 wertices of anather po-

lar to S for a qaadric. We may refer to it as an S-theorem in a 4-space.

3.4. Again consider the 20 points, two on each edge of 5" (Art. 2.1) con-
jugate respectively to its two vertices thereat for (3. They form 5 tetrahedra of
the type 7k"1"m" polar to the tetrahedron jklm of S for the guadric section
of 2 by its solid. Hence, the 5 tetrahedra, each polar to a tetrahedron of a simplex
in a 4-space for the section of a quadric by ils solid, are inscribed in a qaairic. It

may he referred fo as an s-theorem in a 4-space.

4. Pascar’s and BriancHon’s theorems.

As an immediate consequence of the observations made above, we have the
Pascal’s theorem in a 4-space, analogous to that for a conic, following Court
([*], p.418) and Sarmon (['?], p. 142}, and its dual, BriancroN’s, as follows :

The 20 points, two on each edge of a simplex § in a 4-space, lie on a quadric,
if, and only if, they distribute, in 1024 ways, inte 5 tetrads, each fetrad consisting
of 4 points on the 4 edges through a wertex of S, determining 5 solids which meet

the 5 solids of S oppaosite ils respective vertices in 5 associated planes.

For there are 2 choices for each point on each edge of .S to belong to a tet-
rad independent of each other, and the 5 solids through the 20 points determine
a simplex §° polar to § for a quadric.

Dually, the 20 solids, two through each plane of S, touch a quadiric, if, and

only if, they distribute, in 1024 ways, into 5 tetrads, each tetrad consist‘ing“bf 4 so-.

lids through the 4 planes in a solid of S, determining 5 points which join the vertices

of S oppesite its respective solids in 5 associated lines.

The analogues theorems in a solid proved. by Baker ({?], Ex. 15, pp. h8—54)
can also be established in this style.

. 5. Related Polar and Self - polar Simplexes,

5.1. Following BAkER ([*], pp. 516—518), we can derive 120 pairs of self -
polar simplexes from a pair of polar simplexes, say .5 and 5" (Axt. 2.1), for the
quadric @ as follows. '

Let the vertices of Sand 5" be arranged in a cyclical ovder jkImi j k' m’i.
Every four consecutive points determine a solid. The firat five consecutive solids
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in this order, \wiz., jkiIm, klmi', Imi" 7, mi j7k, i j & I', and the next or
opposite five determine respectively two simplexes both self-polar for Q. The same
two simplexes arige, if we arrange the solids opposite the respective vertices of §
and §° in this order and take the points common to the tetrads of consecutive
sokids as their vertices, the first five for one and the next five for the other. Evi-
dently then there are 120 pairs of such simplexes, one pair for each permutation
of ijklm which settles that of /" j k"I"m’ in the eycle.

But a simplex degenerates, if two of its solids coincide, That is the cage, if
the solid jklIm contains its pole i for @, that is, when it touches Q and there-
fore / lies on Q, or, if the plane %kIm meets its polar line " j° for @, that is,
when both touch . The former type of degeneration occurs for every permuta-
tion of jkIm, the later for every permutation of kIm coupled with one of i,
7'« Thus, a pair of polar simplexes for a gquadric Q}, in a 4-space, give rise to 720
pairs of self - polar simplexes for Q. If a verfex of either lies on Q, 24 self - polar

simplexes degenerate, and if an edge or a plane of either touches Q, 12 such simp-
lexes degenerate.

This explains the degeneration of the 2 seli-polar simplexes derived by BAKER
(*], p. 417) from a pair of polar simplexes for a quadrie.

5.2. Conversely, we can derive 14400 pairs of polar simplexes from 2 self -
polar simplexes for a quadric in a 4-space. For, in this case, every permutation of
the vertices of either of the two given simplexes can be coupled with every per-
mutation of those of the other. Degeneration cases occur here aigo, if a vertex of
one lies in a sgolid of the other, or, if an edge of one meets a plase of the other,
that is, when a vertex, an edge, a plane or a sclid of one is conjugafe respecti-
vely to a vertex, an edge, a plane or a solid of the other for the guadric,

Definitions. 2 lines or 2 planes in a 4-space are said to be conjugate for a
quadrie Q, if the polar of one for Q meets the other and consequently the polar
of the second for Q- meets the first; a line | and @ plane p are said to be conjuga-
te for (@, if the polar line of p, for @, and [ lie in a plane polar, therefore, to
the line in which the polar plane of {, for @, must meet p ([*], p. 171), in ana-
logy with conjogate lines in a colid (7], Ex. 5, p. 34) for a quadric-there.

6. SEGrE's Figure 15,.

6.1. 5 lines of an associated set and the 10 transversals of theirs, one to
each triad of them, form a Seere’s figure ({*], pp. 113—14), denoted sf when ari-
sing from the 5 joins ii” (Art. 2.1), of 15 lines and 15 CreEmoNA points (['], p. 226),
8 lines through each point and 3 points on each line, The 15 points lie by fives
in 45 T-plancs (['], p. 226), each containing either two transversals or a trans-

versal and a line of the set meeting at a CrREMoNA point. Every two lines of the
set determine a singu/ar solid ([*], p. 115) which contains the transversal of the
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other three lines, 3 other iransversals, one to each triad conasisting of these two
lines and one other, skew to each other but meeting the former one, 9 CREMONA
points and 9 T-planes. There are 10 such solids. Thus, the traneversals, of triads

46 .

having 2 lines common, are skew, and of those, having one line common, meet at
a CrREMONA point. Again 2 transversals and a line of the set concur at each Cre-
MONA point and thus determine a solid which we may call a CrREMONA solid, There
are 15 much solids, each containing 7 CrEmoNA points and 3 T-planes,

6.2. The 4 edges through a vertex 7/ of a simplex S (Art. 2.1) give us 3
pairs of opposite planes, viz., (jk, Im# ikl, jmi ijl, kmi. Let ijk, imi
be conjugate for Q. Then i j k meets the polar line j°k" of {mi which meets the
polat line I’m” of i jk for Q. Thus ¢ lies in the solids jj" k&', [¥ mm’, and, the-
refore, the common transversal of the triad of lines i#", jj", k%" and that of i/,
{I', mm” both pass through / which iz then a CrREmoNA point of s f.

Again if the edges ik, mj of § be conjugate for @, their respective polar
planes I'm’j’, k'’ are conjugafe for (), and, therefore, I, which i{g the pole of
the solid i jkm for Q, iz a CrREMoNA point of s f. Thus, if a pair of opposite pla-
nes through a vertex i of a simplex S, in a 4-space, and a pair of opposite edges in
a solid of S be conjugate for a quadric Q, the pile of the solid for Q and i are both

CREMONA points of s f (ef. ['*], Art. 5e).
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6.3, Now if a plane i jk of 5 be conjugate to its two opposite planes km/l,
Imi for 2, it meets both the lines {"j', j'k” polar to them for (, that is, ;7 lies
in it and, therefore, its polar line ["m’ lies in the solid kImi polar to j* for Q.
ik then meets jj°, say in J, and is, therefore, the common transversal of the
triad of lines 7¢, j;/, kk" with 4, f, k as the 3 collinear CREMONA points of sf
on it, '

Again, if the edge ik of § be conjugate to its two oppoasite edges mj, jI for
@, they both meet its polar plane j* 1" m” for @, and therefore j lies in this plane
and ik in the polar solid /" k" I"m’ of j for Q, that is, I’ m” also meets j ;" iu the
point no other than J and is the common transversal of the friad of the lines
ji5 1, mm® with I’y m’, | as the 3 collinear CREMONA points of s f on it.

Consequenﬂy, ik, jj’, I’ m’, concurient at f, are 3 mutually polar lines for
Q, and, therefore, tangent to Q at J, lie in a CrEMoNA solid, of s f, tangent to

Q at J.

6.4. Let us consider the conjugacy, for Q, of the alternate or opposite pla-
nes of .5 in a eyele (i jklm) of its vertices along with that of the alternate or
opposite edges of § in the eyele (i km jI), square of the former, To be specific for
1'efe1'ence,- we put down these conjugacies in the tabular form as follows:

ijk is conjugate to kim, Imi .............. (")
ik! — Imi, mij  eeeiereeren.. (k')
klm — mify Pfk i, i
lmi — Pjky, FEL il (m")
mij — kL klm i )
ik — mi Fl e )

km — FhLoLi . 0

mj - T, ik e @

ji — ik, km oo 13)
li - kmy mi e, (m)

We have discussed (7, (1) just above. Similarly behave the rest in like pairs
from which we infer that ji, k&', m’" "y km, IV, ¥ 5 1i, mm', j7k'y mj, ii,
k"I’ coneur respectively as triads of mutaally polar lines for @ and, therefore,
tangent to () at the CremoNA points K, L, M, [ of s f. Thus, o pair of polar simp-
lexes S and S for a quadric Q, in o 4-space, can be so related that the 15 lines of
s f all touch Q in triads of. mutually polar lines for Q and, therefore, lie in 5 CRE-
MONA solids :‘anger.if to' () at the respective CREMONA points of sf.

The simplex s=/{JK LM is inseribed to both of the skew pentagons ikmjl,
i 77k’ m’ whose sides constitute the 10 transversals and vertices the 10 Gre-
MONA points of s f other than [, J, K, L, M. The relation of the pair of polar




28 8. R. Manpan

simplexes .§ and 5 (Art. 2.1) now is such that each vertex of either lies in a pla-
ne of the other and, therefore, each solid of either contains an edge of the other,
We thus have some generalization ({*l, p. 518) of Morpius tetrads ({*'], p. 471).
The solids of .§ and S° constitute the 10 singular solids of s f.

6.5, Tollowing Baxer (['], p. 409), if we rename symbolically the vertices of
S and 57 as

i =34, j =45, k =51, [ =12, m =23,
=52, j =18, k" =24, =35, m' =41,

we find the novelty, in their relationship giving rise to b new pairs of polar
simplexes for Q besides their being the 10 nodes of a SEGRE cubic primal, as ob-
gerved by him, answered here in the annexed diagram. The 15 planes common to
the pairs of the corresponding solids of these 6 pairs of simplexes ([*], p. 512) lie
by threes in the 10 singular solids of s f, each plane occurring twice, and in the
5 CREmoNA solids, tangent to Q at the vertices of s (Art, 6.4), of ¢ f as its T-pla-
nes polar fo its 15 lines for Q.

6.6. Now how to construct such a pair of polar simplexes, for a given
guadric Q, leading to a SEGRE’s figure, as illustrated above, is a problem before
ug answered below,

Take a point / on ). Draw a triad of mutually polar lines through /f, for Q,
and, therefore, lying in the solid tangent to Q at [, to meet the solid, tangent to
Q at another point J on it, in ¢, 5, V. [i [j, Iy Jfi, Jj, J{° thus form 2
triads of mutually pelar lines for Q and, therefore, tangent to Q at [, j respee-
tively.

Now take a point % on Ji and let X K be one of the two tangents, from k%
to Q, at K, In the plane ['k!” meetiovg /1" at k', Evidently, K j touches Q at K|
for K lies in the polar solid [/ JI” of j for Q. The polar line of the plane jk k',
tangent to @ at K, for Q, then touches @ at K and meets the lines jI*, [i, po-
lar respectively ‘to the-planes Jjk, [jk" for Q, say in m’, i’. Thus Ki', Kj, Kk
form a third triad of mutually polar lines for  in the solid tangent to @ at K.

Again let L be one of the two intersections of ¢ with the polar line of the
plane kEI"i" for Q. Lk, LI', Li" then form a fourth triad of mutually polar lines
for Q and, therefore, lying in the seolid tangent to Q at L. Let the lines Li, jj
polar respectively to the planes LkEI, JkI' for Q, meet in ;5 kL, /j, polar to
LY, [V, meet in m; LI, Kj, polar to kL, Kki’, in L. il, mm’, j 'k are
then seen to form the fifth triad of mutually pelar lines for (@ and, therefore,
concurrent, say at M, lying in the solid tangent to () at M.

That completes the construction of the needed pair of polar simplexes ijkim,
7k Um’ tor Q {(Art. 6.4).
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6.7. Conversely, the 75 CREMONA points of a SEGRE's figure distribute, in 6
wags, info 2 parts, one consisting of 10 points as the nodes of a SEGRE cubic primal
and, therefore, as the poles of the 10 singular solids of the figure for a 3-gaadric
Q, or, as the werfices of a pair of polar simplexes, in 6 ways, for the same guadric,
and the other consisting of 5 points as the points of contact on Q of the 15 lines of
the figure which fouch Q as 5 triads of muotually polar lines for it, one triad through
edach point, and each of the 15 sach triads occuring twice for two of the 6 gquadrics,
obtained similarly, for which the figure is thus selfereciprocal ([*], Ex. 21, p. 148).

For the convenience of the argument, we rename symbolically the vertices
of the simplex s as

[=16, J=26, K=86, L=46, M=56

in the manner we have done above {Art. 6.5) for § and .7, and thus our figure
now follows the notation of Baker {['], p. 225).

A quadric @ in a 4.space is determined by 14 conditions which are just ne-
cessary to let @ to circumscribe a simplex like s with vertices at the 5 UrEmona
points, whose symbols all have one number in common, of the figure, with the
% triads of lines through them, one triad through each point, ail mutually polar
for ( and, therefore, lying in the 5 CRrEMONA solids respectively tangent to Q at
these points, such that the polar, for Q, of every point of the figure is either a
singular or a UREMONA solid and that of every line of the figure is a 7-plane
{Art. 6.5).

Evidently, there are 6 such guadrics associafed with the figure, each deter-
mined by a simplex like s {(ef. ['], Ex. 3, p. 232), every two like simplexes have
a common vertex, and, thus, every two quadrics have a triad of mutually polar

lines common through the common vertex of the corresponding simplexes.

The 6 fundamental points (['], p. 224} of the figure, which have led to the
symbolic representation of its 15 points making its study simple, symmetrical and
fagcinating, are discovered later (Art. 8.5} to disclose their fundamental existence
in the make-up of the figure and thus complete its self-reciprocal character in re-
gard to the 6 quadrics introduced here.

7. Self - conjugate Heptad

7.1, If 2 pairs of opposite planes through a vertex i of a simplex S, in a
4-space, he conjugate for a quairic Q, the third pair of them is also conjugate for
Q, and the 5 joins of the vertices of 5 to the respeclively corresponding enes of its
polar, say S’, for Q are met by a line through ¢ (ef. ["[, Art. 5d), and are thus no
longer associated {cf. Art. 2.1.).

It follows immediately from ifts equivalent as well as corresponding proposi-
tion of Baxker ([*], Bx. 5, pp. 84—85) in the polar solid of ¢ for Q. That is, if 2
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pairs of opposite edges of a tetrahedron 7 are conjugate for Q, the third pair of
them is also conjugate for Q and the 4 joins of the vertices of the corresponding
ones of its polar for the guadric section of Q by the solid concur. The argument
of Art. 1 does not hold good here.

With the aid of Art. 6.2 we can now prove the following theorem: If 2 pairs
of opposite planes through i as well as one pair through another wertex j of S be
conjugate for Q, the edge ij of S meets the 5 joins of the corresponding wertices
of 8 and S’. Further, if a pair of opposite planes through a wertex k' in the plane
E'Vm’, of §', polar to i j for Q, be also conjugate for it, k" lies on i j, and, there-
fore, i j, k"I, K" m” form a triad of polar lines, for Q, lying in the solid i jlm, of
S, tangent to Q ot k',

1.2. If 2 tetrahedra, lying in different solids in a 4-space, be projective®, they
are polar™ for a quadric Q, and the 5 joins of the corresponding vertices of the as-

sociated polar simplexes have a common transversal and are thus no longer associated.

Let T=BCDE, T"=B"C"D’E’ be the 2 projective tetrahedra, Iying res-
pectively in the solids a, a”, such that the 4 lines jj° are met by a line ¢, and
the 4 points &k{m - &"I" m" lieon aline x in theplane ¢+« (j, k&, [, m=B,C, D, E).
We can now construct a quadric @ uniquely for which every ;' is conjugate to
the triad of points k,[, m, and ¢ is polar to x,

Let 4 be the pole of &’, and 4’ of a, tor Q. S=A4ABCDE, S =A4'B'C'D'E’
are then the associated polar simplexes, for Q, to which belong 7, 7’ respectively
as required, and ¢ meets 4 A" too. For, the polar plane « - ¢ of 44" and that of
t, for , meet in the line x. The argument of Art. 1 fails hereto prove the asso-
ciated character of the 5 lines 4 4", BB, CC", DD’, EE’ (¢t. Art. 2). For, the
starting 4 lines are no longer general, as required there, when they have a com-
mon transversal, as is the case here,

7.3. Let F be a point on the common transversal # of the 5 joins i#, and
ita polar solid f, for the quadric Q, meet an edge i"j" of the simplex S of the
preceding paragraph, in the pole (F k1 m) of the solid

FElm (i, j,k,l,m=4,8,C,D, E}.

Then, f contains the 10 points ijk-i 7%k Iying in the polar plane of ¢ for
and the polar line (Flm) of the plane Flm, for Q, lies in the plane i j° 4" and
contains the 4 points (Fklm), (Flmi), (Fjlm), ijk-i j k. Thus a plane i jk
and the line (Flm) lie in a solid which meets ¢# in G, say. Now the plane

(*) Definitions. 2 tetrahedra T, 7', Iying in different solids in a 4-space, may be
said to be projective, if the 4 joins ot the vertices of T to those of T’, one to onme, are
met by a line; and polar for a 8-gnadric Q, if they belong to a pair of polar simpiexesa
for @, one to one, and correspond to each other.

It may be remarked here that 7T, T~  &re projective, (f, and onlp if, the ¢ inler-
sections of the corresponding planes of theirs are collinear [121.
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i j (FEk1m) lies in this solid as well as in the solid { j { 7/ which contains ¢, and,
therefore, meets # in the point no other than G, Again, the 10 solids ijk(Flm),
one through each plane of the simplex S, and the 10 planes {j(FkIm) all meet-
ing ¢, one through each edge of . and meeting the corresponding edge of 5, are
such that each solid contains 3 planes and each plane iies in 3 solids. Thus, they
all concur, and the 7 points 4, B, C, D, E, F, G constitute a self-conjugate heptad
for 2, in analogy with a self-conjugete hexad of Baker ([*], Ex. 10, p. 47} for a
quadric in a solid, such thaf the plane confaining any fhree of them is conjugate
for  to the solid containing the other four. Its consfruction betrays that the 5

.joins of ang five, of the 7 points of a self-conjugate heptad for a quadric Q in a

{-space, forming a simplex, fo the respectively corresponding wertices of its pelar

for Q, are mef by the join of the other fwo.

~ Our self-conjugate heptad here apparenfly bears a resemblance fo the self-
polar heptagon of ScHusTER (['"], p. 143}, but it may be remarked that the ftwo
are never identical.

8. Self-conjug afe Hexad.

8.1. If 2 edges in a plane of a simplex, in a 4-space, be respectively conjuga~
te (by definition of Art. 5.2) for a guadric Q fo their opposite planes, the plane and
the third edge in it are conjugate for Q to their respectively opposite edge and plane.

Let an edge [/ of a simplex s (Art. 6.4) be conjugate for ¢ to the plane
K L M whose polar line [” J’, for €, then meets / J, and its polar plane K" L' M’
for Q meets KL M in a line, If, further, JK be also conjugate for Q to ILM
which then meefs its polar plane /" L" M’ in a line, J' K’ meets fK. Thus /K
meets [ /" K" in a line, L M meets L” M’, and, therefore, / JK, and every other
line therein, [K in particular, are all conjugate, for Q, to LM proving the first

part of the proposition. For the second part, we refer fo the dual proposition of

Art. 7.1 in the solids J JK L, I JKM where [J, /K are conjugate respectively to
KL, IL in one and to KM, /M in the other for Q, and, therefore, /K is conjuga-
te to both fL, fM hesides L M and consequently to the plane JL M for Q as
required,

This is equivalent to saying that if //°, K K" both meet Jj°, then [I, J J',
KK econeur and L L, MM meet. Thus, if fwo, of the fine joins of the pairs of
corresponding wvertices of a pair of polar simplexes for a quadric in a 4-space, meet

a third, the three concnr and the other iwo meet.

8.2. If 3 consecative edges, of a skew peniagon formed of the 5 wertices of a
simplex S, in a 4-space, be conjugate to their respective opposite planes for a quadric
Q, everg edge of S is conjugate to its opposite plane for Q.

Let the 8 edges [ J, J K, KL of s be conjugate for Q to their respective op-
posite planes KLM, LMI, MIJ. Then, by the preceding proposition IK, fL, LM,
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MI and consequently [L, jM, KM also are conjugate for Q to their respective op-
posite planes. :

This is equivalent fo saying that if four, ef the 5 joins of the pairs of cor-
responding wvertices of a pair of polar simplexes s and s for a quadric, in a 4-space

concur, the fifth also concurs with them and thus s and s are in perspective.

8.3. Conversely, if two simplexesin a 4-space, be in perspective there is a uni-
gque quadric (Q for which they are polar.

Q can be constructed here also by the method adopted above (Art, 2.2), but
no construction of @ ean be simpler or more elegant than that of Baxer ([*], Ex.
22, p. 149).

8.4, Let s=I1JKLM, s"=I"J'K'L’M’ be two simplexes in perspective from a
centre O and polar for a quadric Q in a 4-space. Then the 6 points O, [, J', K7,
L', M’ form a self-conjugate hexad h for Q, in analogy with a self-conjugate pen-
tad of Baker ([*], p. B7) for a quadric in a solid, such that the line joining any
two of them is conjugate for (@ to the solid containing the other four and conse-
quently the polar line, for Q, of the plane containing any three of them lies in
the plane confaining the other three. Ifs construection betrays that every onre of
the 6 points of a self-conjugate hexad for a quadric Q, in a 4-space, is the centre
of perspective of the simplex formed by the other five and ifs polar for Q.

8.5. Tt may happen that a simplex ¢ is inseribed in a quadric (J and all its
planes are conjugate to their respectively opposite edges for (). It is seen that
such is the case in Art. 6.7 where s is then in perspective with its polar simplex
s’y for }, constituted by the 5 fangent solids of Q at ifs vertices, from a cenfre
0. Therefore, the 5 vertices of ¢ fogether with O form a self-conjugate hexad A
for Q. In fact, these are the wanted six fundamental points of the SEGRE’s figure
discussed above (Art. 6.7), as can be easily verified. Hence, A is the common self-
conjugate hexad, as a eommon link, of the 6 quadrics, mentioned there, associa-
ted with the figure which is noticed to be self-polar for all of them. Thus, the 6
fundamental points of a SEGRE’s figure 15, constitute a common self-conjugate hexad

for the 6 quadrics associated with if.
9. Analytical Expressions for Q.

It is proved by Baker ([?], pp. B4, 39, 49) that a quadric Q in a solid can be
expressed fangeutially as the sum of squares of 4, 5 or 6 points according as they
form a self-conjugate tefrad, pentad or hexad for (. Similarly it can be shown
here too that a quadric Q in a 4-space can also be expressed as the sum of squa-
res of 5, 6 or 7 points according as they form a self conjugate pentad, hexad or
heptad for Q. In fact, Honee and Penoe ([], pp. 219—228) have done the needful
for all spaces and thus established their existence analytically as polar r-ads for
() in each space.
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10. » + 1 Associated Lines.

Let ug agsume that, in an (n — 1)-space S,—,, if =" (r — 8)-spaces (n >4} %
meeting n —1 of » given lines Ay B, (f=1,...,n) of general position pass res-
of the rth line, the n lines are asso-

’

pectively through each of 2 points A4,", B,
ciated such that oo™ * (p — 3)-spaces meeting them pass through every point of
every one of these lines and therefore =" * (n — 3)-spaces, in all, meet all of them.

If, in an n-space (n >3), ~"~? (n— 2)-spaces meeting n of n-+1 given lines
A;B;(j=0,1, ..., n) ofvgeneral position pass respectively through each of two points
Ay By of the (n-1) th line, the n 41 lines are associated such that "% (n —2)-
spaces meeting them pass through every point of every one of these lines and thus
ang (n — 2)-space meeting n of them meets the {n -}- 1) th foo. Aij will be referred

to form an associated sef of n-{1 lines.

To prove the proposition, project the .p lines A;B; from a point P on the
(n + 1) th line A, B, into then n lines A; By’ in S,_, such that A; projects into
Ay and B; into B;. Now from hypothesis it follows that o™* (n — 2)-apaces
meeting the » + 1 lines pasa respectively throagh P A,, P B, and therefore oo®*
(7t — B)-spaces meeting the »n lines A;” B;” pass respectively through 4,°, B,”. Then,
by the assumption, these r lines are associated in such a way that they are all
met by 2™ (n—38)-apaces which joined to P give us the same number of (n—2)-
spaces through P meeting all the lines 4; B;. Therefore, if (2 be a point on A, By,
there pass o™ * (» — 2)-spaces meeting these »-+1 lines through PQ, P being
an arbitrary point on A, B, whieh iiself is an arbitrarily chosen one of the given
lines. Thus «="—? (n — 2)-spaces pass through an arbitrary point Q on A4, 8, to
meet the p 4+ 1 lines.

Hence the proposition undzr consideration holds good, if, and only if, our
assumpiion ba true. But the same is so in a 4-space as seen above (Art. 1). Thus
it holds when n=25, and therefore for n =06, and so on.

() Remarlk: In a plane any three concurrent Hnes and tn a solid any four gene-
rators of one system of a quadric may also be said to be associaled as a limiting ease, if
we agree to talke w®—1 aud modify a bit the proposition to suwit the circumstances the-
re, for any line in a plane meets any other therein and every four lines, {u a solid, of
general position always have two transversals ([gf p. 184).

33
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11. Polar Simplexes.

The joins of the corresponding wertices of two simplexes, in an n-space, form, in

general, an associated sef of n-t1 lines, if, and only if, the simplexes are polar for

a gaadric therein, and consequently the n+ 1 (n — 2)-spaces common fo their corres- £
ponding primes foo form an associaled sel! such that! any line meeting n of them meeis
the {n+ 1) th and "7% such lines lie in every hyperplane through every {n — 2)-spa-
ce of the sei.

For n =4, it has been established (Art. 2) by making use of Art. 1, which
is the basis of the last article, and the corresponding propositions in a solid and
in a plane. Tollowing similar arguments, it can be now proved, by the method
of induction, for higher spaces too, with the help of the preceding proposition.

12. 5- and s-theorems.

Following the ar"guments of Art. 8, we may simply state these theorems as
follows : '

S-theorem: The n(n 1 1) points, 2 on each edge of a simplex § in an n-spa-
ce, lie on quadric, if, and only if, theg lie, in 2""+W?% ways, in n-ads in the n+ 1
primes of another, polar to S for a quadric. Dually: The n{n+1) hyperplanes, 2
thiough each {(n — 2)-space of S, fouch a quadric, if, and only if, they pass, in
2N wags, in n-ads through the n+ 1 wvertices of another, polar to S for a

gquadric.

For n(n—+ 8)/2 general points in an n-space determine uniquely an {n —1)-
quadrie, referred to simply as a quadric here unless otherwise stated, therein. '

s-theorem: The n-f-1 {p—1)-simplexes, each polar to the (n—1)-simplex, for-
med of n vertices of g simplex in an n-space, for the (n — 2)-quadric section of an

(n — 1)-gaadric therein by its hyperplane, are all inscribed in an (n — 1)-quadric,

13. Pascar’s and Briancron’s Theorems.

Ag a regult of the S-theorem in an r-space, we are now in a pogition to sta-
te these analogues of these theorems (cf. Art. 4) ag follows: '

Pascar’s Theorem: The n(n-+1) points, 2 on each edge of a simplex S in
an n-space, lie on a quadric, if, and only if, they distribute, in 2'0't"? wags, into
n+1 n-ads, each n-ad consisting of n- poinfs on the n edges through a verfex of S,
defermining n—f;l hgperplanes which meet the nt-1 primes of S opposite its respective
vertices in n-1 associated (n—2)-spaces {(Art. 11). Duallj{: The n{n+1) hyperpla-
nes, 2 through each (n—2)-space of S, touch a quadric, if, and only if, they distri-
bute, in on(i+1)/2 waygs, into n-+1 n-ads, each n-ad consisting of n hyperplanes
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through the n (n—2)-spaces in a prime of S, defermining n--1 points which join the
vertices of S opposite its respective primes in n-+ 1 associafed lines (BRIANCHON'y
theorem).

14. Related Polar and Self-polar Simplexes.

Following the argument of Arf. 5, we may state that:

A pair of polar simplexes for q quadric Q, in an n-space, give rise fo {(n-+1)l
pairs of self-polar simplexes for the same quadric. If a verfex of either lie on Q,
nl self-polar simplexes degenerate, and if an r-space or {(n —r--1)-space of either
touch Q, {r1+ 1} « (n—r}! such simplexes degenerate, I1-space being an edge, 2-space a

plane and 3-space a solid.

Conversely: We can derive [(n-+1)11* pairs of polar simplexes from 2 self-polar
simplexes for the same quadric in an n-space (ci. 4, pp. B16—518). Degeneration
cases oceur here also, if a vertex of one lies in a prime of the other, or, if an
r-space of one meets an (n—r—1)-gpace of the other, that is when a verfex or an
r-space of one is conjugafe respectively to a verfex or an r-space of the other for
the guadric.

Definitions: A g¢-space g and an r-gpace r (¢ =r) in an n-space may be said
to be conjugate for a quadric Q, if the polar ¢° of g for Q meets r in a point
which, therefore, is the pole of the hyperplane where, then, must lie ¢ and the
polar #" of » for Q; and p-conjugate, if ¢” meets r in a p-space and consequently
g meets " in a (p -+ g — r)-space polar, therefore, to the (nt+r—p—g—1)-space q"r

for Q (ef. Definitions of Art. 5.2).

15. Special cases.

Evidently the cases of conjugacies, for a quadric @, of various elements of
a gimplex in an n-space, increase with n» and it is impossible to exhaust all of
them unless n is specified. Hence we shall take up below only those cases which
are of general interest.

Let S=4Ayy <oy Any 8" =By, <1y By b2 a pair of polar simplexes for Q and the
n+1 joins A; B; of their corresponding vertices A4;, B; be referred to just as joins
for brevity.

15.1. Let n=2¢—1, and an r-space, say 4,... 4,, of § be conjugate, for
@, to an opposite (r—1)-space, say A, ... Asp—y, of §. Then the polar (~—2)-space
Biivy... By, of the r-space for Q, meets the (r—I1)-space in a point which is,
therefore, the pole, for 3, of the hyperplane where, then, the r-space and the
polar (r—1)-space B, ... B, of the (r--1)-space for Q must lie. Thus the r joins
Ay By, ..., A, -, Br_, lie in a hyperplane and so do the other » joins. Such is evi-
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dently also the case when the (r—1)-space is conjugate, for Q, fo ite opposite
(r—1)-space, the difference being that in the former case the unique (»—2)-space
meeting the »r joins in the hyperplane [} A.... Ay, B, ... Bap— passes through
Ay. For in the (2r — 8)-space A, ... Ay Brsy oo Byp -y, it is the definite (r—2)-
space through A, meeting the »r — 1 joins App Brqy, ooy Ay Bor—y.

ff the said »-space and (r—i)-space be p-conjugate for , the first » joins lie
in a (2r—p—2)-space and g0 do the others. Such is also the case when the (»—1)-
space and its oppogite (r—1)-space are p-conjugate for Q, the difference being that
in the former case the 2 (8r—p-—2)-spaces both pass through A,.

Thus: {f an (r—1)-space of a simplex § in a (2r—1)-space be p-conjugate, for
a gquadric Q therein, to its opposite (r—1)-space or an opposite r-space, the r joins of
the wertices of Sin the (r—1)-space to the corresponding ones of the polar of § for
Q lie in a (2r—p—2)-space and so do the other r joins, and the common wertex, say
A, of the (r—1)-space and the r-space lies in both the 2 (2r—p—2)-spaces sach that,
if p=0 or when they are simply conjugate, the unigue (r—2)-space meeting the first
¥ joins passes through A.

15.2. Similarly: [f an r-space, of a simplex § in a (2¢)-space, be p-conjiu-
gate, for a quadric Q therein, to its opposite (r—1)-space, the r-+1 joins of the wer-
tices of S in the r-space to the corresponding ones of the polar, say 57, of § for Q
lie in a (2r—p—1)-space and the other r joins in a (2r—p—2)-space; if an r-space of
S be p-conjugate, for Q, fo an opposite r-space, the r-+1 joins of the vertices of S
in either r-space to the corresponding ones of 5’ lie in a (2r—p)-space such that the
join through their common vertex, say A, lies in both the (2r—p)-spaces, and when
they are just conjugate, the unique (r — 1)-space meeting either » 11 joins passes

through 4.

15.3. Evidently: [f an edge of a simplex S in an n-space be conjfugate to its
opposite (n—2)-space for a quadric Q therein, the joins of the two wertices compri~
sing the edge to the corresponding two of the polar of S for Q meef in a point whose
polar hyperplane for Q contains the other n—1 joins.

15.4. Let 2 edges A, A,, A, A, in a plane of §, be conjugate for Q to their
respective opposite (rn--2)-spaces (» >>4) whose polar lines B,B,, B, B,, for Q,
then meet them respectively each in a point. Thus the plane A, A, A, meets
By B, B, in a line and is therefore 1-conjugate, and consequently every other line
therein, 4, A, in particular, simply conjugate, for Q, to its opposite (rn—3)-space.
Hence the 2 joins A, B,, 4, B, both meet the third A4, B8,, and the other n—2
joing lie in the polar (n—2)-space of the line of intersection A4,4,4, - B,B,B, for Q.

Again A, A, is evidently conjugate for @ to every edge of S opposits to if,
in particular to 4, A,. A, A, is Similarly related to A, 4,. Hence, 2 pairs of oppo-
gite edges of the tetrahedron A,4,4.4; are conjugate for a 2-quadric section Q, of
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(@ by its solid, and therefore the third pair, woiz. A, A4, A4, A4; are so (Art. 7.1).
That is, the polar line, of A, A, for Q., which ig the meet of the solid with the
polar (n—2)-space of A, A, for Q, meets A, A,. In other words, 4, A, is conjugate
to A, Ay for Q. Similarly it is conjugate for Q to the other n—3 edges 4,4, ...,
A, A, besides the (n—8)-space A4,...4,. Hence 4,4, is conjugate for Q fo the
(n—2j-space A A4, ... 4, whose polar line B, B,, for @, therefore meets it. Conse-
quently A, By, 4, B, meet and therefore A, B, concurs with them. Thus:

If two edges in a plane of a simplex S in an n-space (n>>4) be respectively con-
jugate for u quadric Q therein to their opposite (n—2)-spaces, the plane is l-conju-
gate to its opposite (n—~8)-space and the third edge in it simply conjugate fo ifs op-
posite (n—2)-spuce for Q. This is equivalent to saying that:

If two of the n— 1 joins of the vertices of S to the corresponding ones of ils
polar for Q meet a third, the 3 joins concur and the other n— 2 joins lie in an

(n—2)-space (ci. Art. 8.1).

15.5. As an immediate consequence of what proceeds we have the following
results:

If r (2<r<<n—1) consecutive edges, of a skew (n-t1)-gon jormed of the verlices
of a simplex S in an n-space (n>>4), be conjugate to their respective opposite (n—2)-
spaces for a quadric Q, their r-space is conjugate, p-conjagate (p<<r—1) or (r—1)-
conjugate for Q to its opposite (n—r—1)-space according as n=r--2, r+p+2 or
>2r; every q-space of .S in this r-space is p-conjugate (p<q—1) or (g—1}-conjugate,
for Q, to its opposite (n—g—1)-space aecording as n=g-4-p+2 or >>2¢q; every plane
of S therein is l-conjugate for Q to its opposite (n—8)-space; every edge of .S therein
is conjugate for Q fo its opposite (n—2)-space; the joins of the r -1 verfices of S
therein to the corresponiing ones of the polar, say S”, of .S for Q coneur, and the
other n—r joins lie in an (n—r)-space. If n—1 consecative edges of thz (n+1)-gon
be respectively conjugate for Q. tfo thair opposite (n—2)-spaces, every r-space of 5 is
p-conjagate (p<<r—1) or (r—1)-conjugate, for Q, io its oppasits (n—r—1)-space ac-
cording as n=r+p+2 or >'2r'; every plane of S is l-conjugate for Q to its op-
posite (n—8)-space; every edge of S is conjugate for Q io its opposite (n—2)-spuce,
and therefore all thz n-+1 joins of the corresponding vertices of S and S concur

or S and S are in perspective.

15.6. The vertices of the polar of the r-simplex (» > 2) formed of »-+1
vertices, say 4, ..., 4., of S for the (» — 1)-gnadric section @, , of Q by their
r-space lie at its intersections with the polar (n — r)-gpaces, for Q of the r--1
(» — 1)-spaces of the »-simplex, which all pass through its polar (n — » —1)-space
Brii... By for Q. Now if »—1 consecutive edges of the (r 1+ 1)-gon formed of
these vertices be conjugate for Q to their respective opposite (r— 2)-spaces, their
»-+1 joins to the corresponding vertices of the polar of the r-simplex for Q,_,
concur, say at O, and therefore their 41 joins to the corresponding ones of S°
are all met by the (n— r)-space OB, (... B,.
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Further if » —2r— 2, the 2 r-simplexes A4,... 4., By... B, are projective ("]
from the (»—=2)-space, which meets the r 41 joins of their corresponding vertices;
such that the r + 1 points of intersection of their corresponding (r—1)-spaces are
collinear. Thus: i :

If r eonsecutive edges of the (r + 2)-gon formed of r+32 wvertices of a simplex S
in an n-space be conjugate for a quadric () therein to their respective opposite (r—1)-
spaces, the r+2 joins of thzse vertices to the corresponding ones of the polar, say S,
of S for Q are met by an (n— r — 1}-space through the polar (n —r — 2)-space for Q
of their {r+1)-space, and therefore, if n=12r, their (r-+1)-simp'ex is projective to
the corresponding one of S’ from the (r—1)-space meeting the said r -2 joins.

16. Self-conjugate (n-Fr}-ads (1 <r=n).

16.1. [If 2 simplexes in an n-space be in perspective, there is a unigue quadric
Q therein for which they are polar (ef. Art. 8.3}, The method adopted here (Art.
2.2) as well as that of Bager ([*], Ex. 22, p. 149) fo construet  in a 4-space can
be extended to n-space too.

16.2, If .S and .5" (Art. 15) be 2 simplexes in perspective, say from O, and
therefore polar for @, the n+42 points O, 4,, ..., 4, form a self-conjugate (n+2}-ad
(ef. Art. 8.4) for Q such that the line joining any two of them is conjugate for Q
to the hyperplane containing the other » points and consequently the polar for Q
of the p-space containing any p-+1 of them lies in the (»—p)-space containing
the other n—p+ 1 points, [ts construction betrays that: Ewvery one of the n1+2
points of a self-conjugate (n—+ 2}-ad for a quadric Q in an n-space is the centre of
perspective of the simplex formed of the othzr n+1 poirts and its polar for Q.

16.3. The possible (» — 2)-spaces meeting the n+ 1 joins of the corr‘espon-
ding vertices of .§ and .5* (Art. 15.6, 11} indicate the possibility of the formation
of the other self-conjugate (n 4 r)-ads for Q (ef. Art. 7.3), » =2 having been just
congidered.

Thanks are due to Prof, B. R, Seru for his. generous, kind and constant en-
couragement in our pure pursuits,
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fZET

n-boyutiu S, uzayinda bir @ kuadrigine nazaran poler olan bir §, s’
semplcks ¢iftinin miitekabil hiperdiizlem ¢iftlerine milstersk n+1 tane
(n—2)-boyutlu uzayin, dogrularin her hiri her (x—2)-boyntlu uzayin bir
tek noktasindan gecmek suretiyle o7 dogru tarafindan kesilecek tarzda
asosye olduklayy H. F. Haker l‘l tarafindan arafitik yoldan ispat edilmis-
tir. Daka sonra, S ve $" 'nitn mutekabil tepelerinin n+1 tane birlegimi-
nin ciial #sosge oluglarl yine analifik olarak, S, BEATT\’{‘HI tarafindan
ortaya atidan giic bir probleme cevaben, ]. A. Toor ve H. 8. M. Coxrrer [”1
tarafindan gosterilmigtir. S8zl gecen makaledcki bir notta, aym iddianin
endilksiyon metodu ile senietiZ yoldan elde edilebilecegi Coxrrrr tarafin-
dan kaydedilmektedir, Bu gdrils burada agagidaki teoremi ispat etmek
izere kullamilmigtir : «7.>>3 olmak sartiyle, n-boyntlu S, uzayinda umumt
bir durumda bulunan s+l tane A; B; degrularindan n tanesi ile kesigen
"% tane (n—92)-boyutlu uzay ayn1 zamanda (p+1)-inet dofrumun A, ve
Bp noktalarindan da gecerse; bu n+41 tane A; By (=0, 2, ..., ») dofrusu o
sekilde asosyedir ki bunlarla kesisen 2" tane (r—2)-boyutiu uzay bu
dogrularin her birinin her noktasindan geger,»

Bu wvesile ile, S, uzay: igindeki bir 5 sewmpleksinin her bir kenar ilze-
rinde iginden iki tanesi bulunan n(n+1) noktanin bir kuadrik dzerinde
bulunmalary lgin gerek ve yeter snrtin bunlarrn » noktahk takimlan
olarak bir kuadrige gdre S e poler diger bir sempleksln n41 tane hiper-
ditzlemi hzerinde 2" ("t'Y? tiirly tevzi edilebilmeleri olduguna igaret
edelim., Bunun netieesi olarak, S, wzayinda bir kuadrik igin Pascar teore-
minin Camases’a gore ispatiyle ditah olan Nriaxcmon teoremini koniklerde
elde edildikleri gibi bulunmugtur : bu sarette 5  nin her tepesinden 2"
tanesi gegmek uzere ve her biri 3" ("7')/? tane n+1 adet asosye dogrndan
ibaret talnmdan 2" (" 7')/* sine ait olmak utzere (n+1)2" dogrudan ibaret
bir sisteme varilir. Bu sistemin dogrulam arasindaki milnasebetler cok
alika gekici olmakla beraber, bunlar burada incelenmemigtir.

Yukarda zikredilen Baxer'in makalesindeki bazi yenllikleri aydemlatie: bir-

kac hususi hal bu meyanda kaydedilmis bulunmaktadir. Dejenere haltere

tekabiil eden @ kuadrigine nagaran kcndisine eglenik r-1i nokta takimlari

da tetkik edilmigtir, Makale iki kisima ayrilmi§ bulunmakiadir : birineisi

sade 4 boyutlu uzayin digeri ise daha yilksek uzaylarin tetkikine hasgre«
dilmigtir.




