ON THE ORDER AND TYPE OF INTEGRAL FUNCTIONS DEFINED
BY DIRICHLET SERIES

J. 8. Guera

Certaln relntionships between two or more iniegral functions repregen-
table by Diricnier series are established. These resulis involve the order,

tower order, type and lower type of integral functlons,

1. Consider the DIRICHLET series

®©
f(s) ZZ an evhy
n=1
(A where bty > hpy A >0, Hm 1, =0,
R n—oo
s=o-4+i# and lm sup lolgn=D< @,
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Let o, and ¢, he the abscissa of convergence and ahscissa of ahsolute conver-
genee, respectively, of f(s). Further, let M (o) be the Lu.b. of

[Flodit) | (o< i< o)

where o is a constant less than o,. If o,=0,— oo, f{s) defines an integral
function.

It is known (['], p. 67) that, if ¢ be the RITT order (R) and = be the typ2 of
the order ¢ of f{s), then

(1.1) ¢ =tim sup 2B MO g —fog Tog x)
G o0 G
and
M
(1.2) %= lim sup ]ﬂgﬁgﬂ -
G0 €
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Natarally the lower order 2 and the lower type v of the order ¢ of f(s} can

be given by

(1.8) A== lim inf E-g-?gf—("—)
. g0

and

(1.4) »=Tlim int 19%2’{,‘"’ .

g0

Using these relations, we, in this papsr, establish certain relationships ‘bet-
ween two or more integral functions representable by DiricHier series. The re- ’
gults involve the order, lower order, type and lower type of integral functions and :
have been given in the form of Theorems and their corollaries,

It will be supposed throughout that the functions are representabie by Di-
RICHLET series, satisfy conditions (A), are integral and hence any of the numbers
g, 7, 4, » of the function can be defined as before.

2. Theorem 1, If &(s), (s} are two functions of finite orders o, p, lower
orders Ay, hy and of L u.b's M\(s), M(s) respectivelg, then, if

log, M (o) ~ log {log M {0} log M.(e)),

the order o and lower order } of the function f(s) of I.u.b. M(o) are such that

(2.1) Mtr,=l=o=0 +0o
and, if
log, M("’) ~ | \/10g2 M (o) log, My(s} | )
then .
(2.2) Vil =2 =e= Ve, 0s.

Proof: In view of (1.1), for &(s} and ¥(s), we have

lm sup
]

log, M,(0) _
=&
¢
and
log, M (0} _ 0

lim su
B a

[+ 5 ka1

2.

Therefore, for any £ >0 and sufficientiy large o,
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and
(2.4) 08 M) . (,, +§)-
Adding the inequalities {2.3) and (2.4) we get
tog {log M () log M,
(2.5) g{log o) Jog ! O < g+ et o
Apgain, using {1.8) for &{s) aud ¥(s), we get, for any = >0 and sufficiently
large o, .
) . iog, M. (o} ( &
(2.6) R >4 — )
and
- log, A (U g
(2.7} _#:g.%.%) - (‘1,2_ ?) .
Therefore, on adding {2.6) and (2.7), we get
(2.8) log{log Ml(g) Eog M2(6)} >(2L+ﬁ2#8),
Trom (2.5) and (2.8) we, therefore, pget, for any e¢>>0 and sufficiently
large o,
1 log M (o) iog M ,(a
(Al+}~2_s)< Og{ g (0) . 2( )} <(QL+92+5)-
tHence, if

log, M(0) ~ log {log M (0} log M,(o)},
wz have for sufficiently large o,

log, M(s)

]

(ett—9)< <{ai+e.+s).

Therefore on proczeding to limits wa get

A+ A, = il inf X - << 1im sup
g—» oo o0

og. M(a) dog, Mlo) 4,
o [

or
l_[‘f‘leéléﬁ'é@l‘i‘gz

by the help of (1.1} and (1.8). This proves (2.1).
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To establish (2.2) we multiply (2.8) and (2.4) getting

(2.9) log, M,(0) log, M,(o) _ (91 " 5) (92+ _:.) .

g

Also multiplying (2.6) and (2.7) we get

(2.1‘0) (21 _ _;') (12 — _&_) < 10g2 M:(o)ﬂgﬂg-z M?('j) .

Combining (2.9) and (2.10), we have

(2.11) (11 — -E—) (7.2 — %) < 1og M‘(”)jzog? Mo (et + ﬁ—) (92 +

2

for any ¢ > 0 and sufficiently large o.
Thus, if

log; M(s) ~ | \/1052 M (o) log, M,(a) | ,

from (2,11) we obtain, on proceeding to limits,

Vi, 2, < lim infl—"g'!o’”ﬂ = Kim sup L"g?&’}f@é Voo,

O-+o0 0 -»0

or
Vlllzélégé\/@°

Corollary: If
f'v (3) (”:1: 29"'!m)

are m functions of finite orders
215 825 ey Om
lower orders
S S
and of l.u.b.’s
My(o), Mo), ..., Mplo),

respectively, then, if

log, M(0) ~ log {log M(a) log M.(5) ... log M (o)},

&

2

)

the order o and lower order & of the fanction f(s) of l.u. b. M (6) are such

that
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Lt ol =i =eLe e+ tom
and, if
log, M(s) ~ | {log, M. (o) log, M,(0) ... log, Mp(a)}/™ |
then I
Al )™ Z o= (g, 00000 0)' ™

Remark. If #(s), ¥{s) are of linear regular growth and fulfil the conditions
of Theorem 1, then so is f{s).

Sinee for functions of linear regular growth
=g, LL=g
we get, from {(2.1),

Ql+gzéléQéQL+Qz

which indicates that =g,

This remark also applies to m functions,

Theorem 2. If (s), '¥(s) are twn funetions of the same finite order e, fi-

nite tygpes t,, Ty, lower igpes v, vy and of 1 w.b.'s
M (o), M.(o)
respectiwély, then if
log, M{s) ~ iog {log M .{a) log M,{)},

the type © and lower type v of the order g of the fanction f(s) of L u.b. M(e) are
such that

(2.12) v Fr, v =3+,

and if |

log, M(s) ~ | Vog, M,(0) Tog, M0} |,
then
Vo v, e £ 7 Z e,

This theorem can be proved easily by following the same lines of proof as
that of thecrem 1, wusing {(1.2) and (1.4) in place of (1.1) and (1.3). Hence the

proof is omitted,
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Corollary: The result of this theorem can also bs extended to m functions,

Remark : If ¢(s), F(s) are of perfectly linear growth satisfying the condi-

tions of theorem 2 then f(s) is also of the same nature.

This follows from (2.12), since, for functions of perfectly linear growth,

YL — Ty, Py — "y
and hence
I o N e e T

which gives »—-v,

This remark can be applied to m functions also.

Note: Similar results hold for integral functions
series.
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OZET

Bu aragtirmada Dmrcerer serileri Ile gisterilebilen ikl veya daha faxla in-

tegral fonksiyon arasinda meveut baz bafintilar elde edilmigtir. Bu ba-

fintilar bu integral fonksiyonlarin derécesi, alt derecesl, tip ve alt tip-
lerini ihtiva etmeltedir.
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