SOME THEOREMS IN A RIEMANNIAN SPACE WITH AN ADDED AFFINE CONNECTION

BANDANA GUPTA (*)

Assuming that there exists in a Riemannian space with the metric tensor g_{ij} a given affine connection arbitrarily chosen R, N, Sen [1] has constructed an algebraic system of affine connections generated by the given one such that there are affine connections with respect to which the values of the covariant derivatives of g_{ij} are equal or opposite or connected in some other way. Later, M, C, Chaki [2] studied in a general way properties connecting affine connections in a Riemannian space with respect to which the metric tensor g_{ij} of the space has equal covariant derivatives. In the present paper some theorems have been obtained by considering the case where the covariant derivatives of g_{ij} are symmetric tensors.

1. Let $I^{t_{ij}}$ be the coefficients of an arbitrarily given affine connection in a Riemannian space with metric tensor g_{ij} , $T^{t_{i}}$ be a tensor and let the covariant derivatives of g_{ij} with respect to $I^{t_{ij}}$ and $I^{t_{ij}} + I^{t_{ij}}$ be denoted by a comma and a solidus respectively.

Then

$$(1.1) g_{ij+k} - g_{ik+j} = (g_{ij}, k - g_{ik}, j) + g_{is} (T^s_{kj} - T^s_{jk}) + g_{ks} T^s_{ij} - g_{js} T^s_{ik}.$$

A necessary and sufficient condition that $g_{ij,k}$ be a tensor symmetric in the indices may be expressed in various ways, e.g., it may be

 $g_{ij,k} - g_{ik,j} = 0$

Oï,

$$g_{ij,k} = \frac{1}{2} (g_{ik,j} + g_{jk,i}), \text{ etc.}$$

Hence from (1.1) it follows that if $g_{ij|k}$ be a symmetric tensor, then $g_{ij\cdot k}$ is so if and only if

$$g_{js} T^{s}_{ik} - g_{ks} T^{s}_{ij} - g_{is} (T^{s}_{kj} - T^{s}_{jk}) = 0.$$

It is easy to verify that if $g_{ij|k}$ be a symmetric tensor then $g_{ij,k}$ is so if

$$T^t_{ij} = g^{mt} g_{im,j}.$$

^(*) The author wishes to aknowledge his indebtedness to Dr. M. C. Chaki, who kindly suggested this problem and helped in the preparation of this paper.

The affine connection with coefficients $I^{t}_{ij} + T^{t}_{ij}$ where $T^{t}_{ij} = g^{mt} g_{im,j}$ belongs to Sen's sequence of affine connections which is defined as follows:

Put
$$a = \Gamma^t_{ij}$$
, $a^* = \Gamma^t_{ij} + g^{mt} g_{im\cdot j}$, $a' = \Gamma^t_{ji}$.

Then for the affine connection given by o, there exist uniquely two others given by a^* and a' which are respectively called the associate and the conjugate of a having the property

$$a^{\psi \phi} = a'' = a$$
.

In particular, a is called self-associate if $a = a^+$ and self-conjugate if a = a'. If we now construct the sequence

$$a_1 = a$$
, $a_2 = a^*$, $a_3 = a^{*\prime}$, $a_4 = a^{*\prime 3}$, $a_5 = a^{*\prime 2\prime}$,...

then it is seen that the sequence is a finite cyclic sequence of 12 terms (assuming that all are distinct): this is known as Sen's sequence. Denoting $\Gamma^{t_{ij}} + T^{t_{ij}}$ by d and applying the notions of associate (*) and conjugate (') of a, as given above, M. C. Chaki [*] constructed the sequence

$$d_1 = d, \ d_2 = d^*, \ d_3 = d^{*\prime}, \ d_4 = d^{*\prime *}, \dots, d_{12} = \tilde{d}^{*\prime *} \cdots *$$

and putting

$$\begin{split} &\alpha = g^{tm} \, g_{im,\,j} \,, \quad \alpha_c = g^{tm} \, g_{im,i} \,, \quad \lambda = g^{tm} \, g_{i\,j,m} = \lambda_c \\ &\beta = g^{tm} \, g_{i\,s} \, (\Gamma^s_{\,\,m\,j} - \Gamma^s_{\,\,jm}) \,, \quad \beta_c = g^{tm} \, g_{j\,s} \, (\Gamma^s_{\,\,m\,i} - \Gamma^s_{\,\,im}) \\ &\gamma = T^t_{i\,j} \,, \quad \gamma_c = T^t_{\,j\,i} \,, \quad \delta = g^{tm} \, g_{\,i\,s} \, T^s_{\,\,m\,j} \,, \quad \delta_c = g^{tm} \, g_{\,j\,s} \, T^s_{\,\,m\,i} \\ &\varepsilon = g^{tm} \, g_{i\,s} \, T^s_{\,\,im} \,, \quad \varepsilon_c = g^{tm} \, g_{\,j\,s} \, T^s_{\,\,im} \end{split}$$

obtained their values as follows:

(I)
$$d_{1} = d = a + \gamma$$

$$d_{2} = a + \alpha - \delta$$

$$d_{3} = a' + \alpha_{c} - \delta_{c}$$

$$d_{4} = a + \alpha - \lambda + \beta + \epsilon_{c}$$

$$d_{6} = a' + \alpha_{c} - \lambda + \beta + \beta_{c} + \epsilon$$

$$d_{6} = a + \alpha + \alpha_{c} - \lambda + \beta + \beta_{c} - \gamma_{c}$$

$$d_{7} = a' + \alpha + \alpha_{c} - \lambda + \beta + \beta_{c} - \gamma$$

$$d_{8} = a' + \alpha_{c} - \lambda + \beta + \beta_{c} + \delta$$

$$d_{9} = a + \alpha - \lambda + \beta + \beta_{c} + \delta_{c}$$

$$d_{10} = a' + \alpha_{c} + \beta_{c} - \epsilon_{c}$$

$$d_{11} = a + \alpha + \beta - \epsilon$$

$$d_{12} = a' + \gamma_{c}$$

From (I) it is seen that the Christoffel symbol which is both self-associate and self-conjugate is given by

(I')
$$\begin{cases} t \\ ii \end{cases} = \frac{1}{2} (d_l + d_{l+6}), \qquad l = 1, 2, ...$$

If Γ^{t}_{ij} be self-conjugate and $g_{ij,k}$ be symmetric, then the members of the sequence (I) assume the following values:

$$d_1 = a + \gamma, \qquad d_2 = a + \alpha - \delta, \qquad d_3 = a + \alpha - \delta_c,$$

$$d_4 = a + \varepsilon_c, \qquad d_5 = a + \varepsilon, \qquad d_6 = a + \alpha - \gamma_c,$$

$$d_7 = a + \alpha - \gamma, \qquad d_8 = a + \delta, \qquad d_0 = a + \delta_c,$$

$$d_{10} = a + \alpha - \varepsilon_c, \qquad d_{11} = a + \alpha - \varepsilon, \qquad d_{12} = a + \gamma_c.$$

Further, if T_{ij} be symmetric in i and j,

$$d_1 = d_{12},$$
 $d_2 = d_{11},$ $d_3 = d_{10},$ $d_4 = d_{10},$ $d_5 = d_5,$ $d_6 = d_7.$

Calculating the covariant derivatives of g_{ij} with respect to d_1 , d_2 , d_3 , d_4 , d_5 and d_6 for the case where T^t_{ij} is symmetric, T^t_{ij} is self-conjugate and $g_{ij,k}$ is symmetric, their values are obtained as

$$g_{tk} (\lambda - \delta - \delta_c), \quad -g_{tk} (\lambda - \delta - \delta_c), \quad g_{tk} (-\lambda + 2\gamma), \quad -g_{tk} (-\lambda + 2\gamma)$$

$$g_{tk} (\lambda - \delta - \delta_c) \quad \text{and} \quad -g_{tk} (\lambda - \delta - \delta_c)$$

respectively.

Hence we have the following theorem:

Theorem 1. If the affine connection with coefficients $\Gamma^t{}_{ij}$ be self-conjugate, $T^t{}_{ij}$ be symmetric and $g_{ij,k}$ be symmetric tensor, then the sequence (I) will have six distinct terms

$$d_1 = d_{12}, \quad d_2 = d_{11}, \quad d_3 = d_{10}, \quad d_4 = d_0, \quad d_5 = d_8, \quad d_6 = d_7$$

such that the covariant derivatives of g_{ij} with respect to the members of each of the pairs (d_1, d_2) , (d_2, d_3) have equal values while those with respect to the members of each of the pairs

$$(d_1, d_2), (d_3, d_4), (d_1, d_5), (d_2, d_5), (d_5, d)$$

have equal and opposite values.

Let us now suppose that Γ^{t}_{ij} is not self-conjugate and T^{t}_{ij} is symmetric. In this case the covariant derivatives of g_{ij} with respect to d_1 , d_3 , d_5 , d_8 , d_{10} , d_{12}

will have their values as follows: The covariant derivative of g_{ij} with respect to d_1 or d_8 is

$$g_{Ik}(\lambda - \varepsilon - \varepsilon_c),$$

the covariant derivative of g_{ij} with respect to $d_{\mathfrak{d}}$ or $d_{\mathfrak{t0}}$ is

$$g_{Ik} (\lambda - \alpha - \alpha_c - \beta - \beta_c + 2\gamma)$$

and the covariant derivative of g_{ij} with respect to d_i or d_{i2} is

$$g_{tk} (\lambda - \beta - \beta_c - \varepsilon - \varepsilon_c).$$

We now consider the following two properties for the sequence (I):

(I")
$$\begin{cases} 1) & \text{covariant derivatives of } g_{ij} \text{ with respect to} \\ d_1 \text{ and } d_{12} \text{ are equal;} \\ n) & \text{covariant derivatives of } g_{ij} \text{ with respect to} \\ d_2 \text{ and } d_3 \text{ are equal.} \end{cases}$$

If (1) holds, then

$$\beta + \beta_c = 0$$

Further, if (u) holds, then in virtue of (I') we have

$$(1.3) 2\lambda - \alpha - \alpha_c = \beta + \beta_c + \varepsilon + \varepsilon_c - 2\gamma.$$

Therefore if (1) and (11) hold together, then

$$(1.4) 2\lambda - x - x_c = \varepsilon + \varepsilon_c - 2\gamma.$$

Suppose that $g_{ij,k}$ is a symmetric tensor. Then the lefthand-side of (1.4) will vanish, so

TO THE PROPERTY OF THE PROPERT

$$\varepsilon + \varepsilon_c - 2\gamma = 0$$

or

(1.5)
$$T^{t_{ij}} = \frac{1}{2} g^{tm} (g_{is} T^{s}_{jm} + g_{js} T^{v}_{im}).$$

Again, if (1.5) holds, then it follows from (1.4) that

$$2\lambda - z - \alpha_c = 0$$

i.e., $g_{ij,k}$ is a symmetric tensor.

We have therefore the following throrem:

Theorem 2. If in the sequence (I) the properties (1) and (11) hold simultaneously and T^{t}_{ij} be symmetric, then g_{ijk} will be a symmetric tensor if and only if

$$T^{t}_{ij} = \frac{1}{2} g^{tm} (g_{is} T^{s}_{jm} + g_{js} T^{s}_{im})$$

2. Let $\Gamma^t{}_{ijk}$ and $L^t{}_{ijk}$ be the curvature tensors formed with $\Gamma^t{}_{ij}$ and $L^t{}_{ij} = \Gamma^t{}_{ij} + T^t{}_{ij}$ and let $g_{ht} \Gamma^t{}_{ijk} = \Gamma_{hijk}$ and $g_{ht} L^t{}_{ijk} = L_{hijk}$.

lf $I^{t_{i,j}}$ is self - conjugate

$$T^{t_{ijk}} - L^{t_{ijk}} = T^{t_{ij,k}} - T^{t_{ik,j}} + T^{t_{sk}} T_{sij} - T^{t_{sj}} T^{s_{ik}}.$$

Therefore

$$\Gamma_{hijk} - L_{hijk} = g_{hi} (T^{t}_{ij\cdot k} - T^{t}_{ik\cdot j}) + (T^{t}_{sk} T^{s}_{ij} - T^{t}_{sj} T^{s}_{ik}),$$

hence

$$L_{hijk} + L_{ihkj} + L_{jkih} + L_{kjhi} = (\Gamma_{hijk} + \Gamma_{ihkj} + \Gamma_{jkih} + \Gamma_{kjhi})$$

$$-g_{ht} [T^{t}_{ij,k} - T^{t}_{ik,j} - T^{t}_{sj} T^{s}_{ik} + T^{t}_{sk} T^{s}_{ij}]$$

$$-g_{it} [T^{t}_{hk,j} - T^{t}_{hj,k} - T^{t}_{sk} T^{s}_{hj} + T^{t}_{sj} T^{s}_{hk}]$$

$$-g_{jt} [T^{t}_{ki,h} - T^{t}_{kh,i} - T^{t}_{si} T^{s}_{kh} + T^{t}_{sh} T^{s}_{hk}]$$

$$-g_{kt} [T^{t}_{jh,i} - T^{t}_{ji,h} - T^{t}_{sh} T^{s}_{ji} + T^{t}_{si} T^{s}_{jh}].$$

Let us denote

$$\Gamma_{hijk} + \Gamma_{hjki} + \Gamma_{hkij}$$
 by $A_i (\Gamma_{hijk})$
 $\Gamma_{ihjk} + \Gamma_{jhki} + \Gamma_{khij}$ by $A_2 (\Gamma_{hijk})$.

Since Γ^{t}_{ij} is self-conjugate we have by the generalized Ricci's identity [4]

$$g_{hi,jk} - g_{hi,kj} = \Gamma_{hijk} + \Gamma_{ihjk}$$

Therefore

$$(2.2) \quad A_1(\Gamma_{hijk}) + A_2(\Gamma_{hijk}) = (g_{hk,ij} - g_{hk,ji}) + (g_{hj,ki} - g_{hj,ik}) + (g_{hi,jk} - g_{hi,kj}).$$

If $g_{ij,k}$ be a symmetric tensor, the righthand-side of (2.2) vanishes and therefore

(2.3)
$$A_1(I_{hijk}) + A_2(\Gamma_{hijk}) = 0.$$

Since Γ^{t}_{ij} is self-conjugate,

$$(2.5) A_1(\Gamma_{hijk}) = 0$$

hence from (2.3) we get

$$(2.5) A_2\left(\Gamma_{hijk}\right) = 0$$

From (2.4) and (2.5) it follows that

(2.6)
$$\Gamma_{hijk} + \Gamma_{ihkj} + \Gamma_{jkih} + \Gamma_{kjhi} = 0.$$

In virtue of (2.6) the equation (2.1) takes the form

$$L_{hijk} + L_{ihkj} + L_{jkih} + L_{kjhi}$$

$$= -g_{ht} \{ T^{t}_{ij,k} - T^{t}_{ik,j} - T^{t}_{sj} T^{s}_{ik} + T^{t}_{sk} T^{s}_{ij} \}$$

$$-g_{it} [T^{t}_{hk,j} - T^{t}_{hj,k} - T^{t}_{sk} T^{s}_{hj} + T^{t}_{sj} T^{s}_{hk}]$$

$$-g_{it} [T^{t}_{ki,h} - T^{t}_{kh,i} - T^{t}_{si} T^{s}_{kh} + T^{t}_{sh} T^{s}_{ki}]$$

$$-g_{kt} [T^{t}_{jh,i} - T^{t}_{ji,h} - T^{t}_{sh} T^{s}_{ji} + T^{t}_{si} T^{s}_{jh}]$$

If $T^{t}_{ij} = 0$ then (2.7) reduces to (2.6).

Hence we have the following theorem:

Theorem 3. If the covariant derivatives of g_{ij} with respect to a self-conjugate affine connection with coefficients $\Gamma^t{}_{ij}$ be symmetric and L_{hijk} be the fully covariant curvature tensor formed with $\Gamma^t{}_{ij} + T^t{}_{ij}$ where $T^t{}_{ij}$ is a tensor, then the components of L_{hijk} satisfy (2.7).

The identity of Bianchi for the affine connection with coefficients $\Gamma^t{}_{ij}$ is

$$(2.8) \qquad \Gamma^{t}_{ijk,l} + \Gamma^{t}_{ikl,j} + \Gamma^{t}_{ilj,k} = \Gamma^{t}_{isl} \ V^{s}_{jk} + \Gamma^{t}_{isj} \ V^{s}_{kl} + \Gamma^{t}_{isk} \ V^{s}_{lj}$$
where
$$V^{t}_{ij} = \Gamma^{t}_{ij} - \Gamma^{t}_{ji}.$$

Multiplying both sides of (2.8) by g_{ht} and summing with respect to t we get

(2.9)
$$\Gamma_{hijk,l} + \Gamma_{hikl,j} + \Gamma_{hilj,k} = g_{ht,l} \Gamma^{t}_{ijk} + g_{ht,j} \Gamma^{t}_{ikl} + g_{ht,k} \Gamma^{t}_{ilj} + \Gamma_{hisl} V^{s}_{jk} + \Gamma_{hisj} V^{s}_{kl} + \Gamma_{hisk} V^{s}_{lj}.$$

Denote

(2.10)
$$\Gamma_{hijk} - \Gamma_{jihk} - \Gamma_{kijh} \quad \text{by} \quad A_{hijk}.$$

Then

$$\Lambda_{hijk,l} + \Lambda_{hikl,j} + \Lambda_{hilj,k} + \Lambda_{likj,h} =$$

$$\begin{split} g_{ht,l} \, \Gamma^t{}_{ijk} + g_{ht,j} \, \Gamma^t{}_{lkl} + g_{ht,k} \, \Gamma^t{}_{ilj} + \Gamma_{hisl} \, V^s{}_{jk} + \Gamma_{hisj} \, V^s{}_{kl} + \Gamma_{hisk} \, V^s{}_{lj} \\ - g_{lt,h} \, \Gamma^t{}_{ijk} - g_{lt,j} \, \Gamma^t{}_{ikh} - g_{lt,k} \, \Gamma^t{}_{ihj} - \Gamma_{lish} \, V^s{}_{jk} - \Gamma_{lisj} \, V^s{}_{kh} - \Gamma_{lisk} \, V^s{}_{hj} \end{split}$$

$$(2.11) \quad -g_{jt,l} \Gamma^{t}{}_{ihk} - g_{jt,h} \Gamma^{t}{}_{ikl} - g_{jt,k} \Gamma^{t}{}_{ilh} - \Gamma_{jisl} V^{s}{}_{hk} - \Gamma_{jish} V^{s}{}_{kl} - \Gamma_{jisk} V^{s}{}_{lh}$$

$$-g_{kt,l} \Gamma^{t}{}_{ijh} - g_{kt,j} \Gamma^{t}{}_{ihl} - g_{kt,h} \Gamma^{t}{}_{ilj} - \Gamma_{kisl} V^{s}{}_{jh} - \Gamma_{kisj} V^{s}{}_{hl} - \Gamma_{kish} V^{s}{}_{lj}.$$

If $g_{ij,k}$ be a symmetric tensor, then (2.11) reduces to

$$(2.12) A_{hijk}, l + A_{hikl}, j + A_{hilj}, k + A_{likj}, h$$

$$= A_{hisl} V^{s}{}_{jk} + A_{hisj} V^{s}{}_{kl} + A_{hisk} V^{s}{}_{lj} + A_{lisj} V^{s}{}_{hk}$$

$$+ A_{lisk} V^{r}{}_{jh} + A_{jisk} V^{s}{}_{hl} + \Gamma_{sihl} V^{s}{}_{jk} + \Gamma_{sihj} V^{s}{}_{kl}$$

$$+ \Gamma_{sihk} V^{s}{}_{lj} + \Gamma_{silj} V^{s}{}_{hk} + \Gamma_{silk} V^{s}{}_{jh} + \Gamma_{sijk} V^{s}{}_{hl}$$

If Γ^t_{ij} is self-conjugate, $V^t_{ij} = 0$ and from (2.5) it follows that $A_{hijk} = 0$. Hence (2.12) reduces to an identity.

Therefore we have the following theorem:

Theorem 4. If the covariant derivative of g_{ij} with respect to an affine connection with coefficients Γ^{t}_{ij} he a symmetric tensor and $\Lambda_{hij}k$ be defined by (2.10), then the relation (2.12) holds. If, in particular, the affine connection be self-conjugate, then the relation (2.12) reduces to an identity.

We now refer to the sequence (I) and suppose that for it the properties (1) and (11) mentioned in (I") hold. Further we suppose that $g_{ij,k}$ is symmetric and T^t_{ij} is so.

In virtue of (1)
$$\beta + \beta_c = 0$$

or Hence

$$g_{ts} \; V^{s}_{\; jk} + g_{js} \; V^{s}_{\; ik} = 0 \quad \text{ where } \quad V^{t}_{ij} = \varGamma^{t}_{ij} - \varGamma^{t}_{ji}.$$

$$V^{t}{}_{jk} = -\,g^{m_t}\,g_{\,js}\,\,V^{s}{}_{mk}.$$

Therefore

$$(2.13) V_{t_k} = 0 \text{or} \Gamma_{t_k} = \Gamma_{t_k}.$$

Since (1) and (11) hold, $g_{ij,k}$ is symmetric and so is T^{t}_{ij} it follows from theorem 2 that

So

$$2T_{ij}^{t} = g^{mt} g_{is} T_{jm}^{s} + g^{tm} g_{js} T_{im}^{s}.$$

$$2T_{tj}^{t} = g^{tm} g_{ts} T_{jm}^{s} + g^{tm} g_{js} T_{tm}^{s}$$

$$= T_{it}^{t} + g^{tm} g_{is} T_{tm}^{s}$$

whence

$$(2.14) T^{t}_{tj} = g^{tm} g_{js} T^{s}_{tm}$$

Let the fully covariant curvature tensor with respect to d_i of sequence (I) be denoted by $L^{(i)}_{hijk}$. Then

$$g^{h_i} L^{(1)}_{hijk} = \frac{\partial}{\partial x^j} (\Gamma^t_{tk} + T^t_{tk}) - \frac{\partial}{\partial x^k} (\Gamma^t_{tj} + T^t_{tj})$$

and

$$g_{hi} L^{(ii)}_{hijk} = \frac{\partial}{\partial x^j} (\Gamma^t_{kt} + T^t_{kt}) - \frac{\partial}{\partial x^k} (\Gamma^t_{jt} + T^t_{jt}).$$

Since T_{ij} is symmetric and (2.13) holds, we have

$$(2.15) g^{hi} L^{(1)}_{hijk} = g^{hi} L^{(12)}_{hijk}.$$

Again

$$g^{ht} L^{(2)}_{hijk} = \frac{\partial}{\partial x^j} (\Gamma^t_{tk} + T^{\prime t}_{tk}) - \frac{\partial}{\partial x^k} (\Gamma^t_{tj} + T^{\prime t}_{tj})$$

and

$$g^{hi}\,L^{(3)}{}_{hi\,jk} = \frac{\eth}{\eth x^j} (\varGamma^t{}_{kt} + \varGamma^\prime{}^t{}_{kt}) - \frac{\eth}{\eth x^k} (\varGamma^t{}_{jt} + \varGamma^\prime{}^t{}_{jt})$$

where

$$(2.16) T'^{t_{ij}} = g^{tm} g_{im,j} - g^{tm} g_{is} T^{s_{mj}}.$$

From (2.16) we have

$$T'^{t}_{tk} = g^{tm} g_{tm,k} - T^{t}_{tk}$$

and

$$T'^{t}_{kt} = g^{tm} g_{km,t} - g^{tm} g_{ks} T^{s}_{mt}.$$

Since T_{ij} is symmetric and (2.14) holds

$$T'^t_{tk} = T'^t_{kt}$$
.

Therefore

$$(2.17) g^{hi} L^{(2)}_{hijk} = g^{hi} L^{(4)}_{hijk}.$$

Similarly

(2.18)
$$g^{hi} L^{(1)}_{hijk} = g^{hi} L^{(4)}.$$

Hence taking into account the property (I') of the sequence (I) we have

$$g^{hi} L^{(1)}_{hijk} = g^{hi} L^{(2)}_{hijk} = g^{hi} L^{(3)}_{hijk} = -g^{hi} L^{(6)}_{hijk}$$

$$= -g^{hi} L^{(1)}_{hijk} = -g^{hi} L^{(16)}_{hijk} = -g^{hi} L^{(12)}_{hijk} = g^{hi} L^{(12)}_{hijk}$$
and $g^{hi} L^{(1)}_{hijk} = g^{hi} L^{(2)}_{hijk} = -g^{hi} L^{(2)}_{hijk} = -g^{hi} L^{(3)}_{hijk}$.

If, in particular, $T^i_{ij} = 0$ the sequence (I) reduces to Sen's sequence and $L^{(i)}_{hijk}$ becomes $\Gamma^{(i)}_{hijk}$. As in this case

$$g_{hi} \Gamma^{(1)}_{hijk} = -g^{hi} \Gamma^{(2)}_{hijk}$$

we have

$$g^{hi} \Gamma^{(1)}_{hijk} = -g^{hi} \Gamma^{(2)}_{hijk} = -g^{hi} \Gamma^{(3)}_{hijk} = g_{hi} \Gamma^{(4)}_{hijk}$$

$$= g_{hi} \Gamma^{(5)}_{hijk} = -g^{hi} \Gamma^{(6)}_{hijk} = -g^{hi} \Gamma^{(1)}_{hijk} = g^{hi} \Gamma^{(2)}_{hijk}$$

$$= g^{hi} \Gamma^{(2)}_{hijk} = -g^{hi} \Gamma^{(10)}_{hij} = -g^{hi} \Gamma^{(11)}_{hijk} = g^{hi} \Gamma^{(12)}_{hijk}$$

Hence we have the following theorem:

Theorem 5. If in the sequence (I) the properties (1) and (11) mentioned in (II") hold, T^t_{ij} is symmetric and further $g_{ij,k}$ is a symmetric tensor, then the fully covariant curvature tensor $L^{(i)}_{hijk}$ formed with d_i satisfies the relations (2.19). If, in particular, the sequence (I) is SEN's sequence, then the relations (2.20) hold.

REFERENCES

[1] SEN, R. N. ; Bull. Cal. Math. Soc., 42, (1950).

[2] CHAKI, M. C. : Some formulas in a Riemannian space, "Ann. della Scuola Normalo

Superiore di Pisa», Serie III, 10, (1956).

[3] CHAKI, M. C. : Some formulas in Tensor Calculus, «Bull. Cal. Math. Soc.», 42,

[4] EISENHART, L. P. : Non-Riemannlan Geometry, New York, (1927).

DEPARTMENT OF PURE MATHEMATICS
CALCUTTA UNIVERSITY
CALCUTTA — INDIA

(Received February 28, 1962)

ÖZET

Metrik tansörü g_{ij} ile gösterilen bir Riemann uzayında keyfi bir afin koneksiyon verildiği takdirde, bunun tarafınden doğurulan bir eebrik afin koneksiyon sistemi, sisteme ait koneksiyonlara nazaran g_{ij} nin kovaryant türevleri aralarında eşit, veya mutlak değerce eşit veya başka herhangi bir eebrik bağıntı tahkik edecek tarzda, inşa edilebiloceği R. N. Sen tarafından ispat edilmiştir f'. Daha sonra, M. C. Chakt umumi olarak, bir Riemann uzayının g_{ij} metrik tansörünün kovaryant türevleri eşit bırakan koneksiyonları bağlayan özelliklerini incelemiştir f'. Bu yazıda ise g_{ij} tansörünün kovaryant türevleri simetrik olması halinde elde edilen bazı teoremler meydana çıkarılmıştır.