RINGS ADMITTING CERTAIN AUTOMORPHISMS 1

I. N. HErsTEIN

la a paper published a lew years ago [6] Jacomsan proved that a finite -
dimensional Lie algebra which admits an automorphism of prime period
leaving only the zero element fixed musat bhe nilpotenl. For finite groups
the analagous theorem was conjectured by FropeNms and was proved as a
corollary to a far more powerful result, in a remarkable piece of work
by TraomesoN [B]. For associative rings this situation was studied hy Hic-
AN [4] who showed that here too the existence of such an automorphism

rendered the ring nilpotent.
iIf an assoclative ring should have a unit element then this element la L
fixed by every automorphism of the ring. For an algebra with unit ele- '
ment over a given field, if by automorphism we mean an algebra auto-
morphiam, then every element of the field mast remain fixed. Thus the

agssumption that an automorphism leave only 0 fixed, for rings and algehras,

seema far too reatrictive and unnatural. The appropriate analogue appears
to he: what is the structure of an associative ring or algebra which
admits an automorphism of prime period all of whose fixed points lie in

some «natural® subset.

For finite-dimengional algebras and rings with descending chain condi- i
tions on left ideals, when this fixed-point set is properly conditioned,
we obtain their structure, in section 1. In sections 2 and 8 reaspectively

we determine the atructure of general rings admitting automorphigms of

periods 2 and 3 respectively all of whose fixed points lie in the center.

We wonld conjecture ihat the results obtained, namely that the commu-

tator Ideal must he nil, hold In the general case of a ring admitting an ¢

automorphism of prime period all of whose fixed pointa lie in the center i
of the ring.

) This research was earried out la Rome while the author was a Fellow of the Jomn
SmonN Gueceniel Memorial Foandation and with support from the National Science Foun.
dation, Grant NSF -G19655 and .the Army Reaearch, Ordinance Division (AROD),
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1. Finite-dimensional Algebras and Rings with
Chain Conditions,

In this section we consider finite - dimensional algebras and rings with chain
condition which admit automorphisms of any prime period all of whose fixed-pointa
are restricted to lie in the center or in a particular part of the center, We show
this forces the commutator ideal of the ring or algebra to be a nil (and so, in this
particular case, nilpotent) ideal. In particular, in the presence of an additional
hypothesia of semi - simplicity they just turn out to be commutative.

We begin with

Theorem 1. Let R be a simple ring with descending chain condition on left
ideals. Suppose that ¢ is an amtomorphism of R of prime period p such that ¢ (x) =x
implies that x the is in Z, the center of R. Then R is commutative (and so is a field),

Proof. Since ”=1, the identity automorphism of R, for all » in R,
Lt D+ P (D T=x + gl + ook 977 (1),
In conssquence, by our basic assuﬁxption on thernature rof_‘qf, for any x in R,
xtex)+ -+ (%)

musat be in Z. Thus there exists a shortest expression (fewest number of non-zero
cqefﬁcients)

ayx+ o g (x) e+ ag gk (x),

where % <C{p and where all the «;’s are in Z and not all of them are zero and
such that:

) g x oy gle)t e dapgk(x) € Z forall x € R.

Sinee £ is invariant under ¢, by applying a suitable power of ¢, we could
realize a situation in which «,=%0, thus we may indeed assume, without any loas
of ganerality, that z,550.

Suppose now that & is not commutative, that is, that R=FZ., BSince Z is a
field we must have ;550 for aome {550, otherwise we would have that that «, x
is in Z for all x in R from which it would follow that x € Z for all x € R cont-
rary to the assumption that R==7.

Given J. € Z then (1) holds if we replace in it x by A x. Using the fact that

P Ax)=p' W)g' (x) we get:

(2) g dxt o g (A) g (e}t e g gk (B) ¢ () € Z.

Multiplying (1) by 4 and subtracting (2) we obtain:
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(3) [ — @A) 1 @(x) 4= o Ao [ — gD 1 ¢ (x) - - - - A ap [2 — o R (1) ] ¢*(x)

is in Z for every x in R.

Putting «;,"=g«; [A — ¢/()], since each of “jy A @/(d) is in Z, ;" must be

iu Z for every j. But (3) then yields the shorter relation
af gplx) oo g oR(x) € Z

for all x € R. The net result of all this is that each «,"=0: in particular,

0= oa; =o; [4— @i ()].

Since these are all elements of the field Z and since we know that «;=590 we end
up with ¢i(i) =—21 for every 4 € Z, However, ¢ i8 of prime period p and 0<Ci < p;
this immediately yields for us ¢ (A)==1 for all 2 € Z.

We have just seen that ¢ is an automorphism of R leaving every center ele-
ment of R fixed. As is well-known, in a simple ring with descending c¢hain condi-
tions, such an automorphism must be inner. That is there exists an « € R such
that g(x) =axa ' for every »r in R, Thus ¢{a) =aaa'=a; by assumption this
puts a in Z. But then from this we get that p(x) =axa '=x for every x in R.
But then ¢ =1, the identity automorphism of R, contradicting that ¢ has prime
period. Thus we must have had that R = Z thereby proving the theorem.

As is so often the case, once the result is known for simple rings then we
can also establish it for semi.simple ones. We do this in

Theorem 2. Suppose that R is a semi-simple ring vith descending chain condi-
tion on left ideals; suppose farther that R admits an automorphism ¢ of prime period
p all of whose fixel-points are in Z, the center of R. Thén R is commatative {(and so

is a direct sam of fields).

Proof. By WEDDERBURN’s theorem,
R=R DR - DR

where each R; is a simple with descending chain condifion. The center of R is
precisely the direct sum of the centers of the R;s.

To prove the theorem we must show that each R; is commutative. Suppose
that R,, say, is not commutative. 1f (R,) C B, then (R,) is, in fact, equal to
R,; in this case we can apply theorem 1 to deduce the commutativity of R,. Seo.
suppoese that @(R,) ¢ B,. We wish to show that this, too, implies that R, is com-
mutative. We claim that

Rit+ g (R} + -+ (R)
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is a direet sum, If this were not the case, from the simplicity of the gi(R }'s we
would have that for some first m 4+ 1< p,

g R)C R+ (R -+ + ¢™(R))

and since the @'(R,)’s are all the simple ideals of this sum, where j-=m, we
would -have that

P (R) = ¢ (R)

for gome j-<m <" p. But then e+t —HRY=R,; sinece 0<m-+1-— j<<p and
since ¢ has prime period this would imply that ¢(R,) = R,, contrary to assumption.

Therefore we may assume that the sum =R +¢R)+---F+¢”(R)is a
direct sum, However, given x € R,, since

t=x+ () + -+ ¢ )

is left iixed by , { must be in the center of R, hence cerfainly in the center of
7. Thus each component of # in the components R,, ¢#{R,)), ..., ¥"~(R,} of this
direct sum decomposition of T must be in the center of each of these respective
rings. Since these components of f are x, ¢(x), ..., ¥P7'(x) we deduce that x
musgt be in the cenfer of R,. Since x was arbitrary in R, we see this way that
R, is commutative. We have now completed the proof of theorem 2.

We conclude the section with

Theorem 3. Let A be a finite-dimensianal algebra aver a field F and suppose
that A has a unit element. Suppose that A admits an aatomorphism ¢ of prime period
p all of whose fixes-points are in F.. !f N denotes the ralical of A then AN is

commutative.

Proof. Since N, the radical of 4, is takeu onto itself by every automor-
phism of 4, ¢(N}==/; thereby ¢ induces an automorphism ;" on A = A/N. What
are the fixed points of 7 ?

Suppose that ¢ (¥})= % for som= ¥ in 4 aund suppose that » in A maps on #
in A. Thus x — ¢(x) is iu N. However, the mapping T:n->n—g(n) is a linear
transformation on the vector space N over F which annihilates no non-zoro
vector in NV (since ¥ F£=(0) and by assumption only the elements iz £ are an-
nihilated by T); thus, since / is finite-dimeusional over £, T maps N onto itself.
Since x -— ¢(x) i in N there must be an _elemeﬁt n in & such that »7 = x — ¢{x),
fhat is, such that

x — ¢{x) = n — (n).
From this we get that

glx—n)=x—n;
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by our assumptions we then know that x=2i-41»n where 1 iz in F so that
£=2—=2. In consequence the fixed-poinis of # are precisely the elements of F,
Sinee AN is semisimple, by theorem 2 it is commutative.

2. Automorphisms of Period 2.

In this section we congider arbitrary rings which admit automorphisms of pe-
riod 2 having fixed points only in their centers. To deiermine their siructure is
both simple and elemeniary. We do this in

Theorem 4, Let R he a ring admitting an aufomorphism of period 2 all of whose
fixel-points are in the cenfer of R. Then the commatator ideal of R is a nil idedl.

Proof. Let ¢ be the automorphism of R. Since ¢*=1, the identity auio-
~ morphism of R, for any x in R, ¢ [x + ¢(x] = x -+ @(x), whence by our agsumption
on the fixed-points of ¢ we have

(1) x+¢{x) € Z, the center of R, for every x € R.
Given a, x in R, by (1)
pla)=—e~+1, gplxy=—x+p
where 4, ¢ are both in Z, Thus:

¢ (ax — xa) = pla) ¢(x) — plx) pla) = (— a + V) (— x + )
—{—zxt+ W) (—at+d)=agxr —xa.

Since all the commutators gx — xa are left fixed by ¢, again using our assumption

about ¢ wz obtain

(2) ax—xa € Z  for all a, x in R.
In (2) we replace x by ax; fhis yields:

3) alax —xa) € Z for all a, x € R.

Given any y € R, we commute y with a{ex — xa); making use of both (2)

and (3) we obtain ya (ax — xa) = a (ax — xa) y = ay {ax — xa) hence
4) (ag —ga) (ax-— xa) =0 for all a, x, 7 in R.

The result contained in {(4) merely states thaft the produet of any two com-
mutaters is 0 if they have an elemenf in common. Now, given any element in the

commutator ideal of R, in virtue of (2) it ean be written as
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T
e=Y rila;b;—byo)
’ =1
where a;, b; are in R and »; is either in R or is an integer, Thus if we consider
¢" 1!, making uge of (2) and (4) we get ¢"+'=20. But then the commutator ideal
of R ig nil, as claimed in the theorem.

3. Automorphisms of Period 3.

In this section we obtain that a ring admitting an automorphism of period
3 all of whose fixed-points are in the center must have as commutator ideal a nil
ideal. Strangely enough the argument is a great deal more complicated than the
corresponding one for period 2. Tt makes use of a great number of fairly deep
theorems from the theory of rings. One would hope to be able to give a purely
formal proof theoreof, similar in spirit to that given in section 2. We have not
been able to find such a proof; quite possibly we are overlooking something obvious;
at any rate here ig the proof that we did find.

In what follows we shall consistenly use the following notation: R is a ring,
Z(R) is its center, J(.¢) is its Jacobson radical and N(R) is its maximal nil ideal,
and, finally, C(R) ig its eommutator ideal.

Lemma 1. Suppose that the ring R admits an automoerphism ¢ of period 8 all
of whose fived-paints are in Z(R). Then for any x in R, x ¢(x) —¢(x) x is in Z(R).

Proof. Since

=1, ¢l + o)+ 6] =x + ¢(x) -+ (),
whence
Ax)=x +g(x) + ¢(x) € Z(R)

for any r in R, Now

¢ L g(x) — g(x) x] = ¢x) 7(x) — ¢7(x) #(x) = () [Ax) — x — F(x)]
— M) —x —g()] ¢lx) = v ple) —5(x) x

since A{g) i3 in Z(). By the hypothesis imposed on the fixed-points of ¢ we de-
duce that

x glx) — glx) x € Z(R),

which ig the conclusion of the lemma.

The discussion will eventually involve settling two different cases, namely
when the ring has characteristic 3 and when it does not. This explaing the hypot-
hegis of charactiristic 3 ia the




RINGS ADMITTING GERTAIN AUTOMORPHISMS 51

Lemma 2. [f R is of characteristic 8 admitting an aufomorphism such that
¢* =1 and sach thet all the fixed points of ¢ are in Z(R). Then for any x in R,

g l?) =g *)
Proof. By Lemma 1, x ¢(x)—@(x)x € Z(R) for any x € R. Thus the third

commutator of x and (x),

[ [ by 9 ] | =2 06) — o) °
gince the characteristic of ® is 8. However, since x* commutes with @(x) it also
commutes with ¢{x)* = ¢(x?).

Lemma 2 allows us to conclude that any element in R satisfies a polynomial
of degree 9 with coefficients in Z(R), in fact a monie such polynomial. We see
this as follows. Since +* commautes w.th @{x?) and with

x' = g(x®) + (")

which is in Z(R), we see that »° also commutes with ¢*(x®), Thus the elementary
symmetric functions in »*, @(x') and ¢°(x") are invariant under ¢ and 80 are in
Z(R}. But then y:== " satisfies

g—ay +hy—r=0
where the coefficients «, #, y are all in Z(R) and are respectively
w=x" + () + ¢*(x%),
B= " pe®) -+ &* o7 (x") + plx®) 7 (x*),

¥ = xt ple') 97 (7).

We have thus proved

Lemma 3. Jf R is as in lemma 2 then any x in R satisfies a polynomial of
the form
¥ —a - fxt—y=0
where «, f§, ¥ are in Z(3).

If every element in a ring satisfies a polynomial with leading coocefficient 1
and of bounded degree over its center then it is wellknown that the ring satisfies
a polynomial identity. In our case we could actually write this identity down as:

o={[te" gl (e, 51 ], [0l U, 5] ]

where the square brackets indicate (additive) commutators. We thus have the
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Coxollary. If R is as in lemma 2 then it satisfies a polgnomial identity.

The condition that a ring admit an automorphism whoge fix=d-points lie in
the center might very well be destroyed in a homomorphie image. Thus we want
to impose conditions on our rings which are preserved under homomorphigm and
which are consequences of the existence of an automorphism of period 8 all of whose
fixed points are in the center. This explaing the weird hypothesis in the next few

lemmas.

Lemma 4. Let R be a primitive ring of chamcteristicﬁ aIm'tiing an automor-
phism @ such that :

1. ¢'=1,

2. x+glx)+ o) € Z(R).

8. x® commutes with p(x®).

4. all symmetric functions in x*, ¢(x%), ¢*(x*) are in Z(R), for all x in R.

Then R is commutative.

Proof. By the corollary to lemma 3 R satisfies a polynomial identity. Being
primitive, by a result of KarrLawnsky [°] R is a finite-dimensional simple algebra
over its center Z(R), which is a field.

Since x+ @lx)+ ¢*(x) € Z(R), replacing x by 1 x, where 4 is in Z(R) and
playing the results off against each other we obtain that

[2— ()] o) + [ - ¢*(A)] ¢*(x) € Z(R).

Replacing x by 4 x in thig last expression and playing it off against the expres-
gion [multiplied by ¢ ()] we arrive at

[2— ¢ (W] Iy Q) —¢* (D] " (x) € Z(R)

for all x in R. Thug if we guppoged that R wase not commutative wz would have
that [ —* (W) [ (M) —@®* (M)]1=0; since Z(R) ig a field we must have that
either L = @7 (1) or ¢ () = ¢* () which, sinee ¢ iz of period 8 imply that 1 = @(1).
Thus ¢ is an automorphism of R, which is a simple algebra, finite-dimensional
over its center, which leaves every element of Z(R) fixed. But this implies that
¥ ig an inner automorphism of R, that ias there is ah «& R such that ¢(x) —axa!
for every x € R. However

x+axa 't atxa P =x+ @lx) L @ (x) € Z(R)
by assumption. Replacing x by «x we obtain that:
alr+axa 'Falra)=axrtaler)at+a(ax)a* € ZAR)

by the above. If x+taxae '+ a*xra® were not 0 it would have an inverse in
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the field Z(R) so that a € Z(R)} would result. Suppose, on the other hand, that
xtaxa ' Falxa =0

for all » in R. Multiplying through by a® from the right yields
ra®taxatatx=0
for every » in R. Since the characteristic of R is 8 this says that
af{ax — xa) = (ax — xa.) a

for every » in R. By a result of ours|[?}], since the characteristic of R is not 2,
a must be in Z(R). Thus in all cases @ must be in Z(R}. But then

glx)=axea '=x

for every » in R. Since
2 =2 () 9 ()

is in Z(R) by hypothesis, we see that the ninth power of every element of R is
in its center. By another result of Karranskv [’} R must be commutative,

Corollary. Jf R is a primitive ring of characteristic 8 which admits an automor-

phism of period B all of whose fixed-points are in Z(R) then it is commatative.

Proof. We show that the hypothesis of the lemma are satisfied. Since the
element x 4 ¢ (x) 4 #%(x) is Ieft fixed by w it must be in Z(R) by hypothesis, so
(2) is satisfied. Lemma 2 assures us that x* commutes with @(x"}, so by (2} it also
commutes with ¢°(x*), hence (3) is satisfied. Any symmetric function in »?, p(x®),
4% (x*), since these commute with each other, is left fixed by ¢ so by hypothesis
it must be in Z(R), therefore (4) holds also. By the lemma the corcllary is then

immediate.

Having disposed of the primitive case we can start the ascent fo general rings
along the lines laid out by the structure theory developed by JacomsonN. We now

consider the semi-simple case in

Lemma 5. Left R be a semi-simp'e ring of characteristic 8 having an automor-

phism ¢ suach that:

Ao xglx) 4+ e'(x) € Z(R)
2. x' commutes with o(x%)

8. the symmetric elements in x%, ¢(x")}, ¢*(x®} are all in Z(R) for every

x in R. Then R is commaualative.

Proof. Being semi-simple R is isomorphic to a subdirect sum of primitive
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rings R; each of which is a homomorphie image of R. As in the proof of the
coroflary to Ilemma B3, R satisfies a polynomial identity so that each Ry as a
homomorphic image of R also satisfies the polynomial identity. Thus. being primitive,
each R; is actually a simple algebra finite-dimensional over its center.

Let R,, say, be isomorphic to R/U, Since R, is simple, U is a maximal ideal
of R, it ¢ (U)C U then ¢ would induce an automorphism on R, satisfying all the
conditions of lemma 4, Bat then R, would be commutative.

Suppose then that ¢ (IJ) ¢ U. Since ¢ (U} is an ideal of R and since U/ is a
maximal ideal of R, R= U+ ¢ (U). Similarly R = U+ ¢* (U) = ¢ (U) + ¢* (U}

We claim that UM e (U) ¢ ¢* (1), otherwise ¢ [U M ¢ (UNC ¢° (UYy=U. But
since o [U Mg (U)] is certainly contained in ¢ (UJ) we would have that

N NCUNg UL
If this were so ¢ would induce an automorphism # on
R=R[IUNg U
However, by the Chinese remainder theorem, R/[UM @ (U)] is isomorphic to
RIUD Rl (U}=R B F(R).

Now R, and (R, are the only simple ideals in this direct sum; thus §*(R,)
which is contained in it as a simple ideal must be either R, or & (R,}, either of
which implies that R, =% (R} (we have made use of #" =1} which would imply
that @ (U)C U, contrary to assumption. Therefore we must have that

UNne W) ¢ ¢ (U).
Again making use of the Chinese remajuder theorem we gut

R=R[IUNg* (]

is isomorphic to

R{U D Ry (YD Rig® (U).
Sinee UM g (Y M ¢* (U) i8 invariant under ¢, ¢ induces an automorphism ¢ on
R sueh that ¥+ 7 (%) 1+ #* (&) is in Z(R) for every ¥ in £. Now
E:RLEB‘?}(RL)@(}-’E (Rl)7
so if ¥ € R, then
t=xz4 ¢{E) 47 (®) € Z(R).

But then each component of 7 is in the corresponding center of R,, (&), ?? (R}
respectively, Thus ¥ € Z(R,), whence R, is commutative.
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Sinee each component of the subdirect sum decomposition of 2 has been shown

to be commutative we know that R is commutative. Thus lemma 5 is proved.

We now settle ihe result that we seek for the gpecial case of a ring of
characteristic 8. This will provide us with the vital link needed to prove it in the
completely general case.

Lemma 6. Lef R be a ring of characteristic 8 which admits an automorphism
¥ of order 3 all of whose fixed-points are in Z(R). Then C(R), the commutator ideal
of R, is a nil idea!,

Proof. By lemma 2, »° commutes with ¢ {(x*}, from which it follows that all
the symmetric functions in x°, ¢ (x"}, ¢* (x*) are invariant under ¢, whence by the

assumptions imposed on they are ail in Z{R). Similarly for any x in R,

x+ g+ ¢ (x)
is in R{Z}.

Let J{R)} be the radical of R. J(R) is invariant under all the aufomorphism
of R, so, in particular, ¢[J(R}C f{(R}; thus ¢ indnces an automorphism & on
RIJ(R). The properties deseribed in the paragraph above are ones preserved
under homomorphism so they must hold in R/J(R) vis-a-vis & By lemma 5 we
conclude that R/j(R) is commutative, hence C(R) C J(R).

Let

n
€= Z redXs g — g5 x1) sy

i=1
he an arbitrary element in C{R). Let R, be the ring generated by all of the

ris (70, 9(rsY, 2, (), %es)y iy @0, 9350y 515 (o), ¢7(s5)),

R, is a finitely generated ring which is invariant under under . All fixed points
of ¢ in R, are in the c:nter of R 90 they must certaluly be in the center of R,
By the corollary to lemma 3, R, satisfies a polynomial identity. Finally R, is an
algebra over GF (3), the field of 3 elements. All the conditions of a result of
AMITSUR ['] hold so by this this result, J{R,} is a nil ring. Since, as we have seen
above, C{R,) C J{R,}, C(Ry) must bs nil. But

C:Eri‘(xiyiﬁyix:‘)si

is in C{R,) so must b= nilpotent, Since ¢ is an arbitrary element of C{R) we have
proved that C(R)} is a nil ideal.

Before continuning with our special situation we Wwish to digress to prove a
result, which may be of some indepsndent intarest, which holds for all rings.

e g
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Lemma 7, Let R be a ring and W an ideal of R. Suppose that C (W) is a nil :
ideal of W. If x € C(R) satisfies x* C W for some k, then x is nilpotent.

Proof. Let T be the ideal of R generated by C(F). In R=R/T, W is an
ideal which is commutative. Suppose that @, w € W and that j € R; since both
@ and @, § are in W they commute, whence @, j=1m (@, §) = (@, )@ so that

@, (@ 7 —F@)=0. Let N(R) be the maximal nil ideal of R and let R = RIN(R).
In 1? there are no non-zero nil ideals. W is a commutative ideal in R so as above
Zl (;?—‘jz—:—) =0 for any ;1, w in E?’ and ? in R. Replacing ? by j? in this we

get that Ej@?—?i):o; if we put ?}1:;?—;:—0 (which iz in I?’/') we see

that (;;—?;) R(w ?—y==u=;) =(0), whence (;F-;;—)E is a nilpotent right
ideal in R. From this we get that w g— g w =10 for all y € R, that is, W C Z(R).
Since for any ;E W and ?, z € R both w and :; as elements of W are in Z(?), "
we easily get ;(jj_j?) — (. Since w annihilates all commutators and is in the .
center it annihilates C(Els). Thus W C(?)=(O).

Therefore we see that in R, WC (R)C N(R) thus is a nil ideal. But then,
since ¥ € C(R) and ¥ € W, we get ¥+t' € WC(R) so is nilpotent. That is

=

0, whence x™ € T for some m. However
TPE RC(IWIRRCWIYRRC(WYCWCW)W CC(GF),

go ig a nil ideal; thus (x™)*, being in 7%, is nilpotent, whence x is nilpotent.

We return to the question of rings with an automorphism of period 3.

Lemma 8, If R is a ring such that 8"R=(0) for some n and admits an auto-
morphism @ of pericd 3 all of whose fixed-points arein Z(R) then C(R) is a nil ideal. L

Proof, The case n=1 is precisely lemma 6, so we proceed from this by
induction on n.

Let W ={x € R{8x=0). First note that W is invariant under ¢ and i$ an
algebra over GF (%), By lemma 6 we know that C (W) is nil. Let R = R/W ; since
W is invariant under @, ¢ induces an automorphism ¢ on R. Suppose that
. @(¥)=1%3 then if x in R maps on ¥ we have that »—¢{x) € W, whence
3[x — @ (x)] =0. Thus ¢ (3x) = §x, which forces 8x to be in Z(R). But then, for
any g € R, 3(xyg —yx)=(8x) y —y (8x) =0, that is, xy —gx € W for all y in R.
In R this translates to ¥§ — g%, which is to say, # € Z(B). Thereby the conditions
carry over from R to R; since 8" 'R =(0) by the induction C (R)is a nil ideal.
Thersfors, if ¢ € C(R), ¢ € W for soms k. Since C{W) is nil, by lemma 7 ¢ is
nilpotent. Thus C (&) is nil and the lemma is established.
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We remove the condition in lemma 8 that 3" R = (0), replacing it by a slightly
weaker one in

Lemma 9. Let R be a ring sach that 8% x =0 for every x € R, where k depends
on x; farther suppose that R admits an automorphism i of period 3 all of whose
fixed-points are in Z(R). Then C(R) is a nil ideal.

Proof. If ¢ € C{(R), then
c:Zra‘(x:‘yi—yiri)s‘i;

let R, be the subring of R generated by all of the r; x; yi, s;; and their images
under ¢ and ¢* R, is invariant under ¢ ; moreover, since it is finitely generated
by elements having additive orders which are powers of 8 we get that 8" 2, = (0)
‘for some n. By lemma 8, C(R,) is nil; since ¢ € C (R,) we then have that ¢ is
mlpotent We have proved that C (R) is a ml ideal of R.

We now are able to prove the prmclpal result of this section, namely

Theorem 5. Let R be a ring which admits an automorphism of period 3 all of
whose fixed-points are in the center of R. Then the commutator ideal of R is a nil ideal.

Proof. Let /=[x € R|8%*x=0 for some k}; [/ is an ideal of R invariant
under ¢. By Lemma 9, C({J) is a nil ideal of [/

Sinee {/ is invariant under ¢, g induces an automorphism 7 on R =R/lJ. 1f
F(%)==% then since ¥+ 71%)+ #4x) € Z(B), we would have that 8% € Z(R); but
then 3 (#j— 7%)=0 for all § € B. However, in R, 37 =0 implies that # =0;
thus 7 — 5% =0 for all § ¢ R, Thus we see that the only fixed points of 7 in R
are in Z{(R).

Conaider R as a Lie ring under the product {4,b] = ab — bd. Form the Lie ring
< =R|Z(R). n :_5 7 induces an automorphism ¢. We claim that ¢ leaves only 0
fixed ; for if tp(r)-— ¢ then * — 3 (¥) is in Z(R) Since # 3 x } 7 (&) € Z(R) we

get 8% € Z(R) whence ¥ € Z(R) so that x =0, By a reault of Hiomaw[4) R must
be nilpotent as a Lie ring. Thus as an associative ring R muat enjoy the property
that there exists an integer n such that the n-fold commutator of any » elements
in R ia 0. In particular R satisfies a fixed Engel condition (ses [?]) whence by
the main result of [?] the commutator ideal of R is a nil ideal. Consequently if
¢ € C(R), ¢k must bz in {J for some integer k. Since we already know that C (/)
is nil, applying lemma 7 we obtain that ¢ is nilpotent. Thua C(R) is a nil ideal
of R and the theorem is proved.
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RINGS ADMITTING CERTAIN AUTOMORFEPHISMS

OZET

Birkag sene evvel bir makalede Jacobson 1, yalniz sifir elemanimi gabit
brrakan asal peryodlu bir otomorflymi haiz gonlu boyutlu bir Lie cebiri-
nin nilpoteut olmak mecburiyetinde oldufunun gistermisgtir. Sonlu gruplar
halindeki benzer neticenin dofru clacag: Frosenms tarafinden tahmin edil-
mig ve ispaty Tuompson' un cok gizel bir yasisinda ls] elde edilen daha
kuvvetli bir teoremin sonuga olarak verilmigtir. Asosyatif halkalalarin
durumun Higsmaw ["] tarafindsn incelenmig ve kendisi bn tarzda bir otomor-
fizmln mevecudiyeti halkayl nilpotent yaptifini gdstermigtir,

Bir asosyatif balkann bir birim eleman1 meveut ige, bu eleman halkanin
butiin otomorfizmleri i¢gin sabit kalmaktadir. Verilen bir cisim tzerinde
inga edilen btrim eleman: haiz bir cebir igin otomorfizmi cebrik otomor-
fizin managinda anlayvacak olursak, cismin her bir e¢lemani sabit kalmali-
dir. Bu itibarla halka veya cebirler icin bir otomorfizm sadece sifir ele-
man) sabit birakmas: hipotezi asir1 derecede tahdit edici ve gayritabidir.
Evvelki neticenin hakiki bengeri gu halde daha ¢gok bu gekilde ifade edil-
melidir: asal peryodlu bir otomorfizmin sabit noktalar1 muayyen «tabii»
bir alt ctimlede kalmalari halinde asosyatif halka veya cebirin yapisi
nedir?

Eistm 1'de sol ideallerinde inen gineir gartiny ha)z sonlu boyutlu ecebir
ve halkalar igin bu yapi, sabit noktalar cliimlesi iyice belirtilmesi halin«
de elde edilmigtir. fkinci ve ticinett Kisimlarda ise, biitlin sabit noktala-
rin halkanin merkezinde bulunmalar: halinde peryodu 2 ve 3 olan otomar-
fizmleri haiz umumi halkalarin yapisi elde edilmigtir. Burada elde edilen
neticeler, yani kowmttatér idealinin sifir olugu, umumi halde btitin sabit
noktalar: merkezinde bulunan asal peryodlu otomorfizmlerl haiz halkalar
igin dofru kalacag: da tahmin edilmeltedir.
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