CONVEX FUNCTIONS AND THEIR APPLICATIONS

PawaN Kumar JaiN

The function M {(+), convex with respect to a particular funclion g () and
sueh that M («) =0, and the non deecreasing function n» (), defined by

means of the equatinn

r

M) = f n{) @ (O dt (a > 0)

&

are considered and some new properties conceraoing fthe growlh of these

functions arc ohtained.

1. Let M(r) be a convex function with respect to the function & (+), where :

() & () is an absolutely continuous function for 0« r<C o (#=0 is an admissible value
in some cases).

(ify @ (r) » ~ with r, Obviously ¢’ (+) exists and is greater than zero.

Now if M (@) =0, then it is kpown that (KamTHAN [*]) #

r
(A) M(J‘):fn(t) My dt ; a=0

L

where #(f) is a non-decreasing function tending to o= with #, having only enumerable
discontinuties on the left, Obviously then n” (¢) exists almost everywhere.

Now let us introduce a function p (¥) which according to KAMTHAN |K] is assumed to
satisfy the following conditions :

* As thig reference eccurs freguently in the context, wo refer to it as [K] in the results

that follow,
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(1.1} p(rN—>pe as r—oo; where 0<< @<,
(1.2) M -0 uniformly as » > oo,

&’ (r)
(1.3) lim M ()

r—oo €XP. {Q(") @ (i)} -1

Making use of (A), KamTHAN has found a number of results depending on the growth of
M(r) and i (r) with respect to exp. {g{) ¢ ()}, which as a particular case reduce to
already existing results on Entire Functions respresented by DIricHLET and TAyLoR-series.

Here we wish to find certain other results on the growth of M {*) and s (#) and prove
the following theorems :

2. Theorem 1. Let

n{) ~eip. {ed (M), r>oo
then the function

log M ()
& (1)
behaves like the function g (r) defined as above satisfying the conditions (1.1) and (1.2).
Proof, let
\_ log M{n
e(r) = 60
then
. M (1) @7 (r)
= — .- log M ().
e (1") M) & () [(P (r)]e 0g (r)
By using (A), we find that
o COE )l M@
' & (1) M (r) )

for almost all values of r,
But from the hypothesis,
#(r) ~exp. {ed ()} for large r,

we have
r

M(r) = f n{ty @ (ry dt

a

rvfexp. {od)} & () dr

exp. [ed (D} 1L

il

[eq olr) __ p0 @(m)i

[r() —ete(®],

a
1
e
1
e
1
e
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Hence
M(r} 1
2.2, —
22) ny T BT
Again
M (r) 1

li e =
oo €XD. [0 B (r) e

Therefore we have for every arbitrarily small ¢ >0 and r>r, .

1 ) M (v} 1
2 o lee) 2
. 1 1
i.e. log (—E— —8) | e @ (r)<log M(r) < log (g —0—5) + e d ().
Hence
. log M(r)
@3 R B

Thus making use of (2.2) and (2.3) in (2.1) we see that the condition (1.2) for the
log M (r)

functi
urnction ‘P(I‘)

is satisfied and obviously the condition (i.1) for this- function follows

from (2.3).
Theorem 2. If
ry > r, >0, then

M’(r,)—M(rl) <= i)
—_— irq)-

(2.4) niey) = ) — () =

Remark. This generalises the results of Srivastava ( [*] p. 140), Kamrean ( ['] th. 1).

Proof. Since

M) — M) = j n (1) & (o) dt,
FL
therefore
1) [P — B ()] £ Mr) — M (r) 7 () [8 () — B () ],
Hence

M{r) — M)

di(r?)—;gfi(r‘)

alry) < < nirg
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Corollary. If
R>r>0 and R=—R(r, k).
where & is some postive constant such that

(2.5) B(RY—b(r) > P (k)=0 as r— o,

which is always possible for a proper choice of @ (r} and then of R (for the construction
of such functions see KAMTHAN [ K }. Then we have

(2.6) lim [M(R)—M(r)] =0,

r—+o0

Teorem 3, If

M (r) (=12)

be two convex functions with respect te the function & (r) detined as

r

27N M,-(r):f (1) @ (Hdt , a0
where
g () = n, (r)

and also

— A
28 M [0 —n (=7

¥ oo
then

M =M e My — M, (1)
B< lim B () = :!]—l;noo & (r)

r—oao

A

I

Proof. From (2.8), for every arbitrarily choosen small number ¢ >0 and r>y,,

we have L
() —ni (< A+ 2
Also
r
M=M= [ TnO—n®1e 0

a

Fo r
</ [na(r)»ﬁnl(r)]rp’(r)dr+f(A+c) & (1) dt
a ]
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hro M,(r')—Ml(r)
@9 R T

Stmilarly by considering the inequality

n()—n(ry>B—¢ for ¢>0 and r>=r,
it can be proved that

. M) — M, ()
(2.10) rgo —“—@(T——EB.

Thus the result follows from (2.9) and (2.10).

Coroltary, If 4 — B, then

[ My () — M, ()] ~ A & ().
3. Theorem 4. If ‘

i _log M(_r)i _ D
5o 20 <
and
h—* M(I‘) A ;
r—co n(r) B
then
i 1
& 2 e
B = D — C = A
where

0 C=D <

oo,
Proof. We have
lim —log M(Q = C.
e PO

Firstly we have to show that A 3—2,— 3

3 suppose that this statement is not true:
! " |
then A4 < el and therefore .

= M) _ 1
LT S

IR
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and so
M@P)=un(r)y for r>=r,,
where
XL —

C

But M’ () exists almost everywhere and so

M (ny=n()d{&d ()} foralmost all r>=r,.
Thus

M) d @ {r)
G- Mo T«

Integrating the inequality (3.1) over {r,, v} we obtain

log M (" —log M () = MQ .

o
But @ {r) increases with r and so
tim EMO Lo
PR A *
Hence
lim JOBMG)
e A

which contradicts the hypothesis. Hence

1

e
A_C

. . 1 . _—
Similarly assuming that B <= T-does not hold, we can arrive at a contradiction and

therefore the theorem is completly proved.

Corollary, 1If A=2E5,

then C—= D= .

‘Thc proof is straightforward.

Remark. For an alternative proof see ([K], Theorem 3).

Theorem 5. If A (r) >0, then the convergence (or divergence) of the Tirst integral,
given below, implies the convergence (or divergence) of the other and vice-versa, the
integrals being given by
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o Mm
Jl-—f ot &) dn

a pin)
Ty
a >0
F @
Jy = P} & (1) dn
o

Proof. We already know that

M@ =M+ f n(t) $(1) dt.

Hence

r n r

@ (n) dn , _ I
jmf n(t) & umff [M () — MO e
Ty o ry
O rM@—MOENT 1 a e e
(3.2) = [“_*Tw(n) ]r0+ - f Caot
Fy

Also

r

. n r . .
3.3) f @, j’ A () D) dt == j Mm " ) dn Mi”“’ [ @) _g—a olry)],
r

% B} % oin}

ry © o

Combining (3.2) and (3.3), we obtain

oo [HOTO Mo Mo 1 vosed,

2% o) e BRI ) £ (n)
Iy Ty

Proof for convergence (i), During the proof of convergence or divergence of the
integrals J, and J,, K shall be used to denote an arbitrarily large positive number and ¢ will
be an arbitrarily small positive number, both being not necesarily the same at each
occurrence.

Suppose J, is convergent, Then

R ’
8>f M (n) & (n) dn > M®

2R —oln) ]
2% @) o g% B(r)

T

where R=R (r, k), k>0 so that

(3.5) SR)— P () > d(R)=0 as y > oo,
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and so

M (r)
3.6) e“_@(") >0, Jo co,
Hence from (3.4) and (3.6) we have

where H is some finite number less than zero. From (3.7) it follows that J, is convergent,
since J, is assumed to be convergent.

(i) Let now J, be convergent and hence from (3.4) we have for large r,

fEmrn ,, HO

3.8 enal) n 2% o)

-ry

o

A being some constant, and as

. ‘ f
il M@ & (n) dn > {e*‘!!“ elry) _ o q:(r)] M (ry)
' f o8 @ (1) o

Fy

both the terms on the left hand side of (3.8) are positive and this, gives the cohvergence
“af J,. o o

Proof for divergence. (/i) Suppose now that J, is divergent. Then for large r;

R
M@ d7(m M(R) s{pR-p))
—1
_.K</‘ Yy < FPYes [e . ]
Y e r ’ wo
and hence for large r
T G M) oo
: LYt = K

and so from (3.4) we fond that J, is divergent.

(iv) Finally, suppose J, is divergent., Then from (3.4) we have for large r

e

g% @ n) dn +- e air) =K,

(3.9) “f M &(n) M ()

L]

we now say that J, is divergent if J, is divergent, for if J; is covergent then UL




CONVEX FUNCTIONS AND THEIR APPLICATIONS 67

@ f —n’{—(i)—ih'(n)dn';'m

% D (R)
Fo
and
M (¥)
(3.10) P @)

is arbitrarily small (for (3.10) sce (3.6) ), for large r and then (3.9) gives a contradition,
Hence J, is divergent,

Combining (i), (i), (i) and {/¥) the theorem is completely established,

Remark. This generalises the result of Kamtaan ([']. Th. 11 and th 15, p, 139 {®]).

4. XamraanN [K] has proved the following results :

“.n 4= <
e
D c
. B = — I —
“2) =5 {1+ (5))
“.n a4 Lo e
ge
(4.4) R
1
where
fm MO _ A Gy ) O
oo £ B e &0 D
and

R
g{r) = exp. f elm d @{n).
7]

Then from {(4.4) and the fact that B« A4, we have
{4.5) D=pA
and from {4.5)

C=Ape e~ DIC
{4.6) = Ape.

Remark. It follows from {4.5) and {4.6) that




68 Pawan Kumar JaiN
C+ D= pgdle+t )

but it is included in the following, for we find from {(4.3) that

A= e g o (-2)]

ge ol
.. € CctDb
" pe C
Thus
4.7 C-+ D= Adge

and this completes our assertion.

Theorem 6. Equality cannot hold simultancously in (4.4) and (4.7).

Proof, Let

Then from (see [K] theorem 1 ;(9))

o & (&)
AE—Q* fD4-2Co (0],
we have
A= [ g com
or
Y (_‘i%u .
Now let
P (k) = % log(14u), 50,
Hence
- ?Ji/(i?if) =e4
Further
D=C
Hence
C=pAd
or |

Ct+D=2gA< epAd.
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Next suppose that C -+ D =¢p A, then D will be less than p A, for, if it were equal
to ¢ A then by above theorem C -+ D will have to be less than e pA.

Remark, A similar result appears in {['], theorem 8 {17} ).

Finally, [ have the opportunity to express my warm thanks to Dir, P. K. KAMTHAN for SHEEes-
ting the problem and his constant guidance in the preparation of this note,

I am also grateful to Prof. R. S, Varma for his constant encouragement and research faci-
lities provided to me.
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OzeT

Baz1 4zellikleri haiz ¢ (-} fonksiyonuna nazaran konveks olan ve M {a) =10
sartin1 saglayan bit M () fonksiyonu ile bu fonksiyona bagli olarak

r

M) = [ n ) (D’ (1) at {a >0

a

baginhig ile tamimlanmig n (¢) fonksiyonlarl gtz énine alinmakta ve bu

fonksiyonlarin <hitylime» leri fle 1lgill yeni bam sonuglar elde edilmelktedir,




