ϕ - CONGRUENCES

<u>TERROPORTO A PORTO A PORTO DE PORTO A PORTO A</u>

S. N. Bambroo

la this paper the author has studied some properties of the principal surfaces of the «A-congruences» defined by UPADHYAY [8 and 9]. The equations of the principal surfaces of the «A-congruences» have been obtained in a determinant form. Besides this the following properties have been obtained:

- (1) The necessary and sufficient condition that the lines of the Φ -congruence be parallel is that the skewnesss of distribution of the congruence- λ be equal to the cotangent of the constant angle Φ .
- (2) If the spherical representations of the φ -congruonce are minimal lines, its lines are parallel.
- (3) The line of striction of the Φ -congruence will lie on its surface of reference if any one of the following relations hold:
 - (1) The φ-congruence is parallel to the congruence-λ,
- (11) The line of striction of the congruence- λ lies on its surface of reference,
- (iii) The lines of the congruence- λ are parallel to a plane, provided that the lines of the Φ -congruence are not parallel or the spherical representation of its ruled surfaces are not minimal lines.
- (4) The principal planes of the φ-congruence in general and the surfaces corresponding to one of the parametric curves of the surface of reference are inclined at a constant angle.
- 1. Φ -congruences have been defined and studied by UPADHYAY [8] and [9]. Let x^i (i=1,2,3) be the coordinates of a point M on the surface of reference and λ^i (i=1,2,3) be the direction cosines of a line of a congruence passing through M and let this congruence be called the original congruence. Let λ^{*i} be the direction cosines of a ray of another congruence intersecting the consecutive rays of the original congruence under a constant angle Φ : this congruence is then called a Φ -congruence. The lines of striction of the ruled surfaces of the original congruence lie on a surface, which will be assumed to be fixed. We shall denote this surface by S^* throughout and the original congruence will also be called the congruence- λ . The surface S^* is taken as the surface of reference of the Φ -congruence.

The object of this paper is to find the expressions for the principal surfaces

of the Φ -congruence and their properties. Some particular cases have also been considered.

2. Let a ray of the Φ -congruence with direction cosines λ^{*i} intersect its surface of reference at a point P, whose coordinates are y^i and such that

$$(2.1) y^i = x^i + t \lambda^i$$

where t is the distance of the central point of the ruled surface of the congruence- λ from the point M and x^i , y^i , λ^i and λ^{-i} are all functions of a^a (a = 1, 2). Farther

$$\lambda^{*i} \cdot \lambda^{*i} = 1.$$

For convenience the notation λ^{*i} , α for the covariant derivative of λ^{*i} with respect to first fundamental tensor $G^*{}_{\alpha}\beta$ of the spherical representation of the Φ -congruence is used instead of $\partial \lambda^{*i}/\partial u^{\alpha}$ so that the two quadratic forms used by Kummer [*] are

$$(2.3) G^*_{\alpha\beta} du^{\alpha} du^{\beta}$$

and

$$\mu^*_{\alpha\beta} du^{\alpha} du^{\beta}$$

where

$$(2.5) G^*_{\alpha\beta} = \lambda^{*i} \cdot \lambda^{*i}_{\beta}$$

and

(2.6)
$$\mu^*_{\mathbf{a}\beta} = (y^i, \beta \cdot \lambda^{*i}, \mathbf{a}).$$

Sannia's two quadratic forms [1] as modified by Mishra [4] are then

(2.7)
$$G_{\alpha\beta} da^{\alpha} da^{\beta}$$

and

$$\xi^*_{\alpha\beta} du^{\alpha} du^{\beta}$$

where

(2.9)
$$\xi^*_{\alpha\beta} = (y^i,_{\alpha}, \lambda^{*i}, \lambda^{*i}, \lambda^{*i},_{\beta}).$$

It may be noted that similar quantities without asterisks correspond to the congruence- λ . λ^{*i} can be expressed as [6]

(2.10)
$$\lambda^{*i} = \lambda^{i} \cos \Phi + \lambda^{i} \times \frac{d\lambda^{i}}{d\sigma} \sin \Phi$$

where $d\sigma$ is the linear differential element of length of the spherical representation of the congruence- λ .

¹⁾ In what follows Latin indices take values (1, 2, 3) and Greek indices the values (1, 2).

The function λ^{*i} may be expressed in terms of the direction numbers $y^i,_{\alpha}$ of the tangents to the coordinate curves of the surface S^* through P and the direction cosines X^i of the normal to the surface S^* at P. Thus

(2.11)
$$\lambda^{*i} = p^{*\mathfrak{q}} y^i,_{\mathfrak{q}} + q^* x^i$$

where $p^{*\alpha}$ are contravariant components of a unit vector on the surface S^* at P, q^* is a positive scalar function and y^i , a denotes covariant differentiation of y^i with respect to u^{α} based on the fundamental tensor $G^*_{\alpha\beta}$.

From (2.10) we get [*]

(2.12)
$$\lambda^{si}_{,\alpha} = \lambda^{i}_{,\alpha} \cos \Phi + \lambda^{i}_{,\alpha} \times \lambda^{i}_{,\gamma} u^{\gamma} \sin \Phi + \lambda^{i} \times \lambda^{i}_{,\gamma} u^{\gamma}_{,\alpha} \sin \Phi.$$

3. Principal surfaces of a Φ -congruence.

The distance of the central point of a line of the Φ -congruence from its surface of reference is given by $\{^{10}\}$

$$t^* = -\left(\frac{dy^i}{d\sigma^*} \cdot \frac{d\lambda^{*i}}{d\sigma^*}\right)$$

$$= -\left(\frac{dy^i}{d\sigma^{*2}}\right)$$

$$= -\frac{(y^i, \alpha \cdot \lambda^{*i}, \beta + \lambda^{*i}, \alpha \cdot y^i, \beta)}{2G^*\sigma\beta du^\alpha du^\beta}$$

$$= -(\mu^*\alpha\beta + \mu^*\beta\alpha) du^\alpha du^\beta / 2G^*\alpha\beta du^\alpha du^\beta$$

where [s]

$$\mu^*_{\alpha\beta} = \mu_{\alpha\beta} \cos \Phi + (p_{\beta} E_{\alpha\gamma} u'^{\gamma} + \xi_{\beta\gamma} u'^{\gamma},_{\alpha}$$
$$+ t E_{\gamma\beta} u'^{\gamma},_{\alpha}) \sin \Phi + t G_{\alpha\beta} \cos \Phi$$
(3.2)

$$(3.2)$$

$$G^*_{\alpha\beta} = G_{\alpha\beta} \cos^2 \Phi + (E_{\gamma\beta} u'^{\gamma},_{\alpha} - E_{\alpha\delta} u'^{\delta},_{\beta}) \sin \Phi \cos \Phi + (E_{\alpha\gamma} E_{\beta\delta} u'^{\gamma} u'^{\delta} + G_{\gamma\delta} u'^{\gamma},_{\alpha} u'^{\delta\beta}) \sin^2 \Phi.$$

The equation of the principal surfaces of the Φ -congruence are obtained by equating to zero the derivative of t^* in (3.1) with respect to $da^{\alpha}/da\beta$ ($\alpha \neq \beta$). That is

(3.3)
$$2G^{\dagger}_{\gamma\delta} du^{\gamma} da^{\delta} (\mu^{*}_{\alpha\beta} + \mu^{*}_{\beta\alpha}) du^{\alpha}$$
$$-2 (\mu^{*}_{\gamma\delta} + \mu^{\dagger}_{\delta\gamma}) du^{\gamma} du^{\delta} G^{*}_{\alpha\beta} du^{\alpha} = 0$$

or

$$(\mu^*_{\alpha\beta} + \mu^*_{\beta\alpha}) du^{\alpha} + 2t^* G^*_{\alpha\beta} du^{\alpha} = 0.$$

Eliminating t^* we get

(3.4)
$$\begin{vmatrix} \langle \mu^*_{1\alpha} + \mu^*_{\alpha 1} \rangle du^{\alpha} & (\mu^*_{2\alpha} + \mu^*_{\alpha 2}) du^{\alpha} \\ G^*_{1\alpha} du^{\alpha} & G^*_{2\alpha} du^{\alpha} \end{vmatrix} = 0.$$

From (3.3) we obtain the value of t^* as

(3.5)
$$| (\mu^*_{\alpha\beta} + \mu^*_{\beta\alpha}) + t^* G^*_{\alpha\beta} | = 0$$

which on expansion gives

(3.6)
$$t^* (G^*_{11} G^*_{22} - G^*_{12}) + t^* \left\{ G^*_{11} \mu^*_{22} + \mu^*_{11} G^*_{22} - G^*_{12} (\mu^*_{12} + \mu^*_{21}) \right\} - \left\{ \mu^*_{12} \mu^*_{21} - \frac{(\mu^*_{12} + \mu^*_{21})}{4} \right\} = 0.$$

Equations (3.4) and (3.6) are of the same form as those obtained by Weatherburn [10].

If we choose the parameters in such a way that the principal surfaces correspond to parametric curves, assuming moreover that Kummer's two quadratic forms are not proportional, from (3.4) we get

$$G^*_{12} = 0, \quad \mu^*_{12} + \mu^*_{21} = 0$$

With this choice of the parameters the distance of the central point of a line of the Φ -congruence from its surface of reference is given by

$$(3.8) t^* = -\frac{\mu^*_{\alpha\beta} du^{\alpha} du^{\beta}}{G^*_{\alpha\beta} du^{\alpha} du^{\beta}} (\alpha = \beta)$$

$$= -\left[\left\{ (\mu_{11} + t G_{11}) \cos \Phi + (p_1 E_{1\gamma} u'^{\gamma} + \xi_{1\gamma} u'^{\gamma}, 1 + t E_{\gamma_1} u'^{\gamma}, 1 \right\} + t E_{\gamma_1} u'^{\gamma}, 1 \right]$$

$$+ t E_{\gamma_1} u'^{\gamma}, 1 \sin \Phi \left\{ (du^1)^2 + \left\{ (\mu_{22} + t G_{22}) \cos \Phi + (p_2 E_{2\gamma} u'^{\gamma} + \xi_{2\gamma} u'^{\gamma}, 2 + t E_{\gamma_2} u'^{\gamma}, 2 \right\} \sin \Phi \right\} (du^2)^2 \right] / \left[\left\{ G_{11} \cos^2 \Phi + 2E_{\gamma_1} u'^{\gamma}, 1 \sin \Phi \cos \Phi + (E_{1\gamma} E_{1\delta} u'^{\gamma} u'^{\delta} + G_{\gamma\delta} u'^{\gamma}, 1 u'^{\delta}, 1 \right\} \sin^2 \Phi \right\} (du^1)^2 + \left\{ G_{22} \cos^2 \Phi + 2E_{\gamma_2} u'^{\gamma}, 2 \sin \Phi \cos \Phi + (E_{2\gamma} E_{2\delta} u'^{\gamma} u'^{\delta} + G_{2\delta} u'^{\gamma}, 2 u'^{\delta}, 2 \right\} \sin^2 \Phi \right\} (du^2)^2 \right].$$

ACTION OF THE PROPERTY OF THE

Dividing both numerator and denominator of (3.9) by do^2 this equation reduces to

$$t^* = -\frac{\left[\xi_{1} \gamma \varrho^{\gamma} (u')' + \xi_{2} \gamma \varrho^{\gamma} (u^2)' - 2\mu t\right] \sin \varphi}{2 \left(\cos^2 \varphi - 2\mu \sin \varphi \cos \varphi + \mu^2 \sin^2 \varphi\right)}.$$

Now [3]

(3.11)
$$e^{\gamma} E_{\alpha \gamma} u^{\prime \alpha} = k_{g},$$

$$u^{\prime \gamma}, \beta u^{\prime \beta} = e^{\gamma}$$

and [8]

$$G_{\gamma\delta}\,\varrho^{\gamma}\,\varrho^{\delta}=k^{2}_{g}$$

$$E_{\alpha\beta} u'^{\alpha} a'^{\beta} = 0$$

and again

$$\mu_{\mathbf{q}\beta} u'^{\mathbf{q}} u'^{\beta} = -t$$

$$G_{\alpha\beta} u'^{\alpha} u'^{\beta} = 1$$

where

$$\varrho^{\gamma} = \frac{d^2 u^{\gamma}}{d\sigma^2} + \left\{ \begin{array}{c} \gamma \\ \alpha \beta \end{array} \right\} \frac{du^{\alpha}}{d\sigma} \frac{du^{\beta}}{d\sigma}$$

is the curvature vector of the spherical representation of the congruence- λ and k_g is the geodesic curvature of the spherical indicatrix of the congruence- λ which is also called the skewness of distribution μ of the congruence- λ [5].

Now since $[^2]$ $\varrho^{\gamma} = \mu \mu^{\gamma}$, μ^{γ} being a unit vector in the direction of the curvature of the spherical representation of the congruence- λ

(3.12)
$$t^* = -\frac{\mu \left\{ \xi_{1Y} \mu^Y (a^i)' + \xi_{2Y} u^Y (a^2)' - 2t \right\} \sin \Phi}{2 \left(\cos \varphi - \mu \sin \Phi \right)^{\nu}}$$

then if

$$\mu = \cot \Phi$$

we get

$$(3.13) t^* = \infty.$$

Hence the result: The necessary and sufficient condition that the rays of the Φ -congruence be parallel is that the skewness of distribution of the congruence- λ be equal to the cotangent of the constant angle Φ .

But [8] if the spherical representation of the Φ -congruence are minimal lines we get $\mu = \cot \Phi$. Hence: If the spherical representation of the ruled surfaces of Φ -congruence are minimal lines, its lines are parallel.

In particular,

(i) If $\Phi = 0$ we get

$$(3.14) i^{\circ} = 0$$

$$\Phi = \pi/2$$

(3.15)
$$t^* = \frac{\xi_{17} \,\mu^{\gamma} \,(u^1)' + \xi_{27} \,\mu^{\gamma} \,(u^2)' - 2t}{2\mu}.$$

This is an expression for the distance of the central point of the Φ -congruence from its surface of reference when the Φ -congruence is formed by lines at right angles to the rays of the congruence- λ .

Further, if $\mu = 0$, the lines of the congruence are parallel to a plane and

$$(3.16) t^* = \infty.$$

Hence: The necessary and sufficient condition that the congruence formed by lines at right angles to the rays of the congruence- λ , be parallel, is that the congruence- λ be parallel to a plane.

(111) When the congruence- λ is isotropic, we have

$$\xi_{\alpha\beta} = \chi G_{\alpha\beta}$$

where χ is the proportionality factor between the coefficients of Sannia's quadratic forms. We then have

(3.17)
$$t^* = -\frac{\{\chi (G_{1} \gamma \varrho^{\gamma} (u^1)' + G_{2} \gamma \varrho^{\gamma} (u^2)' - 2\mu t\} \sin \Phi}{2 (\cos \Phi - \mu \sin \Phi)^2}$$

(3.18)
$$= \frac{\mu t}{(\cos \Phi - \mu \sin \Phi)^2}$$

since [2]

$$G_{\alpha\beta} \circ \beta u^{\alpha} = 0.$$

From (3.13) and (3.18) we observe that the line of striction of the Φ -congruence will lie on its surface of reference if one any of the following relations hold.

- The Φ-congruence is parallel to the congruence-λ,
- (11) The line of striction of the congraence-\(\lambda\) lies on its surface of reference,
- (111) The lines of the congraence- λ are parallel to a plane, provided the lines of the Φ -congruence are not parallel or spherical representations of its ruled surfaces are not minimal lines.

(1) If
$$\Phi = 0$$

from (3.18) we get

$$(3.19) t^* = 0$$

(11) when
$$\Phi = \pi/2$$

$$t^* = \frac{t}{\mu}$$

which is the result already obtained by UPADHYAY [3]. The limits correspond to the parametric curves on the surface of reference: then let the corresponding values of t^* be denoted by t^* , and t^* , so that

$$t^*_{i} = -\frac{\mu^*_{11}}{\widehat{G}^u_{11}}$$

$$= -\{ (\mu_{1i} + t G_{11}) \cos \Phi + (p_1 E_{1i} u^{1i})$$

$$+ \xi_{1i} u^{ii},_{1} + t E_{ii} u^{ii},_{1} \sin \Phi \} / \{ G_{1i} \cos^2 \Phi + 2E_{ii} u^{ii},_{1} \sin \Phi \cos \Phi + (E_{ii} E_{1i} u^{ii} u^{ii} + G_{ii} u^{ii},_{1} u^{ii},_{1} u^{ii}) \sin^2 \Phi \}.$$

Multiplying the numerator and denominator of (3.21) by $\{(u')'\}^2$, this formula will then by virtue of (3.11), reduce to

(3.22)
$$t^*_{i} = -\frac{(\xi_{i}\gamma \varrho^{\gamma} (u^{i})' - \mu t) \sin \varrho}{(\cos \varphi - \mu \sin \varrho)^{2}}$$
$$= -\frac{\mu (\xi_{i}\gamma \mu^{\gamma} (u^{i})' - t)}{(\cos \varrho - \mu \sin \varrho)^{2}}.$$

Similarly

(3.23)
$$t^{*}_{2} = -\frac{\mu^{*}_{22}}{G^{*}_{22}} = -\frac{\mu \left(\xi_{2} \gamma \, \mu^{\gamma} \left(u^{2}\right)' - t\right)}{\left(\cos \phi - \mu \sin \phi\right)^{2}}.$$

In particular

(1) When
$$\Phi=0$$
 we get
$$t^*_{\ 1}=0 \label{eq:tpsi}$$
 (3.24)
$$t^*_{\ 2}=0.$$

(11) Also when $\Phi = \pi/2$

$$t^{z}_{1} = -\frac{\xi_{1}\gamma \mu^{\gamma} - t}{\mu}$$

$$t^{z}_{2} = -\frac{\xi_{2}\gamma \mu^{\gamma} - t}{\mu}.$$

If ϑ be the angle between the common perpendicular of two consecutive rays of the \varPhi -congruence in the general case and the common perpendicular of two

consecutive rays of the congruence corresponding to its principal surface $du^2 = 0$ we have [10]

$$\cos^{2}\theta = \frac{G^{*}_{11}(du^{1})^{2}}{G^{*}_{11}(dn^{1})^{2} + G^{*}_{22}(dn^{2})^{2}}$$

$$= \{G_{11}\cos^{2}\Phi + 2E_{\Upsilon 1}u^{1\Upsilon},_{1}\sin\Phi\cos\Phi + (E_{1\Upsilon}E_{1\delta}u^{1\Upsilon}u^{1\delta}) + G_{\Upsilon\delta}u^{1\Upsilon},_{1}u^{1\delta},_{1}\sin^{2}\Phi\}(du^{1})^{2} / \{G_{11}\cos^{2}\Phi + 2E_{\Upsilon 1}n^{\Upsilon},_{1}\sin\Phi\cos\Phi + (E_{1\Upsilon}E_{1\delta}u^{1\Upsilon}u^{1\delta} + G_{\Upsilon\delta}u^{1\Upsilon},_{1}u^{1\delta},_{1})\sin^{2}\Phi\}(du^{1})^{2} + \{G_{22}\cos^{2}\Phi + 2E_{\Upsilon 2}u^{1\Upsilon},_{2}\sin\Phi\cos\Phi + (E_{2\Upsilon}E_{2\delta}u^{1\Upsilon}u^{1\delta}) + G_{\Upsilon\delta}u^{1\Upsilon},_{2}u^{1\delta},_{2})\sin^{2}\Phi\}(du^{2})^{2}$$

which by virtue of (3.11) reduces to

(3.27)
$$\cos^2\vartheta = 1/2$$

$$\vartheta = \pi/4 \quad \text{or} \quad 3\pi/4.$$

Therefore θ is independent of Φ -

Thus: The principal planes of the general Φ -congruence and the surfaces corresponding to one of the parametric curves of the surface of reference are inclined at a constant angle. From equations (3.10), (3.22) and (3.23) the expression

$$t^*$$
, $\cos^2\vartheta + t^*$, $\sin^2\Phi$

takes the form

$$-\frac{\{\xi_{i\gamma}\varrho^{\gamma}(u^{i})'+\xi_{2\gamma}\varrho^{\gamma}(u^{2})'-2\mu\,t\}\sin\Phi}{2(\cos\Phi-\mu\sin\Phi)^{2}}=t^{*}$$

which is Hamilton's formula for Φ -congruences; then when

(3.29)
$$\tan \vartheta = \pm \sqrt{-\frac{t^*}{t^*_2}}.$$

From (3.28) we get

(3.30)
$$t^{*_{1}}\cos^{2}\vartheta + t^{*_{2}}\sin^{2}\vartheta$$
$$= -\frac{\mu\{\xi_{1}\Psi^{\Psi}(u^{1})' + \xi_{2}\Psi^{\Psi}(u^{2})' - 2t\}\sin\Phi}{2(\cos\Phi - \mu\sin\Phi)^{2}}$$

since

$$\varrho^{\gamma} = \mu \, \mu^{\gamma}.$$

In case

$$\mu = 0$$

(3.31)

$$\tan\vartheta = \pm \sqrt{-\frac{t^*_1}{t^*_2}}.$$

From (3.29) and (3.31) we conclude that: If the line of striction of the Φ -congruence lies on its surface of reference or the rays of the congruence- λ are parallel to a plane, the inclination of the principal planes of the Φ -congruence in general to the surfaces corresponding to one of the parametric curves on the surface of reference is independent of the angle Φ and is given by the relation (3.29) or (3.31).

For his guidance and the valuable help the author is grateful to Dr. M. D. UPADHYAY.

REFERENCES

[1] Bianchi : Lezioni di Geometria Differenziale, I, Pp. 459 (1927).

[2] L. P. EISENHART : An Introduction to Differential Geometry, Princeton Uni-

versity Press, (1940).

[3] E. Kummer : Allgemeine Theorie der geradlingen Strahlensysteme, Crelle's Journ.

für Mathematik, Pp. 189-230, (1860).

[1] R. S. Mishra : Modification in Sannia's theory of line congruences and some deductions, Revue de la Faculté des Sciences de l'Université d'Istan-

bul, Série A, Tome XVI, Pp. 1-7, (1951).

[5] R. S. Misura: On the shewness of distribution of the generators of a ruled

surface, Mathematics Student, 19, Pp. 105-7, (1951).

16] V. RANGA CHARIAR: On transversals which meet consecutive generators of a ruled

surface at constant angle, Bull. Cal. Math. Soc., 37, Pp. 133-136,

[7] G. Sannia : Atti della Accademia di Torino, 45-58, (1910).

[8] M. D. Upadhyay : On ф-congruences, Jour. of Math. Soc. Japan, 5, Pp. 95-104,

(1953).

(1945).

[9] М. D. Upadhyay : Some Properties of ф-congruences. Ganita, 4, 51-60, (1953).

[10] C. E. Weatherburn: Differential Geometry of three dimensions, I, Cambridge

University Press, (1931).

DEPARTMENT OF MATHEMATICS, LUCKNOW UNIVERSITY, (Manuscript received on May 28 th, 1960.)

Lucknow University

Lucknow — India

ÖZET

Bu araştırmada milellif, Upadhyay tarafından [8], [9] tarif edilen «A-kong-rilans» larının esas yüzeylerinin bazı özelliklerini incelemiş ve bn yüzeylerin denklemlerini determinantlar şeklinde ifade etmiştir.

Bundan mâda aşağıdaki neticeler elde edilmiştir:

- (1) Φ -kongrüansını teşkil eden doğruların paralel olmaları için gerek ve yeter şart, λ -kongrüansının tevzi sapmasının sabit Φ açısının kotangenline eşit kalmasıdır.
- (2) ϕ -kongrüansının küresel göstergeleri minimal çizgiler ise, kongrüansın doğruları paralıldır.
- (3) Aşağıdaki 3 özelikten herhangi birisi tahakkuk etliği takdirde φ-kongrdansının boğaz çizgisi bu kongruansı tarife yarıyan yüzey üzerindedir.
 - φ-kongrüansı λ-kongrüansına paraleldir;
- (11) \(\lambda\)-kongrüansının boğaz çizgisi kongrüansın tarifine yarıyan yüzey üzerindedir;
- (111) \(\chi_\text{-kongrilansının doğruları bir düzleme paralel fakat \(\phi\text{-kongrilansı-}\)
 nın doğruları paralel değil ve küresel göstergeleri minimal çizgiler değildir.
- (4) Umumî φ-kongrüansının esas düzlemleriyle doğrultman yüzey üzerindeki parametrik çizgliere tekabül eden rogle yüzeyler sabit açılar altında kesişirler.